Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67.748
Filter
1.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822661

ABSTRACT

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Subject(s)
Behavior, Animal , Germ-Free Life , Serotonin , Animals , Serotonin/metabolism , Mice , Male , Gastrointestinal Microbiome/physiology , Brain/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Anxiety/metabolism , Anxiety/microbiology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Colon/metabolism , Colon/microbiology
4.
Minerva Surg ; 79(3): 303-308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847767

ABSTRACT

BACKGROUND: Our aim was to describe the clinical outcomes of surgical interventions performed for the management of colonoscopy-related perforations and to compare these outcomes with those of matched colorectal surgeries performed in elective and emergency settings. METHODS: We included patients with endoscopic colonic perforation who underwent surgical intervention from the 2014-2017 National Surgery Quality Improvement Program participant use data colorectal targeted procedure file. The primary outcome in this study was short term surgical morbidity and mortality. Patients (group 1) were matched with 1:2 ratio to control patients undergoing same surgical interventions for other indications on an elective (group 2) or emergency basis (group 3). Bivariate analysis was conducted to compare categorical variables between the three groups, and multivariate logistic regression was used to evaluate the association between the surgical indication and 30-day postoperative outcomes. RESULTS: A total of 590 patients were included. The average age of the patients was 66.5±13.6 with female gender predominance (381, 64.6%) The majority of patients underwent open colectomy (365, 61.9%) while the rest had suturing (140, 23.7%) and laparoscopic colectomy (85, 14.4%). Overall mortality occurred in 4.1% and no statistically significant difference in mortality was found between the three techniques (P=0.468). Composite morbidity occurred in 163 patients (27.6%). It was significantly lower in laparoscopic colectomy (14.1%) compared to 30.2% and 29.4% in open colectomy and suturing approaches (P=0.014). Patients undergoing colectomy for iatrogenic colonic perforation had less mortality, infection rates and sepsis, as well as bleeding episodes compared to those who had colectomy on an emergent basis. Outcomes were comparable between the former group and patients undergoing elective colectomy for other indications. CONCLUSIONS: Surgical management of colonoscopy related perforations is safe and effective with outcomes that are similar to that of patients undergoing elective colectomy.


Subject(s)
Colectomy , Colonoscopy , Intestinal Perforation , Humans , Intestinal Perforation/surgery , Intestinal Perforation/mortality , Intestinal Perforation/epidemiology , Female , Male , Aged , Colonoscopy/adverse effects , Middle Aged , Case-Control Studies , Laparoscopy , Postoperative Complications/epidemiology , Postoperative Complications/mortality , Retrospective Studies , Elective Surgical Procedures , Colonic Diseases/surgery , Colonic Diseases/mortality , Colon/surgery , Colon/injuries , Suture Techniques , Treatment Outcome , Aged, 80 and over
5.
Gut Microbes ; 16(1): 2359500, 2024.
Article in English | MEDLINE | ID: mdl-38825783

ABSTRACT

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.


Subject(s)
Archaea , Bacteria , Biofilms , Feces , Gastrointestinal Microbiome , Humans , Biofilms/growth & development , Archaea/classification , Archaea/metabolism , Archaea/genetics , Archaea/isolation & purification , Adult , Middle Aged , Female , Male , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Feces/microbiology , Colon/microbiology , Methanobrevibacter/metabolism , Methanobrevibacter/genetics , Methanobrevibacter/growth & development , Methanobrevibacter/isolation & purification , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/metabolism , Aged , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Ileum/microbiology , Fatty Acids, Volatile/metabolism , Young Adult , Bile Acids and Salts/metabolism
6.
Sci Rep ; 14(1): 13247, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853155

ABSTRACT

The primary objective of this study was to compare short-term outcomes between Intracorporeal ileocolic anastomosis (IIA) and extracorporeal ileocolic anastomosis (EIA) after laparoscopic right hemicolectomy in patients with visceral obesity. The secondary objective was to identify risk factors associated with prolonged postoperative ileus (PPOI) after laparoscopic right hemicolectomy. This single-center retrospective study analyzed visceral obesity patients who underwent laparoscopic right hemicolectomy for primary bowel cancer between January 2020 and June 2023. Patients were categorized into IIA and EIA groups based on the type of anastomosis, and a 1:1 propensity score-matched analysis was performed. A total of 129 patients were initially included in this study, with 45 patients in each group following propensity score matching. The IIA group had significantly longer anastomosis times (p < 0.001), shorter incision length (p < 0.001), and shorter length of stay (p = 0.003) than the EIA group. Meanwhile, the IIA group showed a shorter time to first flatus (p = 0.044) and quicker tolerance of a solid diet (p = 0.030). On multivariate analysis, postoperative use of opioid analgesics is an independent risk factor for PPOI (OR: 3.590 95% CI 1.033-12.477, p = 0.044), while IIA is an independent protective factor (OR: 0.195 95% CI 0.045-0.843, p = 0.029). IIA remains a safe and feasible option for visceral obesity patients. It is also associated with a quicker recovery of bowel function and shorter length of stay when compared to EIA. Additionally, IIA is an independent protective factor for PPOI.


Subject(s)
Anastomosis, Surgical , Colectomy , Laparoscopy , Obesity, Abdominal , Postoperative Complications , Humans , Male , Female , Middle Aged , Anastomosis, Surgical/methods , Anastomosis, Surgical/adverse effects , Obesity, Abdominal/surgery , Retrospective Studies , Laparoscopy/methods , Laparoscopy/adverse effects , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Treatment Outcome , Aged , Colectomy/adverse effects , Colectomy/methods , Ileum/surgery , Colon/surgery , Risk Factors , Length of Stay , Ileus/etiology
7.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855154

ABSTRACT

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Subject(s)
Colon , Constipation , Disease Models, Animal , Hydrogen , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Constipation/metabolism , Constipation/drug therapy , Sirtuin 1/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Rats , Hydrogen/pharmacology , Male , Colon/drug effects , Colon/metabolism , Colon/pathology , Humans , Water/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Feces/chemistry
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732098

ABSTRACT

Nanosilver is a popular nanomaterial, the potential influence of which on humans is of serious concern. Herein, we exposed male Wistar rats to two regimens: a repeated oral dose of 30 mg/kg bw silver nanoparticles (AgNPs) over 28 days and a single-dose injection of 5 mg/kg bw of AgNPs. At three different time points, we assessed antioxidant defense, oxidative stress and inflammatory parameters in the colon, as well as toxicity markers in the liver and plasma. Both experimental scenarios showed increased oxidative stress and inflammation in the colon. Oral administration seemed to be linked to increased reactive oxygen species generation and lipid peroxidation, while the effects induced by the intravenous exposure were probably mediated by silver ions released from the AgNPs. Repeated oral exposure had a more detrimental effect than the single-dose injection. In conclusion, both administration routes had a similar impact on the colon, although the underlying mechanisms are likely different.


Subject(s)
Colon , Metal Nanoparticles , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Silver , Animals , Silver/chemistry , Metal Nanoparticles/chemistry , Colon/drug effects , Colon/metabolism , Colon/pathology , Male , Rats , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Administration, Oral , Inflammation/chemically induced , Inflammation/metabolism , Antioxidants/pharmacology , Liver/metabolism , Liver/drug effects
9.
Int J Biol Sci ; 20(7): 2491-2506, 2024.
Article in English | MEDLINE | ID: mdl-38725850

ABSTRACT

Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.


Subject(s)
Adenosine , Lipopolysaccharides , Macrophages , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Animals , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Methylation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Methyltransferases/metabolism , Methyltransferases/genetics , Inflammation/metabolism , Colon/metabolism , Colon/drug effects , Male , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/metabolism , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT2/genetics , RAW 264.7 Cells
10.
Nat Commun ; 15(1): 3784, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710716

ABSTRACT

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Subject(s)
Colitis, Ulcerative , Colon , Disease Models, Animal , Extracellular Matrix , Probiotics , Saccharomyces boulardii , Animals , Probiotics/administration & dosage , Female , Mice , Extracellular Matrix/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/therapy , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Humans
11.
BMC Microbiol ; 24(1): 156, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724913

ABSTRACT

BACKGROUND: To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS: Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS: Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Cefoperazone , Feces , Gastrointestinal Microbiome , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Sulbactam , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/growth & development , Female , Anti-Bacterial Agents/pharmacology , Cefoperazone/pharmacology , Feces/microbiology , Campylobacter Infections/microbiology , Mice , Gastrointestinal Microbiome/drug effects , Sulbactam/pharmacology , RNA, Ribosomal, 16S/genetics , Intestines/microbiology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/drug effects , DNA, Bacterial/genetics , DNA, Ribosomal/genetics
12.
J Cell Mol Med ; 28(10): e18343, 2024 May.
Article in English | MEDLINE | ID: mdl-38760903

ABSTRACT

Fermented foods play a significant role in the human diet for their natural, highly nutritious and healthy attributes. Our aim was to study the effect of yeast extract, a fermented substance extracted from natural yeast, on colonic motility to better understand its potential therapeutic role. A yeast extract was given to rats by gavage for 3 days, and myogenic and neurogenic components of colonic motility were studied using spatiotemporal maps made from video recordings of the whole colon ex vivo. A control group received saline gavages. The yeast extract caused excitation of the musculature by increasing the propagation length and duration of long-distance contractions, the major propulsive activity of the rat colon. The yeast extract also evoked rhythmic propulsive motor complexes (RPMCs) which were antegrade in the proximal and mid-colon and retrograde in the distal colon. RPMC activity was evoked by distention-induced neural activity, but it was myogenic in nature since we showed it to be generated by bethanechol in the presence of tetrodotoxin. In conclusion, ingestion of yeast extract stimulates rat colon motility by exciting neurogenic and myogenic control mechanisms.


Subject(s)
Colon , Gastrointestinal Motility , Animals , Colon/drug effects , Colon/physiology , Gastrointestinal Motility/drug effects , Rats , Male , Yeasts , Rats, Sprague-Dawley , Tetrodotoxin/pharmacology
13.
Pediatr Surg Int ; 40(1): 124, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713441

ABSTRACT

PURPOSE: Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a well described clinical condition, but reports are focused on microcolon and intestinal hypoperistalsis, while data on bladder management are scant. Aim of the study is to present urological concerns in MMIHS. METHODS: Retrospective evaluation of clinical data on urological management of MMIHS patients treated in the last 10 years. RESULTS: Six patients were enrolled (3 male, 3 female). Three girls had prenatal diagnosis of megacystis (1 vesicoamniotic shunt was placed). All patients had genetic diagnosis: 5 had ACTG2 gene mutations and 1 MYH11 mutation. All patients were addressed to our attention for urinary symptoms, such as urinary retention, urinary tract infections, acute renal injury. Two patients presented frequent stoma prolapses. All children underwent a complete urological evaluation, and then started a bladder management protocol (clean intermittent catheterization, via urethra or cystostomy-tube placement), with improvement of urinary infections, upper urinary tract dilation and stoma prolapses, if present. All patients had good renal function at last follow-up. CONCLUSION: We believe that MMIHS patients must be addressed soon and before onset of symptoms for a multidisciplinary evaluation, including an early assessment by a pediatric urologist expert in functional disorder, to preserve renal function at its best.


Subject(s)
Abnormalities, Multiple , Colon , Colon/abnormalities , Intestinal Pseudo-Obstruction , Urinary Bladder , Urinary Bladder/abnormalities , Humans , Female , Retrospective Studies , Male , Abnormalities, Multiple/surgery , Colon/surgery , Urinary Bladder/surgery , Infant , Intestinal Pseudo-Obstruction/surgery , Intestinal Pseudo-Obstruction/diagnosis , Infant, Newborn , Child, Preschool , Mutation
14.
Sci Rep ; 14(1): 10479, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714793

ABSTRACT

Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.


Subject(s)
Colon , Ileum , Intestinal Mucosa , Serotonin , Serotonin/metabolism , Animals , Mice , Ileum/metabolism , Intestinal Mucosa/metabolism , Colon/metabolism , Enterochromaffin Cells/metabolism , Microelectrodes , Serotonin Plasma Membrane Transport Proteins/metabolism , Male , Electrochemical Techniques/methods , Mice, Inbred C57BL
15.
J Physiol Pharmacol ; 75(2): 185-194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736265

ABSTRACT

We have previously described local aldosterone synthesis in mouse colon. In the renin-angiotensin-aldosterone system (RAAS), angiotensin II (Ang II) peptide is the physiological factor which stimulates aldosterone synthesis in the adrenal glands. We have recently demonstrated that Ang II stimulates aldosterone synthesis also in mouse colon. Here, we conducted a 75-min ex vivo incubation of murine colonic tissue and evaluated the effects of three other Ang peptides, Ang I (1 µM), Ang III (0.1 µM) and Ang (1-7) (0.1 µM) on aldosterone synthesis. As a possible mechanism, their effects on tissue levels of the rate-limiting enzyme, aldosterone synthase (CYP11B2) were measured by ELISA and Western blot. Ang III significantly elevated the amount of tissue CYP11B2 protein in colon. The values of released aldosterone in colon tissue incubation were increased over the control in the presence of Ang I, II or III, however, being statistically non-significant. In Western blot analysis, the values of tissue CYP11B2 protein content were elevated by Ang I and II. Ang (1-7) alone in colon did not influence CYP11B2 protein levels in the incubation experiment but showed higher aldosterone release without statistical significance. Ang (1-7) showed an antagonistic effect towards Ang II in release of aldosterone in adrenal gland. An overall estimation of a single peptide (three measured variables), the results were always in an increasing direction. The responses of aldosterone synthesis to high levels of glucose (44 mM) and potassium (18.8 mM) as physiological stimulators in vivo were investigated in the colon incubation. Glucose, equal to four times the concentration of the control buffer in the incubation, showed higher values of aldosterone release in colon than control without statistical significance similarly to the effect seen in adrenal glands. Increasing the concentration of potassium in the incubation buffer exerted no effect on colonic aldosterone production. Intriguingly, no correlation was found between aldosterone release and the tissue CYP11B2 protein content in colon. In summary, the response of colonic aldosterone synthesis to different Ang peptides resembles, but is not identical to, the situation in the adrenal glands.


Subject(s)
Aldosterone , Colon , Cytochrome P-450 CYP11B2 , Glucose , Potassium , Animals , Male , Mice , Aldosterone/metabolism , Angiotensin I/physiology , Angiotensin II/physiology , Angiotensin III/physiology , Colon/metabolism , Colon/drug effects , Cytochrome P-450 CYP11B2/metabolism , Glucose/metabolism , Peptide Fragments/physiology , Potassium/metabolism
16.
Appl Microbiol Biotechnol ; 108(1): 333, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739270

ABSTRACT

Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.


Subject(s)
Escherichia coli , Inflammatory Bowel Diseases , Interleukin-10 , Probiotics , Animals , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/drug therapy , Mice , Escherichia coli/genetics , Probiotics/administration & dosage , Interleukin-10/genetics , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Genetic Engineering , Gastrointestinal Microbiome , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
17.
Clin Nutr ESPEN ; 61: 253-265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777441

ABSTRACT

BACKGROUND: Pomegranate seed oil (PSO) and avocado seed oil (ASO) are natural polyphenols with established anti-inflammatory activity. PURPOSE: This study aimed to investigate the molecular mechanisms underlying the therapeutic efficacy of PSO and ASO in experimental ulcerative colitis (UC) with reference to sulfasalazine (SLZ). METHODS: Eighty male albino rats were divided equally into 8 groups; Normal, PSO, ASO, SLZ, UC-control, (UC + PSO), (UC + ASO) and (UC + SLZ) groups. Colitis was induced by intra-rectal injection of acetic acid. PSO (0.5ml/200g), ASO (1ml/250g) and SLZ (100 mg/kg) were administered orally once/day for 14 days, 24h after colitis induction. Colitis was evaluated by measuring disease activity index (DAI), colon weight/length ratio and histologic inflammatory score. Vascular endothelial growth factor receptor-2 (VEGFR-2), colonic macrophage migration inhibitory factor (MIF), and malondialdehyde (MDA) were determined. Colonic gene expression of TNF-α, VEGF and heme oxygenase-1 (HO-1) were also estimated. RESULTS: PSO and ASO treatments to UC rats significantly reduced DAI, weight/length ratio, VEGFR-2, and colon histologic inflammatory score versus UC-controls. ASO significantly suppressed MIF levels and TNF-α expression greater than PSO. However, PSO was more significant than ASO in reducing MDA levels and up-regulating HO-1 expression. Both oils significantly down-regulated VEGF expression. The obtained biochemical and histological changes induced by UC were nearly corrected by SLZ. CONCLUSION: The proved beneficial effect of PSO and ASO as anti-inflammatory, anti-angiogenic, and antioxidant in UC rats could be mediated by suppression of TNF-α, VEGF, and MIF and up-regulation of HO-1.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Persea , Plant Oils , Pomegranate , Animals , Colitis, Ulcerative/drug therapy , Male , Persea/chemistry , Rats , Pomegranate/chemistry , Plant Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophage Migration-Inhibitory Factors/metabolism , Malondialdehyde/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Seeds/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Inflammation/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Disease Models, Animal
18.
Nat Med ; 30(5): 1349-1362, 2024 May.
Article in English | MEDLINE | ID: mdl-38724705

ABSTRACT

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.


Subject(s)
Colitis , Immune Checkpoint Inhibitors , Intestinal Mucosa , Single-Cell Analysis , Humans , Immune Checkpoint Inhibitors/adverse effects , Colitis/chemically induced , Colitis/immunology , Colitis/genetics , Colitis/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Female , Male , Gene Expression Profiling , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Transcriptome , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Colon/pathology , Colon/immunology , Colon/drug effects , Epithelial Cells/immunology , Epithelial Cells/drug effects , Epithelial Cells/pathology
19.
Theranostics ; 14(7): 2719-2735, 2024.
Article in English | MEDLINE | ID: mdl-38773969

ABSTRACT

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Subject(s)
Bifidobacterium breve , Cell Differentiation , Colitis , Indoles , Macrophages , Probiotics , Animals , Mice , Macrophages/metabolism , Macrophages/drug effects , Bifidobacterium breve/metabolism , Indoles/pharmacology , Indoles/metabolism , Humans , Colitis/chemically induced , Colitis/microbiology , Colitis/complications , Cell Differentiation/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage , Disease Models, Animal , Carcinogenesis/drug effects , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/microbiology , Colitis-Associated Neoplasms/metabolism , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Colon/metabolism , Dextran Sulfate , Male , Gastrointestinal Microbiome , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Azoxymethane
20.
Life Sci ; 348: 122700, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724004

ABSTRACT

AIMS: To elucidate the impact of 10-(6-plastoquinonyl) decyltriphenylphosphonium (SkQ1) as an anti-colitogenic agent for maintenance of colon epithelial tract in ulcerated mice through recovery of mitochondrial dysfunction and mitochondrial stress by virtue of its free radical scavenging properties. MAIN METHODS: DSS induced ulcerated BALB/c mice were treated with SkQ1 for 14 days @ 30 nmol/kg/body wt./day/mice. Post-treatment, isolated colonic mitochondria were utilized for spectrophotometric and spectrofluorometric biochemical analysis of various mitochondrial functional variables including individual mitochondrial respiratory enzyme complexes. Confocal microscopy was utilized for measuring mitochondrial membrane potential in vivo. ELISA technique was adapted for measuring colonic nitrite and 3-nitrotyrosine (3-NT) content. Finally in vitro cell line study was carried out to substantiate in vivo findings and elucidate the involvement of free radicals in UC using antioxidant/free radical scavenging regimen. KEY FINDINGS: Treatment with SkQ1 in vivo reduced histopathological severity of colitis, induced recovery of mitochondrial respiratory complex activities and associated functional variables, improved oxidative stress indices and normalized mitochondrial cardiolipin content. Importantly, SkQ1 lowered nitrite concentration and 3-nitrotyrosine formation in vivo. In vitro SkQ1 restored mitochondrial functions wherein the efficacy of SkQ1 proved equal or better compared to SOD and DMSO indicating predominant involvement of O2- and OH in UC. However, NO and ONOO- also seemed to play a secondary role as MEG and L-NAME provided lesser protection as compared to SOD and DMSO. SIGNIFICANCE: SkQ1 can be considered as a potent anti-colitogenic agent by virtue of its free radical scavenging properties in treating UC.


Subject(s)
Colitis, Ulcerative , Colon , Mice, Inbred BALB C , Mitochondria , Oxidative Stress , Plastoquinone , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Colon/drug effects , Colon/pathology , Colon/metabolism , Oxidative Stress/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/pharmacology , Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Dextran Sulfate
SELECTION OF CITATIONS
SEARCH DETAIL
...