Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.532
Filter
1.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822661

ABSTRACT

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Subject(s)
Behavior, Animal , Germ-Free Life , Serotonin , Animals , Serotonin/metabolism , Mice , Male , Gastrointestinal Microbiome/physiology , Brain/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Anxiety/metabolism , Anxiety/microbiology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Colon/metabolism , Colon/microbiology
2.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855154

ABSTRACT

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Subject(s)
Colon , Constipation , Disease Models, Animal , Hydrogen , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Constipation/metabolism , Constipation/drug therapy , Sirtuin 1/metabolism , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Rats , Hydrogen/pharmacology , Male , Colon/drug effects , Colon/metabolism , Colon/pathology , Humans , Water/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Feces/chemistry
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732098

ABSTRACT

Nanosilver is a popular nanomaterial, the potential influence of which on humans is of serious concern. Herein, we exposed male Wistar rats to two regimens: a repeated oral dose of 30 mg/kg bw silver nanoparticles (AgNPs) over 28 days and a single-dose injection of 5 mg/kg bw of AgNPs. At three different time points, we assessed antioxidant defense, oxidative stress and inflammatory parameters in the colon, as well as toxicity markers in the liver and plasma. Both experimental scenarios showed increased oxidative stress and inflammation in the colon. Oral administration seemed to be linked to increased reactive oxygen species generation and lipid peroxidation, while the effects induced by the intravenous exposure were probably mediated by silver ions released from the AgNPs. Repeated oral exposure had a more detrimental effect than the single-dose injection. In conclusion, both administration routes had a similar impact on the colon, although the underlying mechanisms are likely different.


Subject(s)
Colon , Metal Nanoparticles , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Silver , Animals , Silver/chemistry , Metal Nanoparticles/chemistry , Colon/drug effects , Colon/metabolism , Colon/pathology , Male , Rats , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Administration, Oral , Inflammation/chemically induced , Inflammation/metabolism , Antioxidants/pharmacology , Liver/metabolism , Liver/drug effects
4.
Int J Biol Sci ; 20(7): 2491-2506, 2024.
Article in English | MEDLINE | ID: mdl-38725850

ABSTRACT

Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.


Subject(s)
Adenosine , Lipopolysaccharides , Macrophages , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Animals , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Methylation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Methyltransferases/metabolism , Methyltransferases/genetics , Inflammation/metabolism , Colon/metabolism , Colon/drug effects , Male , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/metabolism , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT2/genetics , RAW 264.7 Cells
5.
Nat Commun ; 15(1): 3784, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710716

ABSTRACT

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Subject(s)
Colitis, Ulcerative , Colon , Disease Models, Animal , Extracellular Matrix , Probiotics , Saccharomyces boulardii , Animals , Probiotics/administration & dosage , Female , Mice , Extracellular Matrix/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/therapy , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Humans
6.
Sci Rep ; 14(1): 10479, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714793

ABSTRACT

Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.


Subject(s)
Colon , Ileum , Intestinal Mucosa , Serotonin , Serotonin/metabolism , Animals , Mice , Ileum/metabolism , Intestinal Mucosa/metabolism , Colon/metabolism , Enterochromaffin Cells/metabolism , Microelectrodes , Serotonin Plasma Membrane Transport Proteins/metabolism , Male , Electrochemical Techniques/methods , Mice, Inbred C57BL
7.
J Physiol Pharmacol ; 75(2): 185-194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736265

ABSTRACT

We have previously described local aldosterone synthesis in mouse colon. In the renin-angiotensin-aldosterone system (RAAS), angiotensin II (Ang II) peptide is the physiological factor which stimulates aldosterone synthesis in the adrenal glands. We have recently demonstrated that Ang II stimulates aldosterone synthesis also in mouse colon. Here, we conducted a 75-min ex vivo incubation of murine colonic tissue and evaluated the effects of three other Ang peptides, Ang I (1 µM), Ang III (0.1 µM) and Ang (1-7) (0.1 µM) on aldosterone synthesis. As a possible mechanism, their effects on tissue levels of the rate-limiting enzyme, aldosterone synthase (CYP11B2) were measured by ELISA and Western blot. Ang III significantly elevated the amount of tissue CYP11B2 protein in colon. The values of released aldosterone in colon tissue incubation were increased over the control in the presence of Ang I, II or III, however, being statistically non-significant. In Western blot analysis, the values of tissue CYP11B2 protein content were elevated by Ang I and II. Ang (1-7) alone in colon did not influence CYP11B2 protein levels in the incubation experiment but showed higher aldosterone release without statistical significance. Ang (1-7) showed an antagonistic effect towards Ang II in release of aldosterone in adrenal gland. An overall estimation of a single peptide (three measured variables), the results were always in an increasing direction. The responses of aldosterone synthesis to high levels of glucose (44 mM) and potassium (18.8 mM) as physiological stimulators in vivo were investigated in the colon incubation. Glucose, equal to four times the concentration of the control buffer in the incubation, showed higher values of aldosterone release in colon than control without statistical significance similarly to the effect seen in adrenal glands. Increasing the concentration of potassium in the incubation buffer exerted no effect on colonic aldosterone production. Intriguingly, no correlation was found between aldosterone release and the tissue CYP11B2 protein content in colon. In summary, the response of colonic aldosterone synthesis to different Ang peptides resembles, but is not identical to, the situation in the adrenal glands.


Subject(s)
Aldosterone , Colon , Cytochrome P-450 CYP11B2 , Glucose , Potassium , Animals , Male , Mice , Aldosterone/metabolism , Angiotensin I/physiology , Angiotensin II/physiology , Angiotensin III/physiology , Colon/metabolism , Colon/drug effects , Cytochrome P-450 CYP11B2/metabolism , Glucose/metabolism , Peptide Fragments/physiology , Potassium/metabolism
8.
Clin Nutr ESPEN ; 61: 253-265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777441

ABSTRACT

BACKGROUND: Pomegranate seed oil (PSO) and avocado seed oil (ASO) are natural polyphenols with established anti-inflammatory activity. PURPOSE: This study aimed to investigate the molecular mechanisms underlying the therapeutic efficacy of PSO and ASO in experimental ulcerative colitis (UC) with reference to sulfasalazine (SLZ). METHODS: Eighty male albino rats were divided equally into 8 groups; Normal, PSO, ASO, SLZ, UC-control, (UC + PSO), (UC + ASO) and (UC + SLZ) groups. Colitis was induced by intra-rectal injection of acetic acid. PSO (0.5ml/200g), ASO (1ml/250g) and SLZ (100 mg/kg) were administered orally once/day for 14 days, 24h after colitis induction. Colitis was evaluated by measuring disease activity index (DAI), colon weight/length ratio and histologic inflammatory score. Vascular endothelial growth factor receptor-2 (VEGFR-2), colonic macrophage migration inhibitory factor (MIF), and malondialdehyde (MDA) were determined. Colonic gene expression of TNF-α, VEGF and heme oxygenase-1 (HO-1) were also estimated. RESULTS: PSO and ASO treatments to UC rats significantly reduced DAI, weight/length ratio, VEGFR-2, and colon histologic inflammatory score versus UC-controls. ASO significantly suppressed MIF levels and TNF-α expression greater than PSO. However, PSO was more significant than ASO in reducing MDA levels and up-regulating HO-1 expression. Both oils significantly down-regulated VEGF expression. The obtained biochemical and histological changes induced by UC were nearly corrected by SLZ. CONCLUSION: The proved beneficial effect of PSO and ASO as anti-inflammatory, anti-angiogenic, and antioxidant in UC rats could be mediated by suppression of TNF-α, VEGF, and MIF and up-regulation of HO-1.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Persea , Plant Oils , Pomegranate , Animals , Colitis, Ulcerative/drug therapy , Male , Persea/chemistry , Rats , Pomegranate/chemistry , Plant Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophage Migration-Inhibitory Factors/metabolism , Malondialdehyde/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Seeds/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Inflammation/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Disease Models, Animal
9.
Theranostics ; 14(7): 2719-2735, 2024.
Article in English | MEDLINE | ID: mdl-38773969

ABSTRACT

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Subject(s)
Bifidobacterium breve , Cell Differentiation , Colitis , Indoles , Macrophages , Probiotics , Animals , Mice , Macrophages/metabolism , Macrophages/drug effects , Bifidobacterium breve/metabolism , Indoles/pharmacology , Indoles/metabolism , Humans , Colitis/chemically induced , Colitis/microbiology , Colitis/complications , Cell Differentiation/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage , Disease Models, Animal , Carcinogenesis/drug effects , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/microbiology , Colitis-Associated Neoplasms/metabolism , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Colon/metabolism , Dextran Sulfate , Male , Gastrointestinal Microbiome , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Azoxymethane
10.
Life Sci ; 348: 122700, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724004

ABSTRACT

AIMS: To elucidate the impact of 10-(6-plastoquinonyl) decyltriphenylphosphonium (SkQ1) as an anti-colitogenic agent for maintenance of colon epithelial tract in ulcerated mice through recovery of mitochondrial dysfunction and mitochondrial stress by virtue of its free radical scavenging properties. MAIN METHODS: DSS induced ulcerated BALB/c mice were treated with SkQ1 for 14 days @ 30 nmol/kg/body wt./day/mice. Post-treatment, isolated colonic mitochondria were utilized for spectrophotometric and spectrofluorometric biochemical analysis of various mitochondrial functional variables including individual mitochondrial respiratory enzyme complexes. Confocal microscopy was utilized for measuring mitochondrial membrane potential in vivo. ELISA technique was adapted for measuring colonic nitrite and 3-nitrotyrosine (3-NT) content. Finally in vitro cell line study was carried out to substantiate in vivo findings and elucidate the involvement of free radicals in UC using antioxidant/free radical scavenging regimen. KEY FINDINGS: Treatment with SkQ1 in vivo reduced histopathological severity of colitis, induced recovery of mitochondrial respiratory complex activities and associated functional variables, improved oxidative stress indices and normalized mitochondrial cardiolipin content. Importantly, SkQ1 lowered nitrite concentration and 3-nitrotyrosine formation in vivo. In vitro SkQ1 restored mitochondrial functions wherein the efficacy of SkQ1 proved equal or better compared to SOD and DMSO indicating predominant involvement of O2- and OH in UC. However, NO and ONOO- also seemed to play a secondary role as MEG and L-NAME provided lesser protection as compared to SOD and DMSO. SIGNIFICANCE: SkQ1 can be considered as a potent anti-colitogenic agent by virtue of its free radical scavenging properties in treating UC.


Subject(s)
Colitis, Ulcerative , Colon , Mice, Inbred BALB C , Mitochondria , Oxidative Stress , Plastoquinone , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology , Colon/drug effects , Colon/pathology , Colon/metabolism , Oxidative Stress/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/pharmacology , Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Dextran Sulfate
11.
Nutrients ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732527

ABSTRACT

Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief.


Subject(s)
Gastrointestinal Microbiome , Hippophae , Polysaccharides , Animals , Hippophae/chemistry , Polysaccharides/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Colitis/drug therapy , Colitis/chemically induced , Colitis/microbiology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Disease Models, Animal , Male , Mice, Inbred C57BL , Oxidative Stress/drug effects , Fecal Microbiota Transplantation , Colon/drug effects , Colon/microbiology , Colon/metabolism , Dextran Sulfate , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fruit/chemistry , Fatty Acids, Volatile/metabolism
12.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732577

ABSTRACT

BACKGROUND: Cadmium (Cd) is an environmental contaminant that poses risks to human and animal health. Selenium (Se), a beneficial element, alleviates the detrimental consequences of colitis and Cd toxicity. Se is found in food products as both inorganic Se (sodium selenite) and organic Se (typically Se-enriched yeast). Nano-selenium (nano-Se; a novel form of Se produced through the bioreduction of Se species) has recently garnered considerable interest, although its effects against Cd-induced enterotoxicity are poorly understood. The aim of this study was to investigate the impact of nano-selenium on mitigating cadmium toxicity and safeguarding the integrity of the intestinal barrier. METHODS: For a total of two cycles, we subjected 6-week-old C57 mice to chronic colitis by exposing them to Cd and nano-selenium for two weeks, followed by DSS water for one week. RESULTS: The application of nano-selenium mitigated the intensity of colitis and alleviated inflammation in the colon. Nano-selenium enhanced the diversity of the intestinal flora, elevated the concentration of short-chain fatty acids (SCFAs) in feces, and improved the integrity of the intestinal barrier. CONCLUSIONS: In summary, nano-Se may reduce intestinal inflammation by regulating the growth of intestinal microorganisms and protecting the intestinal barrier.


Subject(s)
Cadmium , Colitis , Gastrointestinal Microbiome , Mice, Inbred C57BL , Selenium , Animals , Colitis/chemically induced , Colitis/drug therapy , Selenium/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Colon/drug effects , Colon/metabolism , Colon/microbiology , Male , Chronic Disease , Disease Models, Animal , Nanoparticles , Fatty Acids, Volatile/metabolism , Feces/microbiology , Dextran Sulfate , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology
13.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732595

ABSTRACT

While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved Il1b and Tnf expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.


Subject(s)
Colitis , Colon , Dextran Sulfate , Diet, Ketogenic , Dietary Fats , Disease Models, Animal , Fluorescein-5-isothiocyanate/analogs & derivatives , Mice, Inbred C57BL , Animals , Colitis/chemically induced , Colitis/diet therapy , Male , Mice , Dietary Fats/adverse effects , Colon/pathology , Colon/metabolism , Permeability , Tight Junction Proteins/metabolism , Interleukin-1beta/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fatty Acids , Dextrans
14.
Food Res Int ; 186: 114339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729694

ABSTRACT

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Subject(s)
Chenopodium quinoa , Colon , Digestion , Fermentation , Metabolomics , Polyphenols , Prebiotics , Humans , Polyphenols/metabolism , Chenopodium quinoa/metabolism , Caco-2 Cells , Colon/metabolism , Colon/microbiology , Germination , Biological Transport , Biological Availability , Gastrointestinal Microbiome/physiology
15.
Food Res Int ; 186: 114403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729705

ABSTRACT

This study aimed to evaluate the functional, technological, and sensory aspects of mangaba (Hancornia speciosa Gomes) fruit pulp fermented with the probiotic Lacticaseibacillus casei 01 (LC1) during refrigerated storage (7 °C, 28 days). The effects of the fermented mangaba pulp on the modulation of the intestinal microbiota of healthy vegan adults were also assessed. Mangaba pulp allowed high viability of LC1 during storage and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermented mangaba pulp showed lower pH and total soluble solids, and higher titratable acidity, and concentrations of lactic, acetic, citric, and propionic acids during storage compared to non-fermented pulp. Also, it presented a higher concentration of bioaccessible phenolics and volatiles, and improved sensory properties (yellow color, brightness, fresh appearance, and typical aroma and flavor). Fermented mangaba pulp added to in vitro cultured colonic microbiota of vegan adults decreased the pH values and concentrations of maltose, glucose, and citric acid while increasing rhamnose and phenolic contents. Fermented mangaba pulp promoted increases in the abundance of Dorea, Romboutsia, Faecalibacterium, Lachnospira, and Lachnospiraceae ND3007 genera and positively impacted the microbial diversity. Findings indicate that mangaba pulp fermented with LC1 has improved chemical composition and functionality, inducing changes in the colonic microbiota of vegan adults associated with potential benefits for human health.


Subject(s)
Fermentation , Gastrointestinal Microbiome , Lacticaseibacillus casei , Humans , Gastrointestinal Microbiome/physiology , Lacticaseibacillus casei/metabolism , Adult , Taste , Probiotics , Male , Hydrogen-Ion Concentration , Fruit/microbiology , Fruit/chemistry , Colon/microbiology , Colon/metabolism , Young Adult , Female
16.
Food Res Int ; 186: 114322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729712

ABSTRACT

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Subject(s)
Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
17.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731431

ABSTRACT

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Subject(s)
Colitis, Ulcerative , Cytokines , Dextran Sulfate , Perilla , Plant Extracts , Seeds , Animals , Dextran Sulfate/adverse effects , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/prevention & control , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cytokines/metabolism , Cytokines/blood , Seeds/chemistry , Perilla/chemistry , Disease Models, Animal , Male , Depsides/pharmacology , Depsides/chemistry , Colon/drug effects , Colon/pathology , Colon/metabolism , Cinnamates/pharmacology , Cinnamates/chemistry , Rosmarinic Acid , Perilla frutescens/chemistry
18.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731854

ABSTRACT

Factors that reduce the risk of developing colorectal cancer include biologically active substances. In our previous research, we demonstrated the anti-inflammatory, immunomodulatory, and antioxidant effects of oat beta-glucans in gastrointestinal disease models. The aim of this study was to investigate the effect of an 8-week consumption of a diet supplemented with low-molar-mass oat beta-glucan in two doses on the antioxidant potential, inflammatory parameters, and colonic metabolomic profile in azoxymethane(AOM)-induced early-stage colorectal cancer in the large intestine wall of rats. The results showed a statistically significant effect of AOM leading to the development of neoplastic changes in the colon. Consumption of beta-glucans induced changes in colonic antioxidant potential parameters, including an increase in total antioxidant status, a decrease in the superoxide dismutase (SOD) activity, and a reduction in thiobarbituric acid reactive substance (TBARS) concentration. In addition, beta-glucans decreased the levels of pro-inflammatory interleukins (IL-1α, IL-1ß, IL-12) and C-reactive protein (CRP) while increasing the concentration of IL-10. Metabolomic studies confirmed the efficacy of oat beta-glucans in the AOM-induced early-stage colon cancer model by increasing the levels of metabolites involved in metabolic pathways, such as amino acids, purine, biotin, and folate. In conclusion, these results suggest a wide range of mechanisms involved in altering colonic metabolism during the early stage of carcinogenesis and a strong influence of low-molar-mass oat beta-glucan, administered as dietary supplement, in modulating these mechanisms.


Subject(s)
Antioxidants , Azoxymethane , Colorectal Neoplasms , beta-Glucans , Animals , beta-Glucans/pharmacology , Azoxymethane/toxicity , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Rats , Male , Antioxidants/pharmacology , Antioxidants/metabolism , Disease Models, Animal , Avena/chemistry , Superoxide Dismutase/metabolism , Colon/metabolism , Colon/pathology , Colon/drug effects , Oxidative Stress/drug effects , Rats, Wistar , C-Reactive Protein/metabolism
19.
Gut Microbes ; 16(1): 2335879, 2024.
Article in English | MEDLINE | ID: mdl-38695302

ABSTRACT

Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.


Subject(s)
Bacteria , Endocannabinoids , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Endocannabinoids/metabolism , Colon/microbiology , Colon/metabolism , Ileum/microbiology , Ileum/metabolism , Fatty Acids, Omega-3/metabolism , Plant Oils/metabolism , Plant Oils/pharmacology , Dietary Supplements , Adult , Male
20.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1749-1761, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812187

ABSTRACT

Shenling Baizhu San(SLBZS) is a commonly used medicine for the treatment of ulcerative colitis(UC). This study aims to explore the mechanism of SLBZS in treating UC by using colonic metabolomics and network pharmacology. BALB/c mice were randomly divided into four groups: a blank group, a model group, an SLBZS group, and a sulfasalazine group. UPLC-Q-TOF-MS/MS technology was utilized to analyze the metabolic profiles of colonic tissue in mice, and differential metabolites and related metabolic pathways were screened. Based on the online database, active ingredients, action targets, and UC disease targets of SLBZS were screened. The protein-protein interaction(PPI) network of core targets of SLBZS in treating UC was constructed using STRING and Cytoscape 3.9.1. Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed using the DAVID database. A "metabolite-reaction-enzyme-gene" network was constructed to conduct a combined analysis of metabolomics and network pharmacology. SLBZS reversed the levels of 25 metabolites involved in various pathways such as D-glutamine and D-glutamate metabolism, caffeine metabolism, sphingolipid metabolism, arginine biosynthesis, lysine degradation, alanine, aspartate, and glutamate metabolism, glycerophospholipid metabolism, and pyrimidine metabolism in UC colonic tissue. 47 core targets of SLBZS in treating UC were involved in pathways including the MAPK signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, lipid and atherosclerosis, inflammatory bowel disease, and Th17 cell differentiation. Integrated analysis showed that glycerophospholipid metabolism and pyrimidine metabolism were key metabolic pathways in the treatment of UC with SLBZS. The results suggested that SLBZS improved colonic mucosal morphology by regulating colonic metabolites, down-regulated the expression of inflammation-related core target genes to reduce inflammation levels, and alleviated lipid metabolism disorders, thereby exerting a therapeutic effect on UC.


Subject(s)
Colitis, Ulcerative , Colon , Drugs, Chinese Herbal , Metabolomics , Mice, Inbred BALB C , Network Pharmacology , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Mice , Colon/metabolism , Colon/drug effects , Male , Humans , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...