Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
PLoS One ; 17(2): e0263602, 2022.
Article in English | MEDLINE | ID: mdl-35130328

ABSTRACT

Three commercial honey bee operations in Saskatchewan, Canada, with outbreaks of American foulbrood (AFB) and recent or ongoing metaphylactic antibiotic use were intensively sampled to detect spores of Paenibacillus larvae during the summer of 2019. Here, we compared spore concentrations in different sample types within individual hives, assessed the surrogacy potential of honey collected from honey supers in place of brood chamber honey or adult bees within hives, and evaluated the ability of pooled, extracted honey to predict the degree of spore contamination identified through individual hive testing. Samples of honey and bees from hives within apiaries with a recent, confirmed case of AFB in a single hive (index apiaries) and apiaries without clinical evidence of AFB (unaffected apiaries), as well as pooled, apiary-level honey samples from end-of-season extraction, were collected and cultured to detect and enumerate spores. Only a few hives were heavily contaminated by spores in any given apiary. All operations were different from one another with regard to both the overall degree of spore contamination across apiaries and the distribution of spores between index apiaries and unaffected apiaries. Within operations, individual hive spore concentrations in unaffected apiaries were significantly different from index apiaries in the brood chamber (BC) honey, honey super (HS) honey, and BC bees of one of three operations. Across all operations, BC honey was best for discriminating index apiaries from unaffected apiaries (p = 0.001), followed by HS honey (p = 0.06), and BC bees (p = 0.398). HS honey positively correlated with both BC honey (rs = 0.76, p < 0.0001) and bees (rs = 0.50, p < 0.0001) and may be useful as a surrogate for either. Spore concentrations in pooled, extracted honey seem to have predictive potential for overall spore contamination within each operation and may have prognostic value in assessing the risk of future AFB outbreaks at the apiary (or operation) level.


Subject(s)
Bees/microbiology , Honey/microbiology , Paenibacillus larvae/physiology , Spores, Bacterial/isolation & purification , Animal Diseases/diagnosis , Animal Diseases/epidemiology , Animal Diseases/prevention & control , Animals , Anti-Bacterial Agents/therapeutic use , Beekeeping/statistics & numerical data , Colony Collapse/microbiology , Colony Collapse/prevention & control , Disease Outbreaks , Food Analysis , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/prevention & control , Honey/analysis , Paenibacillus larvae/isolation & purification , Saskatchewan/epidemiology , Seasons
2.
Molecules ; 26(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34443668

ABSTRACT

Over the past two decades, there has been an alarming decline in the number of honey bee colonies. This phenomenon is called Colony Collapse Disorder (CCD). Bee products play a significant role in human life and have a huge impact on agriculture, therefore bees are an economically important species. Honey has found its healing application in various sectors of human life, as well as other bee products such as royal jelly, propolis, and bee pollen. There are many putative factors of CCD, such as air pollution, GMO, viruses, or predators (such as wasps and hornets). It is, however, believed that pesticides and microorganisms play a huge role in the mass extinction of bee colonies. Insecticides are chemicals that are dangerous to both humans and the environment. They can cause enormous damage to bees' nervous system and permanently weaken their immune system, making them vulnerable to other factors. Some of the insecticides that negatively affect bees are, for example, neonicotinoids, coumaphos, and chlorpyrifos. Microorganisms can cause various diseases in bees, weakening the health of the colony and often resulting in its extinction. Infection with microorganisms may result in the need to dispose of the entire hive to prevent the spread of pathogens to other hives. Many aspects of the impact of pesticides and microorganisms on bees are still unclear. The need to deepen knowledge in this matter is crucial, bearing in mind how important these animals are for human life.


Subject(s)
Bees/microbiology , Insecticides/toxicity , Animals , Colony Collapse/microbiology , Environment , Health
3.
Res Vet Sci ; 135: 85-95, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33454582

ABSTRACT

Varroa mite is the major threat to the western honey bee, Apis mellifera, and the cause of significant economic losses in the apiculture industry. Varroa destructor feeds on brood and adult bees being responsible for vectoring virus infections and other diseases. This study analyses the role of Varroa and other associated pathogens, such as viruses or the fungus Nosema ceranae, and their relationships regarding the viability of the bee colony. It has been carried out during one beekeeping season, with the subspecies A. m. iberiensis, commonly used in the apiculture industry of Spain. Our study shows a significant relationship between the presence of Varroa destructor and viral infection by deformed wing virus and acute bee paralysis virus. Nosema ceranae behaved as an opportunistic pathogen. In addition, this study explored a potential naturally occurring subset of peptides, responsible for the humoral immunity of the bees. The expression of the antimicrobial peptides abaecin and melittin showed a significant relationship with the levels of Varroa mite and the deformed wing virus.


Subject(s)
Bees/microbiology , Bees/parasitology , Colony Collapse/microbiology , Colony Collapse/parasitology , Varroidae/parasitology , Animals , Beekeeping , Bees/virology , Colony Collapse/virology , Dicistroviridae/physiology , Nosema/physiology , RNA Viruses/physiology , Spain
4.
Sci Rep ; 10(1): 10454, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591554

ABSTRACT

To evaluate the influence that parasites have on the losses of Apis mellifera it is essential to monitor their presence in the colonies over time. Here we analysed the occurrence of nosematids, trypanosomatids and neogregarines in five homogeneous colonies for up to 21 months until they collapsed. The study, which combined the use of several molecular markers with the application of a massive parallel sequencing technology, provided valuable insights into the epidemiology of these parasites: (I) it enabled the detection of parasite species rarely reported in honeybees (Nosema thomsoni, Crithidia bombi, Crithidia acanthocephali) and the identification of two novel taxa; (II) it revealed the existence of a high rate of co-infections (80% of the samples harboured more than one parasite species); (III) it uncovered an identical pattern of seasonal variation for nosematids and trypanosomatids, that was different from that of neogregarines; (IV) it showed that there were no significant differences in the fraction of positive samples, nor in the levels of species diversity, between interior and exterior bees; and (V) it unveiled that the variation in the number of parasite species was not directly linked with the failure of the colonies.


Subject(s)
Bees/parasitology , Animals , Bees/microbiology , Biodiversity , Colony Collapse/microbiology , Colony Collapse/parasitology , Crithidia , Longitudinal Studies , Nosema , Phylogeny , Polymerase Chain Reaction , Seasons , Trypanosomatina/genetics
5.
Curr Opin Insect Sci ; 26: 142-148, 2018 04.
Article in English | MEDLINE | ID: mdl-29764654

ABSTRACT

Over the past decade, in some regions of the world, honey bee (Apis mellifera L.) colonies have experienced rates of colony loss that are difficult for beekeepers to sustain. The reasons for losses are complex and interacting, with major drivers including Varroaand related viruses, pesticides, nutrition and beekeeper practices. In these endeavors it has also become apparent that defining a dead colony, and singling out the effects of specific drivers of loss, is not so straightforward. Using the class of neonicotinoid pesticides as an example we explain why quantifying risk factor impact at the colony level is at times elusive and in some cases unpractical. In this review, we discuss the caveats of defining and quantifying dead colonies. We also summarize the current leading drivers of colony losses, their interactions and the most recent research on their effects on colony mortality.


Subject(s)
Bees/drug effects , Colony Collapse/chemically induced , Neonicotinoids/adverse effects , Animals , Beekeeping/methods , Bees/microbiology , Bees/parasitology , Bees/virology , Colony Collapse/microbiology , Colony Collapse/parasitology , Colony Collapse/virology , Insecticides/adverse effects , Mites , Viruses
6.
PLoS Biol ; 15(5): e2001894, 2017 05.
Article in English | MEDLINE | ID: mdl-28557993

ABSTRACT

Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.


Subject(s)
Aedes/microbiology , Biological Control Agents , Dengue Virus/physiology , Dengue/prevention & control , Models, Biological , Urbanization , Wolbachia/physiology , Aedes/growth & development , Aedes/physiology , Aedes/virology , Animals , Biological Control Agents/isolation & purification , Colony Collapse/microbiology , Colony Collapse/virology , Computer Heuristics , Dengue/transmission , Dengue/virology , Dengue Virus/growth & development , Dengue Virus/isolation & purification , Disease Vectors , Female , Global Health , Health Transition , Humans , Infection Control , Male , Parks, Recreational , Queensland , Spatio-Temporal Analysis , Wolbachia/growth & development , Wolbachia/isolation & purification
7.
J Invertebr Pathol ; 144: 7-10, 2017 03.
Article in English | MEDLINE | ID: mdl-28088343

ABSTRACT

Susceptibility to brood pathogens in eusocial stingless bees (Meliponini), alternative pollinators to honey bees, is unknown. Brood losses in managed colonies of the Australian stingless bee, Tetragonula carbonaria, were studied over 20months. We isolated a disease-causing bacterium, Lysinibacillus sphaericus (Firmicutes, Bacillaceae), from worker and queen larvae, brood cell provisions and honey stores. Pathogenicity experiments confirmed this bacterium as the causal organism. It took 22days from infection to first appearance of brood disease symptoms. This is the first confirmed record of a brood pathogen in stingless bees.


Subject(s)
Bees/microbiology , Colony Collapse/microbiology , Animals , Australia , Firmicutes
8.
J Invertebr Pathol ; 143: 35-39, 2017 02.
Article in English | MEDLINE | ID: mdl-27887862

ABSTRACT

Melipona quadrifasciata is an eusocial stingless bee traditionally used for honey production in Brazil. In the last decades, the species disappeared from the wild in Southern Brazil, being kept exclusively in managed colonies for commercial and recreational purposes. Stingless beekeepers from this region report annual losses of their colonies due to a syndrome of yet unknown causes. We investigate whether it is associated to pathogenic microorganisms already known to cause disease in bees. These results provide a starting point for future studies aimed at clarifying the relationship between the microbial community of stingless bees and their colony collapses.


Subject(s)
Bacterial Infections/veterinary , Bees/microbiology , Colony Collapse/microbiology , Animals , Brazil , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
9.
PLoS One ; 10(7): e0133228, 2015.
Article in English | MEDLINE | ID: mdl-26186735

ABSTRACT

Inspectors with the UK National Bee Unit were asked for 2007-2008 to target problem apiaries in England and Wales for pathogen screening and colony strength measures. Healthy colonies were included in the sampling to provide a continuum of health conditions. A total of 406 adult bee samples was screened and yielded 7 viral, 1 bacterial, and 2 microsporidial pathogens and 1 ectoparasite (Acarapis woodi). In addition, 108 samples of brood were screened and yielded 4 honey bee viruses. Virus prevalence varied from common (deformed wing virus, black queen cell virus) to complete absence (Israeli acute paralysis virus). When colonies were forced into one of two classes, strong or weak, the weak colonies contained more pathogens in adult bees. Among observed pathogens, only deformed wing virus was able to predict colony strength. The effect was negative such that colonies testing positive for deformed wing virus were likely to have fewer combs of bees or brood. This study constitutes the first record for Nosema ceranae in Great Britain. These results contribute to the growing body of evidence linking pathogens to poor honey bee health.


Subject(s)
Bees/microbiology , Bees/parasitology , Colony Collapse/microbiology , Colony Collapse/parasitology , Honey , Aging , Animals , Bees/virology , Confidence Intervals , England , Seasons , Time Factors , Wales , Wings, Animal/virology
11.
BMC Res Notes ; 7: 649, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25223634

ABSTRACT

BACKGROUND: Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain. Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the causes of collapse. RESULTS: Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently, the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene, showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since 1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the latter group corresponds to a highly differentiated taxon that should be renamed accordingly. CONCLUSION: The results of this study demonstrate that the drivers of colony collapse may differ between geographic regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified.


Subject(s)
Beekeeping/methods , Bees , Colony Collapse , Insect Viruses/pathogenicity , Nosema/pathogenicity , Trypanosomatina/pathogenicity , Animals , Bees/microbiology , Bees/parasitology , Bees/virology , Colony Collapse/microbiology , Colony Collapse/parasitology , Colony Collapse/virology , Ecosystem , Feeding Behavior , Host-Parasite Interactions , Host-Pathogen Interactions , Insect Viruses/genetics , Insect Viruses/isolation & purification , Nosema/genetics , Nosema/isolation & purification , Phylogeny , Pollen , Population Dynamics , Ribotyping , Spain , Trypanosomatina/genetics , Trypanosomatina/isolation & purification
12.
J Invertebr Pathol ; 114(3): 250-4, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24025844

ABSTRACT

Until the mid-1990s, the only microsporidium known to infect bees of the genus Apis was Nosema apis. A second species, Nosema ceranae, was first identified in 1996 from Asian honey bees; it is postulated that this parasite was transmitted from the Asian honey bee, Apis cerana, to the European honey bee, Apis mellifera. Currently, N. ceranae is found on all continents and has often been associated with honey bee colony collapse and other reports of high bee losses. Samples of Africanized drones collected in 1979, preserved in alcohol, were analyzed by light microscopy to count spores and were subjected to DNA extraction, after which duplex PCR was conducted. All molecular analyses (triplicate) indicated that the drones were infected with both N. ceranae and N. apis. PCR products were sequenced and matched to sequences reported in the GenBank (Acc. Nos. JQ639316.1 and JQ639301.1). The venation pattern of the wings of these males was compared to those of the current population living in the same area and with the pattern of drones collected in 1968 from Ribeirão Preto, SP, Brazil, from a location close to where African swarms first escaped in 1956. The morphometric results indicated that the population collected in 1979 was significantly different from the current living population, confirming its antiquity. Considering that the use of molecular tools for identifying Nosema species is relatively recent, it is possible that previous reports of infections (which used only light microscopy, without ultrastructural analysis) wrongly identified N. ceranae as N. apis. Although we can conclude that N. ceranae has been affecting Africanized honeybees in Brazil for at least 34 years, the impact of this pathogen remains unclear.


Subject(s)
Bees/microbiology , Nosema/classification , Africa , Animal Distribution , Animals , Bees/anatomy & histology , Colony Collapse/history , Colony Collapse/microbiology , Colony Count, Microbial , History, 20th Century , Male , Molecular Sequence Data , Nosema/genetics , Nosema/isolation & purification , Polymerase Chain Reaction , Population Dynamics , Sequence Analysis, DNA , Wings, Animal/anatomy & histology
13.
Prev Vet Med ; 108(2-3): 225-33, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-22939774

ABSTRACT

Using standard epidemiological methods, this study set out to quantify the risk associated with exposure to easily diagnosed factors on colony mortality and morbidity in three migratory beekeeping operations. Fifty-six percent of all colonies monitored during the 10-month period died. The relative risk (RR) that a colony would die over the short term (∼50 days) was appreciably increased in colonies diagnosed with Idiopathic Brood Disease Syndrome (IBDS), a condition where brood of different ages appear molten on the bottom of cells (RR=3.2), or with a "queen event" (e.g., evidence of queen replacement or failure; RR=3.1). We also found that several risk factors-including the incidence of a poor brood pattern, chalkbood (CB), deformed wing virus (DWV), sacbrood virus (SBV), and exceeding the threshold of 5 Varroa mites per 100 bees-were differentially expressed in different beekeeping operations. Further, we found that a diagnosis of several factors were significantly more or less likely to be associated with a simultaneous diagnosis of another risk factor. These finding support the growing consensus that the causes of colony mortality are multiple and interrelated.


Subject(s)
Beekeeping , Bees/physiology , Colony Collapse/microbiology , Colony Collapse/parasitology , Animals , Bees/microbiology , Bees/parasitology , Bees/virology , Colony Collapse/epidemiology , Colony Collapse/virology , Population Dynamics , Risk , United States/epidemiology
14.
Ecohealth ; 10(4): 434-45, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24496582

ABSTRACT

The Western honey bee (Apis mellifera) is responsible for ecosystem services (pollination) worth US$215 billion annually worldwide and the number of managed colonies has increased 45% since 1961. However, in Europe and the U.S., two distinct phenomena; long-term declines in colony numbers and increasing annual colony losses, have led to significant interest in their causes and environmental implications. The most important drivers of a long-term decline in colony numbers appear to be socioeconomic and political pressure on honey production. In contrast, annual colony losses seem to be driven mainly by the spread of introduced pathogens and pests, and management problems due to a long-term intensification of production and the transition from large numbers of small apiaries to fewer, larger operations. We conclude that, while other causal hypotheses have received substantial interest, the role of pests, pathogens, and management issues requires increased attention.


Subject(s)
Bees , Agriculture/economics , Animals , Bees/drug effects , Bees/microbiology , Bees/parasitology , Colony Collapse/economics , Colony Collapse/epidemiology , Colony Collapse/microbiology , Colony Collapse/parasitology , Ecosystem , Nosema , Pesticides/adverse effects , Public Policy , United States/epidemiology , Varroidae
15.
PLoS One ; 7(8): e43562, 2012.
Article in English | MEDLINE | ID: mdl-22927991

ABSTRACT

Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.


Subject(s)
Bees/microbiology , Bees/virology , Colony Collapse/microbiology , Colony Collapse/virology , Amino Acid Sequence , Animals , Molecular Sequence Data , Penicillium/enzymology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics
16.
J Invertebr Pathol ; 111(2): 106-10, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22820066

ABSTRACT

Nosemosis is caused by intracellular parasites (Nosema apis and Nosema ceranae) that infect the midgut epithelial cells in adult honey bees. Recent studies relate N. ceranae to Colony Collapse Disorder and there is some suggestion that Nosema spp., especially N. ceranae, induces high mortality in honey bees, a fact that is considered as a serious threat for colony survival. 604 samples of adult honey bees for Nosema spp. analysis were collected from beekeeping colonies across Spain and were analysed using PCR with capillary electrophoresis. We also monitored 77 Andalusian apiaries for 2 years; the sampled hives were standard healthy colonies, without any special disease symptoms. We found 100% presence of Nosema spp. in some locations, indicating that this parasite was widespread throughout the country. The two year monitoring indicated that 87% of the hives with Nosema spp. remained viable, with normal honey production and biological development during this period of time. The results of these trials indicated that both N. ceranae and N. apis could be present in these beehives without causing disease symptom and that there is no evidence for the replacement of N. apis by N. ceranae, supporting the hypothesis that nosemosis is not the main reason of the collapse and death of beehives.


Subject(s)
Bees/microbiology , Colony Collapse/microbiology , Nosema/physiology , Animals , Beekeeping , Bees/physiology , Colony Collapse/epidemiology , Nosema/genetics , Nosema/isolation & purification , Spain
17.
18.
Trends Microbiol ; 19(12): 614-20, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22032828

ABSTRACT

The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies.


Subject(s)
Amoeba/pathogenicity , Bacteria/pathogenicity , Bees/microbiology , Colony Collapse/microbiology , Fungi/pathogenicity , Viruses/pathogenicity , Animals , Asia , Colony Collapse/parasitology , Colony Collapse/virology , Europe , United States
19.
J Invertebr Pathol ; 105(3): 335-40, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20804765

ABSTRACT

During June and July of 2009, sudden deaths, tremulous movements and population declines of adult honey bees were reported by the beekeepers in the region of Peloponnesus (Mt. Mainalo), Greece. A preliminary study was carried out to investigate these unexplained phenomena in this region. In total, 37 bee samples, two brood frames containing honey bee brood of various ages, eight sugar samples and four sugar patties were collected from the affected colonies. The samples were tested for a range of pests, pathogens and pesticides. Symptomatic adult honey bees tested positive for Varroa destructor, Nosema ceranae, Chronic bee paralysis virus (CBPV), Acute paralysis virus (ABPV), Deformed wing virus (DWV), Sacbrood virus (SBV) and Black queen cell virus (BQCV), but negative for Acarapis woodi. American Foulbrood was absent from the brood samples. Chemical analysis revealed that amitraz, thiametoxan, clothianidin and acetamiprid were all absent from symptomatic adult bees, sugar and sugar patty samples. However, some bee samples, were contaminated with imidacloprid in concentrations between 14 ng/g and 39 ng/g tissue. We present: the infection of Greek honey bees by multiple viruses; the presence of N. ceranae in Greek honey bees and the first record of imidacloprid (neonicotonoid) residues in Greek honey bee tissues. The presence of multiple pathogens and pesticides made it difficult to associate a single specific cause to the depopulation phenomena observed in Greece, although we believe that viruses and N. ceranae synergistically played the most important role. A follow-up in-depth survey across all Greek regions is required to provide context to these preliminary findings.


Subject(s)
Bees/virology , Colony Collapse/chemically induced , Colony Collapse/microbiology , Imidazoles/adverse effects , Nitro Compounds/adverse effects , Pesticides/adverse effects , Virus Diseases/virology , Animals , Chromatography, Liquid , DNA, Viral/analysis , Greece , Insect Viruses , Mass Spectrometry , Neonicotinoids , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...