Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Diet Suppl ; 15(3): 285-299, 2018 May 04.
Article in English | MEDLINE | ID: mdl-28759281

ABSTRACT

Aging can promote significant morphofunctional changes in the gastrointestinal tract (GIT). Regulation of GIT motility is mainly controlled by the myenteric neurons of the enteric nervous system. Actions that aim at decreasing the aging effects in the GIT include those related to diet, with caloric restriction (CR). The CR is achieved by controlling the amount of food or by manipulating the components of the diet. Therefore, the objective of this study was to evaluate different levels of CR on the plasticity of nicotinamide adenine dinucleotide phosphate- (NADPH-) reactive myenteric neurons in the colon of Wistar rats during the aging process using ultrastructural (transmission electron microscopy) and morphoquantitative analysis. Wistar male rats (Rattus norvegicus) were distributed into 4 groups (n = 10/group): C, 6-month-old animals; SR, 18-month-old animals fed a normal diet; CRI, 18-month-old animals fed a 12% CR diet; CRII, 18-month-old animals fed a 31% CR diet. At 6 months of age, animals were transferred to the laboratory animal facility, where they remained until 18 months of age. Animals of the CRI and CRII groups were submitted to CR for 6 months. In the ultrastructural analysis, a disorganization of the periganglionar matrix with the aging was observed, and this characteristic was not observed in the animals that received hypocaloric diet. It was observed that the restriction of 12.5% and 31% of calories in the diet minimized the increase in density and cell profile of the reactive NADPH neurons, increased with age. This type of diet may be adapted against gastrointestinal disturbances that commonly affect aging individuals.


Subject(s)
Aging , Caloric Restriction , Colon/innervation , Ganglia, Autonomic/growth & development , Myenteric Plexus/growth & development , Neuronal Plasticity , Nitrergic Neurons/physiology , Animals , Biomarkers/metabolism , Cell Count , Colon/growth & development , Colon/physiology , Colon/ultrastructure , Colon, Ascending/growth & development , Colon, Ascending/innervation , Colon, Ascending/physiology , Colon, Ascending/ultrastructure , Colon, Descending/growth & development , Colon, Descending/innervation , Colon, Descending/physiology , Colon, Descending/ultrastructure , Ganglia, Autonomic/cytology , Ganglia, Autonomic/physiology , Ganglia, Autonomic/ultrastructure , Male , Microscopy, Electron, Transmission , Myenteric Plexus/cytology , Myenteric Plexus/physiology , Myenteric Plexus/ultrastructure , NADPH Dehydrogenase/metabolism , Nerve Tissue Proteins/metabolism , Neuroprotection , Nitrergic Neurons/cytology , Nitrergic Neurons/ultrastructure , Organ Size , Organ Specificity , Rats, Wistar
2.
Anat Rec (Hoboken) ; 297(8): 1462-71, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24788798

ABSTRACT

Paneth cells (PCs) contribute to the host defense against indigenous bacteria in the small intestine. We found Paneth cell-like cells (PLCs) in the rat ascending colon, but the nature of PLCs is never clarified. Therefore, the present study aimed to clarify the cytological characteristics of PLCs and discuss their cellular differentiation. PLCs were localized in the bases of intestinal crypts, especially follicle-associated intestinal crypts in proximal colonic lymphoid tissue, but were very seldom found in the ordinary intestinal crypts of the ascending colon. PLCs possessed specific granules with highly electron-dense cores and haloes, as well as PCs in the small intestine. The secretory granules of PLCs were positive for PAS reaction, lysozyme and soluble phospholipase A2, but negative for Alcian blue staining, ß-defensin-1 and -2, as well as the ones of PCs. Furthermore, intermediate cells possessing both the PLC-specific granules and the mucus granules similar to those of goblet cells (GCs) were occasionally found in the vicinity of PLCs. Intermediate cells ranged from goblet cell-like cells rich in mucus granules to PLC-like cells with few mucus granules. The cellular condensation and fragmentation were exclusively found in PLCs but never seen in intermediate cells or GCs. The PLCs, which were identified as PC, were suggested to be transformed from GCs through intermediate cells and finally to die by apoptosis in intestinal crypts of proximal colonic lymphoid tissue in the rat ascending colon.


Subject(s)
Colon, Ascending/ultrastructure , Goblet Cells/ultrastructure , Intestine, Small/ultrastructure , Lymphoid Tissue/ultrastructure , Paneth Cells/ultrastructure , Secretory Vesicles/ultrastructure , Animals , Biomarkers/metabolism , Cells, Cultured , Colon, Ascending/cytology , Colon, Ascending/metabolism , Goblet Cells/cytology , Goblet Cells/metabolism , Immunoenzyme Techniques , Intestine, Small/cytology , Intestine, Small/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/metabolism , Male , Microscopy, Electron, Transmission , Paneth Cells/cytology , Paneth Cells/metabolism , Rats , Rats, Wistar , Secretory Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...