Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.941
Filter
1.
Biol Pharm Bull ; 47(5): 1058-1065, 2024.
Article in English | MEDLINE | ID: mdl-38825533

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is characterized by hepatic inflammation and fibrosis due to excessive fat accumulation. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that infiltrates inflammatory cells into the liver during the development of NASH. Our previous studies demonstrated that a systemic deficiency of group IVA phospholipase A2 (IVA-PLA2), an enzyme that contributes to the production of lipid inflammatory mediators, protects mice against high-fat diet-induced hepatic fibrosis and markedly suppresses the CCl4-induced expression of MCP-1 in the liver. However, it remains unclear which cell types harboring IVA-PLA2 are involved in the elevated production of MCP-1. Hence, the present study assessed the types of cells responsible for IVA-PLA2-mediated production of MCP-1 using cultured hepatic stellate cells, endothelial cells, macrophages, and hepatocytes, as well as cell-type specific IVA-PLA2 deficient mice fed a high-fat diet. A relatively specific inhibitor of IVA-PLA2 markedly suppressed the expression of MCP-1 mRNA in cultured hepatic stellate cells, but the suppression of MCP-1 expression was partial in endothelial cells and not observed in monocytes/macrophages or hepatocytes. In contrast, a deficiency of IVA-PLA2 in collagen-producing cells (hepatic stellate cells), but not in other types of cells, reduced the high-fat diet-induced expression of MCP-1 and inflammatory cell infiltration in the liver. Our results suggest that IVA-PLA2 in hepatic stellate cells is critical for hepatic inflammation in the high-fat diet-induced development of NASH. This supports a potential therapeutic approach for NASH using a IVA-PLA2 inhibitor targeting hepatic stellate cells.


Subject(s)
Chemokine CCL2 , Diet, High-Fat , Group IV Phospholipases A2 , Hepatic Stellate Cells , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Up-Regulation , Animals , Diet, High-Fat/adverse effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/pathology , Up-Regulation/drug effects , Male , Mice , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Group IV Phospholipases A2/genetics , Group IV Phospholipases A2/metabolism , Group IV Phospholipases A2/antagonists & inhibitors , Hepatocytes/metabolism , Hepatocytes/drug effects , Humans , Mice, Knockout , Collagen/metabolism , Collagen/biosynthesis , Macrophages/metabolism , Macrophages/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Cells, Cultured
2.
BMC Ophthalmol ; 24(1): 201, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698363

ABSTRACT

BACKGROUND: We aimed to employ Optical Coherence Tomography Angiography (OCTA) to comprehensively assess changes in the optic nerve head (ONH) and macular perfusion before and after the Corneal Collagen Cross-Linking (CCL) procedure in patients with keratoconus. METHODS: A total of 22 keratoconus patient's candidate for CCL procedures were included based on specific criteria, with meticulous exclusion criteria in place to minimize potential confounders. Participants underwent OCTA assessments of the ONH and macula using the Spectralis OCT (Heidelberg) before CCL, as well as at 1- and 3-months post-CCL. MATLAB software was utilized for image analysis. RESULTS: The mean age of the participants was 20.09 ± 6.11, including 59% male, and the mean intraocular pressure (IOP) before the surgery was 13.59 ± 2.85 mmHg. Peripapillary Retinal nerve fiber layer (ppRNFL) thickness and overall retinal thickness remained stable post-CCL. However, significant alterations were observed in macular vessel density, emphasizing regional variations in vascular response. For macular large vessel density (LVD), both superficial and deep vascular complex (SVC and DVC) demonstrated significant differences between before surgery and the 3 months post-surgery follow-up (p < 0.001 and p = 0.002, respectively). Optic nerve head markers demonstrated relative stability, except for changes in avascular complex density, which was 49.2 ± 2.2% before the surgery and decrease to 47.6 ± 1.7% three months after the operation (P-value = 0.005). CONCLUSION: While CCL appears to maintain the integrity of certain ocular structures, alterations in macular perfusion post-CCL suggest potential effects on retinal blood supply. Long-term monitoring is crucial to understand the implications of these changes, particularly in the context of conditions such as diabetes.


Subject(s)
Collagen , Cross-Linking Reagents , Fluorescein Angiography , Keratoconus , Optic Disk , Retinal Vessels , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Keratoconus/physiopathology , Keratoconus/diagnosis , Male , Female , Collagen/metabolism , Young Adult , Adult , Fluorescein Angiography/methods , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiopathology , Optic Disk/blood supply , Adolescent , Prospective Studies , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Macula Lutea/diagnostic imaging , Macula Lutea/blood supply
3.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692246

ABSTRACT

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Subject(s)
Cell Proliferation , Collagen , Fibroblasts , Hyaluronoglucosaminidase , Myofibroblasts , Periodontal Ligament , Transforming Growth Factor beta , Animals , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Periodontal Ligament/metabolism , Hyaluronoglucosaminidase/pharmacology , Rats , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Collagen/metabolism , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Hyaluronic Acid/pharmacology , Cells, Cultured , Rats, Sprague-Dawley , Actins/metabolism , Blotting, Western , In Vitro Techniques , Collagen Type I/metabolism , Biomarkers/metabolism , Real-Time Polymerase Chain Reaction , Male , RNA, Messenger/metabolism
4.
Sci Rep ; 14(1): 10524, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719976

ABSTRACT

Extracellular matrix diseases like fibrosis are elusive to diagnose early on, to avoid complete loss of organ function or even cancer progression, making early diagnosis crucial. Imaging the matrix densities of proteins like collagen in fixed tissue sections with suitable stains and labels is a standard for diagnosis and staging. However, fine changes in matrix density are difficult to realize by conventional histological staining and microscopy as the matrix fibrils are finer than the resolving capacity of these microscopes. The dyes further blur the outline of the matrix and add a background that bottlenecks high-precision early diagnosis of matrix diseases. Here we demonstrate the multiple signal classification method-MUSICAL-otherwise a computational super-resolution microscopy technique to precisely estimate matrix density in fixed tissue sections using fibril autofluorescence with image stacks acquired on a conventional epifluorescence microscope. We validated the diagnostic and staging performance of the method in extracted collagen fibrils, mouse skin during repair, and pre-cancers in human oral mucosa. The method enables early high-precision label-free diagnosis of matrix-associated fibrotic diseases without needing additional infrastructure or rigorous clinical training.


Subject(s)
Microscopy, Fluorescence , Animals , Mice , Humans , Microscopy, Fluorescence/methods , Extracellular Matrix Proteins/metabolism , Optical Imaging/methods , Extracellular Matrix/metabolism , Collagen/metabolism , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Skin/metabolism , Skin/pathology
5.
J Photochem Photobiol B ; 255: 112927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701631

ABSTRACT

Since the mechanism underlying real-time acquisition of mechanical strength during laser-induced skin wound fusion remains unclear, and collagen is the primary constituent of skin tissue, this study investigates the structural and mechanical alterations in collagen at temperatures ranging from 40 °C to 60 °C using various spectroscopic techniques and molecular dynamics calculations. The COMSOL Multiphysics coupling is employed to simulate the three-dimensional temperature field, stress-strain relationship, and light intensity distribution in the laser thermal affected zone of skin wounds during dual-beam laser welding process. Raman spectroscopy, synchronous fluorescence spectroscopy and circular dichroism measurement results confirm that laser energy activates biological activity in residues, leading to a transformation in the originally fractured structure of collagen protein for enhanced mechanical strength. Molecular dynamics simulations reveal that stable hydrogen bonds form at amino acid residues within the central region of collagen protein when the overall temperature peak around the wound reaches 60 °C, thereby providing stability to previously fractured skin incisions and imparting instantaneous strength. However, under a 55 °C system, Type I collagen ensures macrostructural stability while activating biological properties at amino acid bases to promote wound healing function; this finding aligns with experimental analysis results. The COMSOL simulation outcomes also correspond well with macroscopic morphology after laser welding samples, confirming that by maintaining temperatures between 55 °C-60 °C during laser welding of skin incisions not only can certain instantaneous mechanical strength be achieved but irreversible thermal damage can also be effectively controlled. It is anticipated that these findings will provide valuable insights into understanding the healing mechanism for laser-welded skin wounds.


Subject(s)
Collagen , Lasers , Molecular Dynamics Simulation , Skin , Spectrum Analysis, Raman , Skin/chemistry , Skin/radiation effects , Collagen/chemistry , Collagen/metabolism , Wound Healing , Hydrogen Bonding , Finite Element Analysis , Animals , Circular Dichroism , Temperature , Spectrometry, Fluorescence
6.
Int J Implant Dent ; 10(1): 24, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722448

ABSTRACT

PURPOSE: The objective of the present study was to ascertain the effect of immediate occlusal loading after implant placement on osseointegration and the micro/nanostructure of the surrounding bone. METHODS: After extraction of a rat maxillary right second molar, an implant was placed immediately with initial fixation (2 N< ). The implants were placed to avoid occlusal loading due to mastication, and in the loaded group, a superstructure was fabricated and subjected to occlusal loading. Bone morphometry, collagen fiber anisotropy, and biological apatite (BAp) crystallite alignment were quantitatively evaluated in both groups after extraction and fixation of the jaw bone at Days 7 and 21 after surgery. RESULTS: Osseointegration was observed in both groups. Bone morphometry showed significant differences in bone volume, trabecular number, trabecular thickness and bone mineral density (BMD) at Days 21 postoperatively (P < 0.05). A significant difference was also found in the trabecular separation at Days 7 postoperatively (P < 0.05). In the evaluation of collagen fiber anisotropy, collagen fiber bundles running differently from the existing bone were observed in both groups. In terms of BAp crystallite alignment, a specific structure was observed in the reconstructed new bone after implantation, and preferential orientation of BAp crystallite alignment was observed in the longitudinal direction of the implants in the Day 21 postoperative loaded group. CONCLUSION: When sufficient initial fixation is achieved at the time of dental implant placement, then the applied masticatory load may contribute to rapidly achieving not only bone volume, but also adequate bone quality after implant placement.


Subject(s)
Immediate Dental Implant Loading , Osseointegration , Animals , Rats , Osseointegration/drug effects , Male , Bone Density/physiology , Dental Implants , Rats, Wistar , Maxilla/surgery , Collagen/metabolism , X-Ray Microtomography
7.
Lab Chip ; 24(11): 2999-3014, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742451

ABSTRACT

The rapid emergence of anisotropic collagen fibers in the tissue microenvironment is a critical transition point in late-stage breast cancer. Specifically, the fiber orientation facilitates the likelihood of high-speed tumor cell invasion and metastasis, which pose lethal threats to patients. Thus, based on this transition point, one key issue is how to determine and evaluate efficient combination chemotherapy treatments in late-stage cancer. In this study, we designed a collagen microarray chip containing 241 high-throughput microchambers with embedded metastatic breast cancer cell MDA-MB-231-RFP. By utilizing collagen's unique structure and hydromechanical properties, the chip constructed three-dimensional isotropic and anisotropic collagen fiber structures to emulate the tumor cell microenvironment at early and late stages. We injected different chemotherapeutic drugs into its four channels and obtained composite biochemical concentration profiles. Our results demonstrate that anisotropic collagen fibers promote cell proliferation and migration more than isotropic collagen fibers, suggesting that the geometric arrangement of fibers plays an important role in regulating cell behavior. Moreover, the presence of anisotropic collagen fibers may be a potential factor leading to the poor efficacy of combined chemotherapy in late-stage breast cancer. We investigated the efficacy of various chemotherapy drugs using cell proliferation inhibitors paclitaxel and gemcitabine and tumor cell migration inhibitors 7rh and PP2. To ensure the validity of our findings, we followed a systematic approach that involved testing the inhibitory effects of these drugs. According to our results, the drug combinations' effectiveness could be ordered as follows: paclitaxel + gemcitabine > gemcitabine + 7rh > PP2 + paclitaxel > 7rh + PP2. This study shows that the biomimetic chip system not only facilitates the creation of a realistic in vitro model for examining the cell migration mechanism in late-stage breast cancer but also has the potential to function as an effective tool for future chemotherapy assessment and personalized medicine.


Subject(s)
Cell Movement , Cell Proliferation , Collagen , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Cell Line, Tumor , Collagen/chemistry , Collagen/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Anisotropy , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
8.
ACS Biomater Sci Eng ; 10(5): 2659-2679, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38697939

ABSTRACT

Connective tissue attaches to bone across an insertion with spatial gradients in components, microstructure, and biomechanics. Due to regional stress concentrations between two mechanically dissimilar materials, the insertion is vulnerable to mechanical damage during joint movements and difficult to repair completely, which remains a significant clinical challenge. Despite interface stress concentrations, the native insertion physiologically functions as the effective load-transfer device between soft tissue and bone. This review summarizes tendon, ligament, and meniscus insertions cross-sectionally, which is novel in this field. Herein, the similarities and differences between the three kinds of insertions in terms of components, microstructure, and biomechanics are compared in great detail. This review begins with describing the basic components existing in the four zones (original soft tissue, uncalcified fibrocartilage, calcified fibrocartilage, and bone) of each kind of insertion, respectively. It then discusses the microstructure constructed from collagen, glycosaminoglycans (GAGs), minerals and others, which provides key support for the biomechanical properties and affects its physiological functions. Finally, the review continues by describing variations in mechanical properties at the millimeter, micrometer, and nanometer scale, which minimize stress concentrations and control stretch at the insertion. In summary, investigating the contrasts between the three has enlightening significance for future directions of repair strategies of insertion diseases and for bioinspired approaches to effective soft-hard interfaces and other tough and robust materials in medicine and engineering.


Subject(s)
Tendons , Humans , Biomechanical Phenomena/physiology , Tendons/physiology , Tendons/anatomy & histology , Animals , Bone and Bones/physiology , Ligaments/physiology , Fibrocartilage/physiology , Fibrocartilage/chemistry , Fibrocartilage/metabolism , Collagen/chemistry , Collagen/metabolism , Stress, Mechanical
9.
PLoS One ; 19(5): e0302334, 2024.
Article in English | MEDLINE | ID: mdl-38748638

ABSTRACT

Susceptibility to morbidity and mortality is increased in early life, yet proactive measures, such as breastfeeding and weaning practices, can be taken through specific investments from parents and wider society. The extent to which such biosocialcultural investment was achieved within 1st millennium BCE Etruscan society, of whom little written sources are available, is unkown. This research investigates life histories in non-adults and adults from Pontecagnano (southern Italy, 730-580 BCE) in order to track cross-sectional and longitudinal breastfeeding and weaning patterns and to characterize the diet more broadly. Stable carbon and nitrogen isotope analysis of incrementally-sampled deciduous and permanent dentine (n = 15), bulk bone collagen (n = 38), and tooth enamel bioapatite (n = 21) reveal the diet was largely based on C3 staple crops with marginal contributions of animal protein. Millet was found to play a role for maternal diet and trajectories of breastfeeding and feeding for some infants and children at the site. The combination of multiple isotope systems and tissues demonstrates exclusive breastfeeding was pursued until 0.6 years, followed by progressive introduction of proteanocius supplementary foods during weaning that lasted between approximately 0.7 and 2.6 years. The combination of biochemical data with macroscopic skeletal lesions of infantile metabolic diseases and physiological stress markers showed high δ15Ndentine in the months prior to death consistent with the isotopic pattern of opposing covariance.


Subject(s)
Bone and Bones , Carbon Isotopes , Diet , Nitrogen Isotopes , Humans , Italy , Infant , Diet/history , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , History, Ancient , Bone and Bones/chemistry , Female , Paleopathology , Adult , Weaning , Breast Feeding/history , Stress, Physiological , Dentin/chemistry , Dentin/metabolism , Collagen/metabolism , Collagen/analysis , Child, Preschool , Male , Child
10.
Cells ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786058

ABSTRACT

Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1ß and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1ß, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-ß genes. At the protein level, IL-1ß and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.


Subject(s)
Collagen , Dental Pulp , Fibroblasts , Inflammasomes , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Fibroblasts/metabolism , Humans , Inflammasomes/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Collagen/metabolism , Coculture Techniques , Extracellular Matrix/metabolism , Cells, Cultured , Cytokines/metabolism , Dermis/cytology , Dermis/metabolism , Interleukin-1beta/metabolism
11.
Exp Dermatol ; 33(5): e15098, 2024 May.
Article in English | MEDLINE | ID: mdl-38770557

ABSTRACT

Healing of complex wounds requires dressings that must, at least, not hinder and should ideally promote the activity of key healing cells, in particular fibroblasts. This in vitro study assessed the effects of three wound-dressings (a pure Ca2+ alginate: Algostéril®, a Ca2+ alginate + carboxymethylcellulose: Biatain alginate® and a polyacrylate impregnated with lipido-colloid matrix: UrgoClean®) on dermal fibroblast activity. The results showed the pure calcium alginate to be non-cytotoxic, whereas the other wound-dressings showed moderate to strong cytotoxicity. The two alginates stimulated fibroblast migration and proliferation, whereas the polyacrylate altered migration and had no effect on proliferation. The pure Ca2+ alginate significantly increased the TGF-ß-induced fibroblast activation, which is essential to healing. This activation was confirmed by a significant increase in Vascular endothelial growth factor (VEGF) secretion and a higher collagen production. The other dressings reduced these fibroblast activities. The pure Ca2+ alginate was also able to counteract the inhibitory effect of NK cell supernatants on fibroblast migration. These in vitro results demonstrate that tested wound-dressings are not equivalent for fibroblast activation. Only Algostéril was found to promote all the fibroblast activities tested, which could contribute to its healing efficacy demonstrated in the clinic.


Subject(s)
Alginates , Cell Movement , Cell Proliferation , Fibroblasts , Vascular Endothelial Growth Factor A , Wound Healing , Fibroblasts/drug effects , Wound Healing/drug effects , Humans , Alginates/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Vascular Endothelial Growth Factor A/metabolism , Collagen/metabolism , Bandages , Transforming Growth Factor beta/metabolism , Carboxymethylcellulose Sodium , Cells, Cultured , Killer Cells, Natural/drug effects , Acrylic Resins , Hexuronic Acids , Glucuronic Acid , Skin
12.
Sci Rep ; 14(1): 11382, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762668

ABSTRACT

The annual increase in myopia prevalence poses a significant economic and health challenge. Our study investigated the effect of calcitriol role in myopia by inducing the condition in guinea pigs through form deprivation for four weeks. Untargeted metabolomics methods were used to analyze the differences in metabolites in the vitreous body, and the expression of vitamin D receptor (VDR) in the retina was detected. Following form deprivation, the guinea pigs received intraperitoneal injections of calcitriol at different concentrations. We assessed myopia progression using diopter measurements and biometric analysis after four weeks. Results indicated that form deprivation led to a pronounced shift towards myopia, characterized by reduced choroidal and scleral thickness, disorganized collagen fibers, and decreased scleral collagen fiber diameter. Notably, a reduction in calcitriol expression in vitreous body, diminished vitamin D and calcitriol levels in the blood, and decreased VDR protein expression in retinal tissues were observed in myopic guinea pigs. Calcitriol administration effectively slowed myopia progression, preserved choroidal and scleral thickness, and prevented the reduction of scleral collagen fiber diameter. Our findings highlight a significant decrease in calcitriol and VDR expressions in myopic guinea pigs and demonstrate that exogenous calcitriol supplementation can halt myopia development, enhancing choroidal and scleral thickness and scleral collagen fiber diameter.


Subject(s)
Calcitriol , Myopia , Retina , Animals , Guinea Pigs , Myopia/metabolism , Myopia/drug therapy , Myopia/pathology , Calcitriol/pharmacology , Retina/metabolism , Retina/drug effects , Retina/pathology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Male , Disease Models, Animal , Sclera/metabolism , Sclera/drug effects , Sclera/pathology , Choroid/metabolism , Choroid/drug effects , Choroid/pathology , Vitamin D/pharmacology , Vitamin D/administration & dosage , Axial Length, Eye , Vitreous Body/metabolism , Vitreous Body/drug effects , Disease Progression , Collagen/metabolism
13.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732209

ABSTRACT

One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE. The inclusion of keratin in our collagen hydrogel extracellular matrix (ECM) increased keratinocyte differentiation and barrier function, indicated by greater resistance and decreased permeability. Surprisingly, however, endothelial cells grown in a collagen/keratin extracellular environment showed increased cell growth and decreased vascular permeability, indicating a more confluent and tighter vessel compared to those grown in a pure collagen environment. The development of a novel VHSE, which incorporated physiological vasculature and a unique collagen/keratin ECM, improved barrier function, vessel development, and skin structure compared to a static AHSE model.


Subject(s)
Collagen , Hydrogels , Keratinocytes , Keratins , Skin , Humans , Hydrogels/chemistry , Collagen/chemistry , Collagen/metabolism , Keratinocytes/metabolism , Keratinocytes/cytology , Skin/metabolism , Skin/blood supply , Keratins/metabolism , Cell Differentiation , Cell Proliferation , Tissue Engineering/methods , Extracellular Matrix/metabolism , Cells, Cultured
14.
Biotechnol J ; 19(5): e2300596, 2024 May.
Article in English | MEDLINE | ID: mdl-38719591

ABSTRACT

Although fibroblast growth factor 7 (FGF7) is known to promote wound healing, its mass production poses several challenges and very few studies have assessed the feasibility of producing FGF7 in cell lines such as Chinese hamster ovary (CHO) cells. Therefore, this study sought to produce recombinant FGF7 in large quantities and evaluate its wound healing effect. To this end, the FGF7 gene was transfected into CHO cells and FGF7 production was optimized. The wound healing efficacy of N-glycosylated FGF7 was evaluated in animals on days 7 and 14 post-treatment using collagen patches (CPs), FGF7-only, and CP with FGF7 (CP+FGF7), whereas an untreated group was used as the control. Wound healing was most effective in the CP+FGF7 group. Particularly, on day 7 post-exposure, the CP+FGF7 and FGF7-only groups exhibited the highest expression of hydroxyproline, fibroblast growth factor, vascular endothelial growth factor, and transforming growth factor. Epidermalization in H&E staining showed the same order of healing as hydroxyproline content. Additionally, the CP+FGF7 and FGF7-only group exhibited more notable blood vessel formation on days 7 and 14. In conclusion, the prepared FGF7 was effective in promoting wound healing and CHO cells can be a reliable platform for the mass production of FGF7.


Subject(s)
Cricetulus , Fibroblast Growth Factor 7 , Recombinant Proteins , Wound Healing , Animals , CHO Cells , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Wound Healing/drug effects , Fibroblast Growth Factor 7/genetics , Fibroblast Growth Factor 7/metabolism , Humans , Cricetinae , Hydroxyproline/metabolism , Transfection , Collagen/metabolism
15.
Pain Res Manag ; 2024: 3339753, 2024.
Article in English | MEDLINE | ID: mdl-38803624

ABSTRACT

Methods: 30 male patients with primary inguinal hernias undergoing primary inguinal herniorrhaphy were prospectively recruited for ilioinguinal nerve resection and evaluation. Three samples of the resected ilioinguinal nerve (proximal, canal, and distal) were evaluated using Masson's trichrome stain to measure fascicle and total nerve cross-sectional area and detect changes in collagen. Results: The fascicle cross-sectional area in the canal segment was significantly decreased compared to the proximal control with a large effect size observed (p = 0.016, η2 = 0.16). There was no significant difference in the nerve cross-sectional area between locations, but there was a moderate to large effect size observed between locations (p = 0.165, η2 = 0.105). There was no significant difference in collagen content nor effect size observed between locations (p = 0.99, η2 = 1.503 × 10-4). Interpretation. The decrease in the fascicle cross-sectional area within the inguinal canal further suggests that there is chronic pressure applied by hernia tissue consistent with axon degeneration. Collagen content is uniformly distributed along the length of the nerve. Further studies with larger samples are needed to confirm the observed effect of nerve location on the total nerve cross-sectional area and axon loss.


Subject(s)
Hernia, Inguinal , Herniorrhaphy , Inguinal Canal , Nerve Compression Syndromes , Humans , Male , Hernia, Inguinal/surgery , Middle Aged , Nerve Compression Syndromes/surgery , Inguinal Canal/innervation , Inguinal Canal/pathology , Inguinal Canal/surgery , Aged , Adult , Collagen/metabolism , Prospective Studies
16.
BMC Cancer ; 24(1): 652, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811917

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest types of cancer, and it will be meaningful to search for new biomarkers with prognostic value to help clinicians tailor therapeutic strategies. METHODS: Here we tried to use an advanced optical imaging technique, multiphoton microscopy (MPM) combining second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging, for the label-free detection of PDAC tissues from a cohort of 149 patients. An automated image processing method was used to extract collagen features from SHG images and the Kaplan-Meier survival analysis and Cox proportional hazards regression were used to assess the prognostic value of collagen signatures. RESULTS: SHG images clearly show the different characteristics of collagen fibers in tumor microenvironment. We gained eight collagen morphological features, and a Feature-score was derived for each patient by the combination of these features using ridge regression. Statistical analyses reveal that Feature-score is an independent factor, and can predict the overall survival of PDAC patients as well as provide well risk stratification. CONCLUSIONS: SHG imaging technique can potentially be a tool for the accurate diagnosis of PDAC, and this optical biomarker (Feature-score) may help clinicians make more approximate treatment decisions.


Subject(s)
Carcinoma, Pancreatic Ductal , Collagen , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/metabolism , Prognosis , Female , Male , Collagen/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/diagnosis , Middle Aged , Aged , Second Harmonic Generation Microscopy/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Kaplan-Meier Estimate , Microscopy, Fluorescence, Multiphoton/methods , Adult , Tumor Microenvironment
17.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716730

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-ß1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-ß1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-ß1 signaling axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Monocytes , Signal Transduction , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Cell Line, Tumor , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Monocytes/metabolism , Monocytes/pathology , Neoplasm Metastasis , Transforming Growth Factor beta1/metabolism
18.
Curr Opin Ophthalmol ; 35(4): 273-277, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700496

ABSTRACT

PURPOSE OF REVIEW: To review corneal crosslinking for keratoconus and corneal ectasia, and recent developments in the field. This study will review the mechanism of crosslinking, clinical approaches, current results, and potential future innovations. RECENT FINDINGS: Corneal crosslinking for keratoconus was first approved by U.S. FDA in 2016. Recent studies have confirmed the general long-term efficacy of the procedure in decreasing progression of keratoconus and corneal ectasia. New types of crosslinking protocols, such as transepithelial treatments, are under investigation. In addition, adjunctive procedures have been developed to improve corneal contour and visual function in these patients. SUMMARY: Crosslinking has been found to be well tolerated and effective with the goal of decreasing progression of ectatic corneal diseases, keratoconus and corneal ectasia after refractive surgery. Studies have shown its long-term efficacy. New techniques of crosslinking and adjunctive procedures may further improve treatments and results.


Subject(s)
Collagen , Cross-Linking Reagents , Keratoconus , Photochemotherapy , Photosensitizing Agents , Riboflavin , Ultraviolet Rays , Keratoconus/drug therapy , Humans , Cross-Linking Reagents/therapeutic use , Riboflavin/therapeutic use , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Dilatation, Pathologic/drug therapy , Collagen/metabolism , Corneal Stroma/metabolism
19.
RMD Open ; 10(2)2024 May 28.
Article in English | MEDLINE | ID: mdl-38806188

ABSTRACT

OBJECTIVE: Clinical observation suggests that vascular activation and autoimmunity precede remodelling of the extracellular matrix (ECM) in systemic sclerosis (SSc). We challenge this paradigm by hypothesising that ECM biomarkers are already disturbed in patients with very early SSc (veSSc) when fibrosis is not yet clinically detectable. METHODS: 42 patients with veSSc, defined as the presence of Raynaud's phenomenon and at least one of puffy fingers, positive antinuclear antibodies or pathological nailfold capillaroscopy, not meeting the 2013 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for SSc, were compared with healthy controls (HCs, n=29). ECM degradation (BGM, C3M, C4M and C6M) and ECM formation biomarkers (PRO-C3, PRO-C4 and PRO-C5) were measured in serum using ELISAs. A cross-sectional analysis at baseline and a longitudinal analysis was performed. RESULTS: Compared with HC, veSSc patients showed a strongly dysregulated turnover of type III and IV collagens (higher C3M, C4M, both p<0.0001 and PRO-C3, p=0.004, lower turnover ratios PRO-C3/C3M and PRO-C4/C4M, both p<0.0001). The biglycan degradation biomarker BGM was higher in veSSc than in HC (p=0.006), whereas the degradation biomarker for type VI collagen, C6M, was lower (p=0.002). In an ROC analysis, biomarkers of type III and IV collagen excellently distinguished between veSSc and HC: C3M, AUC=0.95, p<0.0001; C4M, AUC=0.97, p<0.0001; turnover ratios PRO-C3/C3M, AUC=0.80, p<0.0001; PRO-C4/C4M, AUC=0.97; p<0.0001. CONCLUSION: These findings indicate ECM remodelling as a very early phenomenon of SSc occurring in parallel with microvascular and autoimmune changes. Biomarkers of type III and IV collagens distinguished between veSSc patients and HC, indicating them as potential biomarkers for the detection of veSSc.


Subject(s)
Biomarkers , Scleroderma, Systemic , Humans , Scleroderma, Systemic/blood , Scleroderma, Systemic/diagnosis , Biomarkers/blood , Female , Male , Middle Aged , Adult , Extracellular Matrix/metabolism , Collagen/metabolism , Case-Control Studies , Cross-Sectional Studies , ROC Curve , Aged , Biglycan/blood , Biglycan/metabolism , Collagen Type III/blood , Collagen Type III/metabolism
20.
Sci Rep ; 14(1): 12222, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806601

ABSTRACT

Calcification of aortic valve leaflets is a growing mortality threat for the 18 million human lives claimed globally each year by heart disease. Extensive research has focused on the cellular and molecular pathophysiology associated with calcification, yet the detailed composition, structure, distribution and etiological history of mineral deposition remains unknown. Here transdisciplinary geology, biology and medicine (GeoBioMed) approaches prove that leaflet calcification is driven by amorphous calcium phosphate (ACP), ACP at the threshold of transformation toward hydroxyapatite (HAP) and cholesterol biomineralization. A paragenetic sequence of events is observed that includes: (1) original formation of unaltered leaflet tissues: (2) individual and coalescing 100's nm- to 1 µm-scale ACP spherules and cholesterol crystals biomineralizing collagen fibers and smooth muscle cell myofilaments; (3) osteopontin coatings that stabilize ACP and collagen containment of nodules preventing exposure to the solution chemistry and water content of pumping blood, which combine to slow transformation to HAP; (4) mm-scale nodule growth via ACP spherule coalescence, diagenetic incorporation of altered collagen and aggregation with other ACP nodules; and (5) leaflet diastole and systole flexure causing nodules to twist, fold their encasing collagen fibers and increase stiffness. These in vivo mechanisms combine to slow leaflet calcification and establish previously unexplored hypotheses for testing novel drug therapies and clinical interventions as viable alternatives to current reliance on surgical/percutaneous valve implants.


Subject(s)
Aortic Valve , Calcinosis , Calcium Phosphates , Collagen , Osteopontin , Calcium Phosphates/metabolism , Humans , Aortic Valve/metabolism , Aortic Valve/pathology , Osteopontin/metabolism , Calcinosis/metabolism , Calcinosis/prevention & control , Collagen/metabolism , Durapatite/metabolism , Durapatite/chemistry , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Cholesterol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...