Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.362
Filter
1.
Gut Microbes ; 16(1): 2359500, 2024.
Article in English | MEDLINE | ID: mdl-38825783

ABSTRACT

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.


Subject(s)
Archaea , Bacteria , Biofilms , Feces , Gastrointestinal Microbiome , Humans , Biofilms/growth & development , Archaea/classification , Archaea/metabolism , Archaea/genetics , Archaea/isolation & purification , Adult , Middle Aged , Female , Male , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Feces/microbiology , Colon/microbiology , Methanobrevibacter/metabolism , Methanobrevibacter/genetics , Methanobrevibacter/growth & development , Methanobrevibacter/isolation & purification , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/metabolism , Aged , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Ileum/microbiology , Fatty Acids, Volatile/metabolism , Young Adult , Bile Acids and Salts/metabolism
2.
Eur J Gastroenterol Hepatol ; 36(7): 890-896, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829943

ABSTRACT

OBJECTIVE: Short-chain fatty acids (SCFAs) are produced when the microbiota in the large intestine cause fermentation of dietary carbohydrates and fibers. These fatty acids constitute the primary energy source of colon mucosa cells and have a protective effect in patients suffering from inflammatory bowel disease (IBD). This study aimed to compare the SCFA levels in the stools of patients with IBD and healthy controls. METHOD: Healthy controls and patients with IBD aged 18 and over were included in the study. Stool samples from all patients and healthy controls were collected, and stool acetic acid, propionic acid, and butyric acid levels were measured using a gas chromatography-mass spectrometry measurement method. RESULTS: In this study, 64 participants were divided into two groups: 34 were in IBD (Crohn disease and ulcerative colitis) and 30 were in healthy control group. When fecal SCFA concentrations of IBD and healthy control groups were compared, a statistically significant difference was observed between them. When the fecal SCFA concentrations of Crohn's disease and ulcerative colitis patients in the IBD group were compared, however, no statistically significant difference was observed between them. Furthermore, when the participants' diet type (carbohydrate-based, vegetable-protein-based and mixed diet) and the number of meals were compared with fecal SCFA concentrations, no statistically significant difference was observed between them. CONCLUSION: In general, fecal SCFA levels in patients with IBD were lower than those in healthy controls. Moreover, diet type and the number of meals had no effect on stool SCFA levels in patients with IBD and healthy individuals.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Fatty Acids, Volatile , Feces , Humans , Feces/chemistry , Feces/microbiology , Male , Female , Adult , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Middle Aged , Case-Control Studies , Crohn Disease/metabolism , Young Adult , Gas Chromatography-Mass Spectrometry , Diet , Propionates/metabolism , Propionates/analysis , Acetic Acid/analysis , Acetic Acid/metabolism , Gastrointestinal Microbiome , Butyric Acid/analysis , Butyric Acid/metabolism
3.
FASEB J ; 38(9): e23627, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690708

ABSTRACT

Colonoscopy is the gold standard for diagnosing inflammatory bowel disease (IBD). However, this invasive procedure has a high burden for pediatric patients. Previous research has shown elevated fecal amino acid concentrations in children with IBD versus controls. We hypothesized that this finding could result from increased proteolytic activity. Therefore, the aim of this study was to investigate whether fecal protease-based profiling was able to discriminate between IBD and controls. Protease activity was measured in fecal samples from patients with IBD (Crohn's disease (CD) n = 19; ulcerative colitis (UC) n = 19) and non-IBD controls (n = 19) using a fluorescence resonance energy transfer (FRET)-peptide library. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of each FRET-peptide substrate. Screening the FRET-peptide library revealed an increased total proteolytic activity (TPA), as well as degradation of specific FRET-peptides specifically in fecal samples from IBD patients. Based on level of significance (p < .001) and ROC curve analysis (AUC > 0.85), the fluorogenic substrates W-W, A-A, a-a, F-h, and H-y showed diagnostic potential for CD. The substrates W-W, a-a, T-t, G-v, and H-y showed diagnostic potential for UC based on significance (p < .001) and ROC analysis (AUC > 0.90). None of the FRET-peptide substrates used was able to differentiate between protease activity in fecal samples from CD versus UC. This study showed an increased fecal proteolytic activity in children with newly diagnosed, treatment-naïve, IBD. This could lead to the development of novel, noninvasive biomarkers for screening and diagnostic purposes.


Subject(s)
Feces , Inflammatory Bowel Diseases , Proteolysis , Humans , Feces/chemistry , Feces/enzymology , Child , Female , Male , Pilot Projects , Adolescent , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/diagnosis , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/diagnosis , Fluorescence Resonance Energy Transfer/methods , Peptide Hydrolases/metabolism , Crohn Disease/diagnosis , Crohn Disease/metabolism , ROC Curve , Case-Control Studies , Child, Preschool
4.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747908

ABSTRACT

BACKGROUND: miR-34a has been implicated in many autoimmune diseases and gastrointestinal diseases. However, the expression of miR-34 in ulcerative colitis (UC) patients were not fully studied. This study was performed to in-vestigate the association of blood and intestinal tissue miR-34a expression of patients with disease severity in UC patients. METHODS: Our study enrolled 82 patients with UC and 80 age- and gender- matched healthy individuals. Blood miR-34a expressions were detected using reverse transcription-polymerase chain reaction (RT-PCR). Local intestinal miR-34a, STAT3 mRNA and IL-23 mRNA expressions were also detected in the lesioned area and adjacent non-affected intestinal tissue in patients. Disease severity of UC was assessed by Mayo score. The diagnostic value of both blood and local miR-34a expression for UC patients was assessed by receiver operating characteristic (ROC) curve. RESULTS: Blood miR-34a was increased in UC patients in contrast with healthy individuals with statistical significance. In UC patients, local intestinal miR-34a expressions were markedly upregulated compared to adjacent non-affected intestinal tissue. Local intestinal miR-34a expressions were positively correlated with STAT3 mRNA and IL-23 mNRA. Both blood and local miR-34a expressions were significantly and positively related to Mayo scores. ROC curve analysis indicated that both blood and local miR-34a expressions may act as decent marker for Mayo grade. CONCLUSIONS: Blood and intestinal tissue miR-34a expressions are correlated with disease severity in UC patients. Both blood and intestinal tissue miR-34a expressions may serve as potential diagnostic and prognostic makers for UC. Therapeutic methods targeting miR-34a may act as potential ways for UC treatment.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , STAT3 Transcription Factor , Severity of Illness Index , Humans , MicroRNAs/blood , MicroRNAs/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/blood , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/metabolism , Female , Male , Intestinal Mucosa/metabolism , Adult , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Middle Aged , Case-Control Studies , ROC Curve , Biomarkers/blood , Interleukin-23/blood , Interleukin-23/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism
5.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
6.
Front Cell Infect Microbiol ; 14: 1366192, 2024.
Article in English | MEDLINE | ID: mdl-38779566

ABSTRACT

Background: Ulcerative colitis (UC) is a multifactorial chronic inflammatory bowel disease (IBD) that affects the large intestine with superficial mucosal inflammation. A dysbiotic gut microbial profile has been associated with UC. Our study aimed to characterize the UC gut bacterial, fungal, and metabolic fingerprints by omic approaches. Methods: The 16S rRNA- and ITS2-based metataxonomics and gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) metabolomic analysis were performed on stool samples of 53 UC patients and 37 healthy subjects (CTRL). Univariate and multivariate approaches were applied to separated and integrated omic data, to define microbiota, mycobiota, and metabolic signatures in UC. The interaction between gut bacteria and fungi was investigated by network analysis. Results: In the UC cohort, we reported the increase of Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, Gemellaceae, and phenylethyl alcohol; and we also reported the decrease of Akkermansia; Ruminococcaceae; Ruminococcus; Gemmiger; Methanobrevibacter; Oscillospira; Coprococus; Christensenellaceae; Clavispora; Vishniacozyma; Quambalaria; hexadecane; cyclopentadecane; 5-hepten-2-ol, 6 methyl; 3-carene; caryophyllene; p-Cresol; 2-butenal; indole, 3-methyl-; 6-methyl-3,5-heptadiene-2-one; 5-octadecene; and 5-hepten-2-one, 6 methyl. The integration of the multi-omic data confirmed the presence of a distinctive bacterial, fungal, and metabolic fingerprint in UC gut microbiota. Moreover, the network analysis highlighted bacterial and fungal synergistic and/or divergent interkingdom interactions. Conclusion: In this study, we identified intestinal bacterial, fungal, and metabolic UC-associated biomarkers. Furthermore, evidence on the relationships between bacterial and fungal ecosystems provides a comprehensive perspective on intestinal dysbiosis and ecological interactions between microorganisms in the framework of UC.


Subject(s)
Bacteria , Colitis, Ulcerative , Feces , Fungi , Gas Chromatography-Mass Spectrometry , Gastrointestinal Microbiome , Metabolomics , RNA, Ribosomal, 16S , Humans , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Male , Adult , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Middle Aged , Metabolomics/methods , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Fungi/classification , Fungi/isolation & purification , Fungi/metabolism , Dysbiosis/microbiology , Metabolome , Aged , Young Adult , Solid Phase Microextraction , Mycobiome , Multiomics
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 455-459, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790102

ABSTRACT

Ulcerative colitis (UC) is an autoimmune disease based on the persistent damage of colonic mucosal barrier. It has been found that the abnormal expression of follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells is closely related to the occurrence and development of UC. Tfh cells can secrete pro-inflammatory factors and assist B cells to produce antibodies, which can promote the development of UC, while Tfr cells can inhibit the activity of Tfh cells and secrete anti-inflammatory factors. How to regulate the balance between them has become one of the potential therapeutic targets of UC. Vasoactive intestinal peptide (VIP) has preventive and therapeutic effect on UC, and its mechanism is closely related to the regulation of Tfh/Tfr cell balance, which can provide help for the treatment of UC.


Subject(s)
Colitis, Ulcerative , T Follicular Helper Cells , T-Lymphocytes, Regulatory , Vasoactive Intestinal Peptide , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/therapy , Humans , Vasoactive Intestinal Peptide/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Animals , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
8.
J Biochem Mol Toxicol ; 38(6): e23738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764152

ABSTRACT

Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 µM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1ß (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.


Subject(s)
Colitis, Ulcerative , Genistein , Transcription Factor RelA , Animals , Genistein/pharmacology , Mice , RAW 264.7 Cells , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Transcription Factor RelA/metabolism , Male , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Dextran Sulfate/toxicity
9.
J Transl Med ; 22(1): 488, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773576

ABSTRACT

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.


Subject(s)
Apoptosis , Colitis, Ulcerative , Dextran Sulfate , Endoplasmic Reticulum Stress , Animals , Endoplasmic Reticulum Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Apoptosis/drug effects , Male , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Cytokines/metabolism , Permeability/drug effects , Signal Transduction/drug effects
10.
Sci Rep ; 14(1): 11519, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38769131

ABSTRACT

Ulcerative colitis (UC) is a refractory inflammatory bowel disease, which is known to cause psychiatric disorders such as anxiety and depression at a high rate in addition to peripheral inflammatory symptoms. However, the pathogenesis of these psychiatric disorders remains mostly unknown. While prior research revealed that the Enterococcus faecalis 2001 (EF-2001) suppressed UC-like symptoms and accompanying depressive-like behaviors, observed in a UC model using dextran sulfate sodium (DSS), whether it has an anxiolytic effect remains unclear. Therefore, we examined whether EF-2001 attenuates DSS-induced anxiety-like behaviors. Treatment with 2% DSS for seven days induced UC-like symptoms and anxiety-like behavior through the hole-board test, increased serum lipopolysaccharide (LPS) and corticosterone concentration, and p-glucocorticoid receptor (GR) in the prefrontal cortex (PFC), and decreased N-methyl-D-aspartate receptor subunit (NR) 2A and NR2B expression levels in the PFC. Interestingly, these changes were reversed by EF-2001 administration. Further, EF-2001 administration enhanced CAMKII/CREB/BDNF-Drebrin pathways in the PFC of DSS-treated mice, and labeling of p-GR, p-CAMKII, and p-CREB showed colocalization with neurons. EF-2001 attenuated anxiety-like behavior by reducing serum LPS and corticosterone levels linked to the improvement of UC symptoms and by facilitating the CAMKII/CREB/BDNF-Drebrin pathways in the PFC. Our findings suggest a close relationship between UC and anxiety.


Subject(s)
Anti-Anxiety Agents , Dextran Sulfate , Disease Models, Animal , Enterococcus faecalis , Animals , Mice , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Dextran Sulfate/toxicity , Male , Anxiety/drug therapy , Lipopolysaccharides , Corticosterone/blood , Prefrontal Cortex/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Mice, Inbred C57BL
11.
Life Sci ; 348: 122700, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724004

ABSTRACT

AIMS: To elucidate the impact of 10-(6-plastoquinonyl) decyltriphenylphosphonium (SkQ1) as an anti-colitogenic agent for maintenance of colon epithelial tract in ulcerated mice through recovery of mitochondrial dysfunction and mitochondrial stress by virtue of its free radical scavenging properties. MAIN METHODS: DSS induced ulcerated BALB/c mice were treated with SkQ1 for 14 days @ 30 nmol/kg/body wt./day/mice. Post-treatment, isolated colonic mitochondria were utilized for spectrophotometric and spectrofluorometric biochemical analysis of various mitochondrial functional variables including individual mitochondrial respiratory enzyme complexes. Confocal microscopy was utilized for measuring mitochondrial membrane potential in vivo. ELISA technique was adapted for measuring colonic nitrite and 3-nitrotyrosine (3-NT) content. Finally in vitro cell line study was carried out to substantiate in vivo findings and elucidate the involvement of free radicals in UC using antioxidant/free radical scavenging regimen. KEY FINDINGS: Treatment with SkQ1 in vivo reduced histopathological severity of colitis, induced recovery of mitochondrial respiratory complex activities and associated functional variables, improved oxidative stress indices and normalized mitochondrial cardiolipin content. Importantly, SkQ1 lowered nitrite concentration and 3-nitrotyrosine formation in vivo. In vitro SkQ1 restored mitochondrial functions wherein the efficacy of SkQ1 proved equal or better compared to SOD and DMSO indicating predominant involvement of O2- and OH in UC. However, NO and ONOO- also seemed to play a secondary role as MEG and L-NAME provided lesser protection as compared to SOD and DMSO. SIGNIFICANCE: SkQ1 can be considered as a potent anti-colitogenic agent by virtue of its free radical scavenging properties in treating UC.


Subject(s)
Colitis, Ulcerative , Colon , Mice, Inbred BALB C , Mitochondria , Oxidative Stress , Plastoquinone , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Colon/drug effects , Colon/pathology , Colon/metabolism , Oxidative Stress/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/pharmacology , Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Dextran Sulfate
12.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732837

ABSTRACT

The gut microbiota and its related metabolites differ between inflammatory bowel disease (IBD) patients and healthy controls. In this study, we compared faecal volatile organic compound (VOC) patterns of paediatric IBD patients and controls with gastrointestinal symptoms (CGIs). Additionally, we aimed to assess if baseline VOC profiles could predict treatment response in paediatric IBD patients. We collected faecal samples from a cohort of de novo therapy-naïve paediatric IBD patients and CGIs. VOCs were analysed using gas chromatography-ion mobility spectrometry (GC-IMS). Response was defined as a combination of clinical response based on disease activity scores, without requiring treatment escalation. We included 109 paediatric IBD patients and 75 CGIs, aged 4 to 17 years. Faecal VOC profiles of paediatric IBD patients were distinguishable from those of CGIs (AUC ± 95% CI, p-values: 0.71 (0.64-0.79), <0.001). This discrimination was observed in both Crohn's disease (CD) (0.75 (0.67-0.84), <0.001) and ulcerative colitis (UC) (0.67 (0.56-0.78), 0.01) patients. VOC profiles between CD and UC patients were not distinguishable (0.57 (0.45-0.69), 0.87). Baseline VOC profiles of responders did not differ from non-responders (0.70 (0.58-0.83), 0.1). In conclusion, faecal VOC profiles of paediatric IBD patients differ significantly from those of CGIs.


Subject(s)
Feces , Inflammatory Bowel Diseases , Ion Mobility Spectrometry , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Child , Feces/chemistry , Adolescent , Female , Male , Case-Control Studies , Child, Preschool , Ion Mobility Spectrometry/methods , Inflammatory Bowel Diseases/metabolism , Crohn Disease/metabolism , Colitis, Ulcerative/metabolism , Gas Chromatography-Mass Spectrometry/methods , Gastrointestinal Microbiome/physiology
13.
Food Funct ; 15(11): 6054-6067, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38753306

ABSTRACT

6-Gingerol (6-G), an active ingredient of ginger with anti-inflammation and anti-oxidation properties, can treat ulcerative colitis (UC). However, its underlying mechanism is still unclear. In this study, the pharmacodynamic evaluation of 6-G for treating UC was performed, and the mechanism of 6-G in ameliorating UC was excavated by plasma metabolomics and network pharmacology analysis, which was further validated by experimental and molecular docking. The results showed that 6-G could notably reduce diarrhea, weight loss, colonic pathological damage, and inflammation in UC mice. Plasma metabolomic results indicated that 6-G could regulate 19 differential metabolites, and its metabolic pathways mainly involved linoleic acid metabolism and arachidonic acid metabolism, which were closely associated with ferroptosis. Moreover, 60 potential targets for 6-G intervention on ferroptosis in UC were identified by network pharmacology, and enrichment analysis revealed that 6-G suppressed ferroptosis by modulating lipid peroxidation. Besides, the integration of metabolomics and network pharmacology showed that the regulation of 6-G on ferroptosis focused on 3 key targets, including ALOX5, ALOX15, and PTGS2. Further investigation indicated that 6-G significantly inhibited ferroptosis by decreasing iron load and malondialdehyde (MDA), and enhanced antioxidant capacity by reducing the content of glutathione disulfide (GSSG) and increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in UC mice and RSL3-induced Caco-2 cells. Furthermore, molecular docking showed the high affinity of 6-G with the identified 3 key targets. Collectively, this study elucidated the potential of 6-G in ameliorating UC by inhibiting ferroptosis. The integrated strategy also provided a theoretical basis for 6-G in treating UC.


Subject(s)
Catechols , Colitis, Ulcerative , Fatty Alcohols , Ferroptosis , Metabolomics , Molecular Docking Simulation , Network Pharmacology , Animals , Ferroptosis/drug effects , Mice , Fatty Alcohols/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Catechols/pharmacology , Male , Humans , Disease Models, Animal , Zingiber officinale/chemistry , Mice, Inbred C57BL , Caco-2 Cells
14.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713944

ABSTRACT

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , Isothiocyanates , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Sulfoxides , Animals , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Dextran Sulfate , Colon/drug effects , Colon/pathology , Colon/metabolism , RAW 264.7 Cells
15.
Int Immunopharmacol ; 134: 112217, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718658

ABSTRACT

The imbalance between T helper cell 17 (Th17)and regulatory T cells (Treg) cells leading to inflammation has an important role in the pathogenesis of ulcerative colitis (UC). Mammalian target of rapamycin (mTOR) can regulate the differentiation of T cells, but the specific pathway leading mTOR to regulate Th17/Treg cells in UC remains unclear. Our aim with this study was to investigate the effects of mTOR overexpression and silencing on the hypoxia inducible factor-1α (HIF-1α) - Th17/Treg signaling pathway. To mimic a human study, we established a colon cancer epithelial cell line (HT-29) co-culture system with human CD4+ T cells, and we treated the cells with TNF-α. We observed the effects of mTOR on the HIF-Th17/Treg signaling pathway to determine whether mTOR is involved in the regulatory mechanism. Under the stimulation of TNF-α, the levels of HIF-1α in CD4+T cells were increased in the HT-29 co-culture with CD4+ T cells, promoting glycolysis, increasing the Th17 proportion, decreasing the Treg proportion, increasing the pro-inflammatory factors levels, and decreasing the anti-inflammatory factors levels. Moreover, after mTOR silencing, the HIF-1α level and cell glycolysis levels decreased, Th17 cell differentiation decreased, the pro-inflammatory factor levels decreased, and the anti-inflammatory factor levels increased. In contrast, mTOR overexpression lead to the opposite results.mTOR promotes inflammation by regulating the HIF signaling pathway during UC, and silencing mTOR may alleviate inflammation. An mTOR inhibitor is a potential therapeutic target for UC treatment.


Subject(s)
Coculture Techniques , Colitis, Ulcerative , Hypoxia-Inducible Factor 1, alpha Subunit , Signal Transduction , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases , Th17 Cells , Humans , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , TOR Serine-Threonine Kinases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Th17 Cells/immunology , HT29 Cells , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , Inflammation/immunology , Glycolysis
16.
Biomed Pharmacother ; 175: 116722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729051

ABSTRACT

Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.


Subject(s)
Colitis, Ulcerative , Ferroptosis , Ferroptosis/drug effects , Ferroptosis/physiology , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Animals , Gastrointestinal Microbiome , Endoplasmic Reticulum Stress/drug effects , Signal Transduction , Lipid Peroxidation/drug effects , Molecular Targeted Therapy
17.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731645

ABSTRACT

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
18.
Immunol Lett ; 267: 106867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754636

ABSTRACT

Chronic inflammation is the pathological feature of inflammatory bowel diseases (IBD), but its etiology is unknown. Macrophages are one of the major immune cell fractions in the colon. The objectives of this study are to characterize the immune regulatory functions of macrophages in the colon of patients with ulcerative colitis (UC). UC patients (n = 30) were recruited into this study. Colon lavage fluid (CLF) was collected. Macrophages are isolated from the cellular components of CLF. The immune suppressive functions of macrophages were assessed using immunological approaches. We observed that macrophages occupied about half of the proportions of the cellular components in CLF. Lower amounts of IL10 mRNA and proteins were detected in macrophages of the UC group than the normal control (NC) group. The expression of IL10 in CLF macrophages was positively correlated with the UC-associated cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, IFN-γ, eosinophil-derived mediators, in CLF. The immune suppressive functions of CLF macrophages in UC patients were impaired. The inducibility of IL10 expression of UC M0 cells was defective as compared with NC M0 cells. Exposure to CpG restored the inducibility of IL10 expression in UC M0 cells, and gain the potential to acquire the immune suppressive functions. To sum up, the immune suppressive functions of UC macrophages are impaired. The inducibility of IL10 expression of M0 cells is impaired, which can be restored by the treatment with CpG.


Subject(s)
Colitis, Ulcerative , Cytokines , Interleukin-10 , Macrophages , Humans , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Macrophages/immunology , Macrophages/metabolism , Female , Male , Adult , Interleukin-10/metabolism , Middle Aged , Cytokines/metabolism , Cells, Cultured , Colon/immunology , Colon/pathology , Colon/metabolism
19.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38699907

ABSTRACT

Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.


Subject(s)
Apoptosis , Colitis, Ulcerative , Oxidative Stress , Pentacyclic Triterpenes , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , Pentacyclic Triterpenes/pharmacology , Rats , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Antioxidants/pharmacology , Colon/pathology , Colon/drug effects , Colon/metabolism , Lipid Peroxidation/drug effects , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , NF-E2-Related Factor 2/metabolism , Rats, Wistar
20.
Int J Biol Macromol ; 269(Pt 1): 132107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710246

ABSTRACT

Soft assembly of peptide and curcumin (Cur) molecules enables functional integration by finding dynamic equilibrium states through non-covalent interactions. Herein, we developed two soft assembly systems, curcumin-egg white peptides (Cur-EWP) aggregations (AGs) and Cur-EWP-casein-quaternary chitosan (Cur-EWP-CA-QC) nanoparticles (NPs) to comparatively investigate their therapeutic effects on ulcerative colitis in mice and elucidate their underlying mechanism. Results revealed that Cur-EWP AGs, despite gastrointestinal tract instability, exhibited a propensity for swift accumulation within the colorectal region, enriching mucus-associated and short-chain fatty acid (SCAF)-producing bacteria, restoring the intestinal barrier damage. Whereas, Cur-EWP-CA-QC NPs, benefiting from their remarkable stability and exceptional mucosal adsorption properties, not only enhanced permeability of Cur and EWP in the small intestine to activate the immune response and boost tight junction protein expression but also, in their unabsorbed state, regulated the intestinal flora, exerting potent anti-inflammatory activity. Soft assembly of peptides and hydrophobic nutraceuticals could synergize biological activities to modulate chronic diseases.


Subject(s)
Caseins , Chitosan , Colitis, Ulcerative , Curcumin , Curcumin/pharmacology , Curcumin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Animals , Mice , Caseins/chemistry , Caseins/pharmacology , Nanoparticles/chemistry , Peptides/pharmacology , Peptides/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Male , Gastrointestinal Microbiome/drug effects , Egg White/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...