Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.029
Filter
1.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38717599

ABSTRACT

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Subject(s)
Benzidines , Colorimetry , Copper , Phytosterols , Colorimetry/methods , Phytosterols/analysis , Phytosterols/chemistry , Copper/chemistry , Benzidines/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Oxidation-Reduction
2.
Mikrochim Acta ; 191(5): 296, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702534

ABSTRACT

A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.


Subject(s)
Colorimetry , Limit of Detection , Metal-Organic Frameworks , Pesticides , Porphyrins , Colorimetry/methods , Pesticides/analysis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Hydrogen Peroxide/chemistry , Oxidoreductases/chemistry , Aptamers, Nucleotide/chemistry
3.
Mikrochim Acta ; 191(6): 352, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806756

ABSTRACT

Developing convenient and reliable methods for Hg2+ monitoring is highly important. Some precious metal nanomaterials with intriguing peroxidase-like activity have been used for highly sensitive Hg2+ detection. However, H2O2 must be added during these detections, which impedes practical applications of Hg2+ sensors due to its susceptible decomposition by environmental factors. Herein, we discovered that the combination of Hg2+ and palladium metal-organic framework@graphene (Pd-MOF@GNs) exhibits oxidase-like activity (OXD). In the absence of H2O2, this activity not only catalyzes the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) or o-phenylenediamine (OPD) to produce a color change but also enhances the electrical signals during OPD oxidation. Based on these properties, an effective and convenient dual-mode colorimetric and electrochemical sensor for Hg2+ has been developed. The colorimetric and amperometric linear relationships for Hg2+ were 0.045 µM-0.25 mM and 0.020 µM-2.0 mM, respectively. The proposed strategy shows good recovery in real sample tests, indicating promising prospects for multiple environmental sample detection of Hg2+ without relying on H2O2. The colorimetric and electrochemical dual-mode Hg2+ sensor is expected to hold great potentials in applications such as environmental monitoring, rapid field detection, and integration into smartphone detection of Hg2+.


Subject(s)
Colorimetry , Electrochemical Techniques , Graphite , Limit of Detection , Mercury , Metal-Organic Frameworks , Palladium , Graphite/chemistry , Colorimetry/methods , Mercury/analysis , Mercury/chemistry , Metal-Organic Frameworks/chemistry , Palladium/chemistry , Electrochemical Techniques/methods , Benzidines/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Phenylenediamines/chemistry
4.
Oper Dent ; 49(3): 336-344, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38807319

ABSTRACT

OBJECTIVE: Tooth color matching is challenging, and digital photocolorimetry using eLABor_aid (eLAB) provides objective evaluation through polarized photographs. However, its comparability with spectrophotometry remains unclear. METHODS AND MATERIALS: Bovine incisor root canals (n=30) were prepared to simulate an incomplete root apex. The teeth were randomly assigned to three groups based on intracanal medication: control (without medication); calcium hydroxide/propylene glycol; and triple-antibiotic paste (n=10 each). Tooth color was assessed using both eLAB and spectrophotometry. Measurements were taken at the crown medio-cervical region on five-time intervals (baseline, 1, 3, 7, and 14 days). Statistical analysis included two-way repeated-measures ANOVA, Sidak post hoc and Pearson's correlation test (α=0.05). RESULTS: No significant differences were observed between the two methods for either medication or follow-ups (p>0.05). Triple-antibiotic paste exhibited higher color variation (p<0.05). After 7 days, all groups presented significant color changes (p<0.05). Moderate to high correlations (R2 from 0.51 to 0.84, p<0.0001) were found between both methods for all groups at all intervals. CONCLUSION: The eLAB is a reliable method for detecting tooth color changes, and its results are comparable to spectrophotometry analysis.


Subject(s)
Colorimetry , Spectrophotometry , Cattle , Animals , Spectrophotometry/methods , Colorimetry/methods , Anti-Bacterial Agents , Color , In Vitro Techniques , Calcium Hydroxide , Incisor/anatomy & histology , Propylene Glycol , Tooth Discoloration , Root Canal Irrigants/therapeutic use , Metronidazole/therapeutic use , Ciprofloxacin/therapeutic use , Dental Pulp Cavity/anatomy & histology
5.
Anal Chim Acta ; 1306: 342599, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692792

ABSTRACT

BACKGROUND: Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection. However, they provide only one output signal, resulting in poor sensitivity and accuracy. Dual-channel ratiometric colorimetric method based on the peroxidase-like activity of nanozyme can achieve self-calibration by recording two reverse signals, providing significantly enhanced sensitivity and accuracy. RESULTS: CeO2 nanocages (CeO2 NCs) with tetra-enzyme mimetic activities (oxidase-, peroxidase-, catalase- and superoxide dismutase-like activities) were facilely synthesized using zeolitic imidazolate framework-67 (ZIF-67) as sacrificial template. The peroxidase-like activity of CeO2 NCs can be regulated by DNA, and it showed opposite response to two chromogenic substrates (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB)), which was mainly attributed to the changed affinity. On the basis of MC-LR aptamer-tunable peroxidase-like activity of CeO2 NCs in TMB and ABTS channel, a dual-channel ratiometric colorimetric aptasensor was constructed for detection of MC-LR. Compared with conventional single-signal colorimetric assays, the proposed method showed lower limit of detection (0.66 pg mL-1) and significantly enhanced sensitivity. Moreover, the practicability of the ratiometric colorimetric assay was demonstrated by detecting MC-LR in real water samples, and satisfactory recoveries (94.9-101.9 %) and low relative standard deviations (1.6-6.3 %) were obtained. SIGNIFICANCE: This work presents a nanozyme-based ratiometric colorimetric aptasensor for MC-LR detection by recording the reverse responses of two chromogenic reactions. Benefiting from the self-calibration function, the method can achieve higher sensitivity and accuracy. The short detection time and practical application in real water samples show great potential for environmental monitoring.


Subject(s)
Cerium , Colorimetry , Marine Toxins , Microcystins , Microcystins/analysis , Colorimetry/methods , Marine Toxins/analysis , Cerium/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection , Nanostructures/chemistry , Biosensing Techniques/methods
6.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692791

ABSTRACT

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Subject(s)
Anti-Bacterial Agents , Carbon , Copper , Neurotransmitter Agents , Carbon/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/urine , Anti-Bacterial Agents/blood , Neurotransmitter Agents/urine , Neurotransmitter Agents/analysis , Neurotransmitter Agents/blood , Porosity , Copper/chemistry , Humans , Nanospheres/chemistry , Colorimetry/methods , Ferric Compounds/chemistry , Biomimetic Materials/chemistry , Animals , Biosensing Techniques/methods , Chloramphenicol/analysis , Chloramphenicol/urine , Limit of Detection
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124325, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38701574

ABSTRACT

A Schiff-base Ethyl (E)-2-(3-((2-carbamothioylhydrazono)methyl)-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (TZTS) dual functional colorimetric and photoluminescent chemosensor which includes thiazole and thiosemicarbazide has been synthesized to detect arsenic (As3+) ions selectively in DMSO: H2O (7:3, v/v) solvent system. The molecular structure of the probe was characterized via FT-IR, 1H, and 13C NMR & HRMS analysis. Interestingly, the probe exhibits a remarkable and specific colorimetric and photoluminescence response to As3+ ions when exposed to various metal cations. The absorption spectral changes of TZTS were observed upon the addition of As3+ ions, with a naked eye detectable color change from colorless to yellow color. Additionally, the chemosensor (TZTS) exhibited a new absorption band at 412 nm and emission enhancements in photoluminescence at 528 nm after adding As3+ ions. The limit of detection (LOD) for As3+ ions was calculated to be 16.5 and 7.19 × 10-9 M by the UV-visible and photoluminescent titration methods, respectively. The underlying mechanism and experimental observations have been comprehensively elucidated through techniques such as Job's plot, Benesi-Hildebrand studies, and density functional theory (DFT) calculations. For practical application, the efficient determination of As3+ ions were accomplished using a spike and recovery approach applied to real water samples. In addition, the developed probe was successfully employed in test strip applications, allowing for the naked-eye detection of arsenic ions. Moreover, fluorescence imaging experiments of As3+ ions in the breast cancer cell line (MCF-7) demonstrated their practical applications in biological systems. Consequently, these findings highlight the significant potential of the TZTS sensor for detecting As3+ ions in environmental analysis systems.


Subject(s)
Arsenic , Colorimetry , Density Functional Theory , Thiazoles , Colorimetry/methods , Humans , Thiazoles/chemistry , Thiazoles/analysis , Arsenic/analysis , Limit of Detection , MCF-7 Cells , Ions/analysis , Optical Imaging
8.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727763

ABSTRACT

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Subject(s)
Glycine , Glyphosate , Hemin , Limit of Detection , Metal-Organic Frameworks , Pesticides , Pesticides/analysis , Pesticides/chemistry , Metal-Organic Frameworks/chemistry , Hemin/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Benzidines/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Dimethoate/analysis , Dimethoate/chemistry , Aptamers, Nucleotide/chemistry , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry
9.
Mikrochim Acta ; 191(6): 320, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727849

ABSTRACT

The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , SARS-CoV-2 , COVID-19/diagnosis , Biosensing Techniques/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Nanostructures/chemistry , Colorimetry/methods , Spectrum Analysis, Raman/methods
10.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731608

ABSTRACT

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Subject(s)
Colorimetry , Copper , Glutathione , Hydrogen Peroxide , Nanostructures , Glutathione/analysis , Glutathione/chemistry , Colorimetry/methods , Copper/chemistry , Nanostructures/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Porosity , Oxidation-Reduction , Phthalic Acids/chemistry , Humans , Benzidines/chemistry , Limit of Detection
11.
Anal Chim Acta ; 1308: 342661, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740461

ABSTRACT

BACKGROUND: Timely diagnosis and prevention of diseases require rapid and sensitive detection of biomarkers from blood samples without external interference. Abnormal electrolyte ion levels in the blood are closely linked to various physiological disorders, including hypertension. Therefore, accurate, interference-free, and precise measurement of electrolyte ion concentrations in the blood is particularly important. RESULTS: In this work, a colorimetric sensor based on a biphasic microdroplet extraction is proposed for the detection of electrolyte ions in the blood. This sensor employs mini-pillar arrays to facilitate contact between adjacent blood microdroplets and organic microdroplets serving as sensing phases, with any color changes being monitored through a smartphone's colorimetric software. The sensor is highly resistant to interference and does not require pre-treatment of the blood samples. Remarkably, the sensor exhibits exceptional reliability and stability, allowing for rapid enrichment and detection of K+, Na+, and Cl- in the blood within 10 s (Cl-), 15 s (K+) and 40 s (Na+) respectively. SIGNIFICANCE: The colorimetric sensor based on biphasic microdroplet extraction offers portability due to its compact size and ease of operation without the need for large instruments. Additionally, it is location-independent, making it a promising tool for real-time biomarker detection in body fluids such as blood.


Subject(s)
Colorimetry , Electrolytes , Potassium , Colorimetry/methods , Electrolytes/chemistry , Humans , Potassium/blood , Sodium/blood , Chlorides/blood , Ions/chemistry
12.
J Agric Food Chem ; 72(19): 11241-11250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709728

ABSTRACT

The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.


Subject(s)
Colorimetry , Food Contamination , Fungicides, Industrial , Pesticide Residues , Fungicides, Industrial/analysis , Food Contamination/analysis , Colorimetry/methods , Pesticide Residues/analysis , Antibodies, Monoclonal/chemistry , Chromatography, Affinity/methods , Chromatography, Affinity/instrumentation , Fluorescence , Triticum/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Limit of Detection , Flour/analysis
13.
Anal Methods ; 16(19): 3088-3098, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38690679

ABSTRACT

Herein, a novel fluorescent/colorimetric/photothermal biosensor is proposed for aflatoxin B1 (AFB1) detection in food based on Prussian blue nanoparticles (PBNPs) (∼50 nm), gold nanoclusters (AuNCs), and an aptamer (Apt) within three hours. Briefly, a multifunctional compound, namely PBNPs-PEI@AuNCs, was synthesized from PBNPs as the loading carrier, polyethyleneimine (PEI) as the cross-linking agent, and AuNCs directly combined on the surface of PBNPs. The AFB1 Apt was then modified on the PBNPs-PEI@AuNCs to form a PBNPs-PEI@AuNCs-Apt probe, whereby when AFB1 is present, AFB1 is specifically captured by the probe. Meanwhile, the MNPs@antibody was also introduced to capture AFB1, thereby forming a "sandwich" structure compound. After magnetic separation, high temperature was applied to this "sandwich" structure compound to induce the denaturation of the Apt. Then the fluorescent/colorimetric/photothermal signals were collected from the PBNPs-PEI@AuNCs@Apt to give information on its related condition. The detection limits of the biosensor were 0.64 × 10-14, 0.96 × 10-14, and 0.55 × 10-12 g mL-1 for the three signals, which were outputted independently and could be verified with each other to ensure the accuracy of the results. Moreover, the colorimetric and photothermal strategies with this probe do not require large-scale instruments, providing a promising choice for achieving the rapid field detection of AFB1.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Ferrocyanides , Gold , Metal Nanoparticles , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Gold/chemistry , Biosensing Techniques/methods , Ferrocyanides/chemistry , Metal Nanoparticles/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection , Colorimetry/methods , Food Contamination/analysis , Polyethyleneimine/chemistry
14.
Anal Methods ; 16(19): 3099-3108, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38695127

ABSTRACT

The CRISPR-Cas system has been found to be extremely sensitive and there is an urgent demand to extend its potential in bioassays. Herein, we developed a novel nanobiosensor to detect the human papillomavirus 16 genes (HPV-16 DNA), which is triggered by CRISPR-Cas12a to amplify the fluorescence signal by metal-enhanced fluorescence (CAMEF). Along with the changing of the fluorescence signal, the aggregation of the substrate of MEF also leads to a change in the color of the mixture solution, enabling dual signal detection with the fluorescence and the naked eye. Furthermore, the designed CAMEF probe was verified to detect the HPV-16 DNA accurately and reliably in biological samples. Triggered by the CRISPR system, the designed CAMEF probe allows quantitative detection of the HPV-16 DNA in the wide range of 10-500 pM. Owing to the MEF, the fluorescence signal of the CAMEF probe was significantly amplified with the detection limit as low as 1 pM. Besides, we can determine the concentration of HPV-16 DNA simply by the naked eye, which also drastically reduces the possibility of false-positive signals. Theoretically, the target ssDNA could be any strand of DNA obtained by designing the crRNA sequence in the CRISPR-Cas system. We believe that the designed CAMEF sensor can present a reliable approach for the accurate detection of low amounts of target ssDNA in complex biological samples.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Colorimetry , DNA, Viral , Human papillomavirus 16 , CRISPR-Cas Systems/genetics , Human papillomavirus 16/genetics , Colorimetry/methods , Humans , DNA, Viral/analysis , DNA, Viral/genetics , Biosensing Techniques/methods , Limit of Detection , Fluorescence , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods
15.
Anal Methods ; 16(19): 3007-3019, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38695537

ABSTRACT

We present a colorimetric probe based on polyvinylpyrrolidone-capped gold nanoparticles (PVP-AuNPs) that is sensitive and selective for cysteine (Cys). A microfluidic paper-based analytical device (µ-PAD) with embedded dried PVP-AuNPs at the polyethersulfone (PES) paper surface is used for Cys detection. When thiol molecules attach to PVP-AuNPs in the presence of Cys, they clump together, and this causes the solution's color to shift from red to blue within 5 minutes. The device is capable of detecting Cys levels between 1.0 µM and 50.0 µM with a limit of detection (LOD) of 0.2 µM under optimized conditions. The stability of the µ-PAD was tested for 100 days, demonstrating re-dispersibility to detect Cys levels in blood. Dried PVP-AuNP-µPADs were integrated with blood plasma separation modules for point-of-care (POC) Cys detection. Consequently, the device shows potential as a self-sustaining, quantification platform with a recovery percentage ranging from 98.44 to 111.9 in clinical samples.


Subject(s)
Colorimetry , Cysteine , Gold , Limit of Detection , Metal Nanoparticles , Paper , Point-of-Care Systems , Gold/chemistry , Cysteine/blood , Cysteine/chemistry , Metal Nanoparticles/chemistry , Humans , Colorimetry/methods , Colorimetry/instrumentation , Povidone/chemistry , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
16.
Anal Methods ; 16(19): 3131-3141, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38712986

ABSTRACT

Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.


Subject(s)
Carbon , Colorimetry , Nanofibers , Nitrates , Paper , Polyesters , Nanofibers/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Nitrates/analysis , Nitrates/chemistry , Polyesters/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Water Pollutants, Chemical/analysis , Electric Conductivity , Membranes, Artificial
17.
Sci Rep ; 14(1): 10612, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38719936

ABSTRACT

Molecular diagnostics involving nucleic acids (DNA and RNA) are regarded as extremely functional tools. During the 2020 global health crisis, efforts intensified to optimize the production and delivery of molecular diagnostic kits for detecting SARS-CoV-2. During this period, RT-LAMP emerged as a significant focus. However, the thermolability of the reagents used in this technique necessitates special low-temperature infrastructure for transport, storage, and conservation. These requirements limit distribution capacity and necessitate cost-increasing adaptations. Consequently, this report details the development of a lyophilization protocol for reagents in a colorimetric RT-LAMP diagnostic kit to detect SARS-CoV-2, facilitating room-temperature transport and storage. We conducted tests to identify the ideal excipients that maintain the molecular integrity of the reagents and ensure their stability during room-temperature storage and transport. The optimal condition identified involved adding 5% PEG 8000 and 75 mM trehalose to the RT-LAMP reaction, which enabled stability at room temperature for up to 28 days and yielded an analytical and diagnostic sensitivity and specificity of 83.33% and 90%, respectively, for detecting SARS-CoV-2. This study presents the results of a lyophilized colorimetric RT-LAMP COVID-19 detection assay with diagnostic sensitivity and specificity comparable to RT-qPCR, particularly in samples with high viral load.


Subject(s)
COVID-19 , Colorimetry , Freeze Drying , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Colorimetry/methods , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , RNA, Viral/analysis , RNA, Viral/genetics , Sensitivity and Specificity , Reagent Kits, Diagnostic/standards , COVID-19 Nucleic Acid Testing/methods
18.
J Agric Food Chem ; 72(20): 11706-11715, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728528

ABSTRACT

In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.


Subject(s)
Alginates , Colorimetry , Polyvinyl Alcohol , Alginates/chemistry , Animals , Polyvinyl Alcohol/chemistry , Cattle , Colorimetry/methods , Anthraquinones/chemistry , Food Packaging/instrumentation , Phytochemicals/chemistry , Red Meat/analysis , Metal-Organic Frameworks/chemistry
19.
Anal Methods ; 16(20): 3220-3230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717230

ABSTRACT

Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.


Subject(s)
CRISPR-Cas Systems , Colorimetry , G-Quadruplexes , Mycobacterium bovis , Mycobacterium bovis/genetics , CRISPR-Cas Systems/genetics , Colorimetry/methods , Nucleic Acid Hybridization/methods , Limit of Detection , Animals , DNA, Catalytic/chemistry , Biosensing Techniques/methods , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics
20.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739846

ABSTRACT

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Subject(s)
Benzidines , Boron Compounds , Colorimetry , Escherichia coli , Quantum Dots , beta-Galactosidase , Quantum Dots/chemistry , Colorimetry/methods , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Boron Compounds/chemistry , Benzidines/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Peroxidase/chemistry , Peroxidase/metabolism , Limit of Detection , Oxidation-Reduction , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...