Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.482
Filter
1.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717527

ABSTRACT

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Subject(s)
Columbidae , Flight, Animal , Transcriptome , Animals , Columbidae/genetics , Columbidae/physiology , Flight, Animal/physiology , Transcriptome/genetics , Gene Expression Profiling/methods , Pectoralis Muscles/metabolism , Pectoralis Muscles/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
2.
Gene ; 920: 148522, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38703865

ABSTRACT

Trichomonas gallinae, a globally distributed protozoan parasite, significantly affects the pigeon-breeding industry. T. gallinae infection mainly causes yellow ulcerative nodules on the upper respiratory tract and crop mucosa of pigeons, impeding normal breathing and feeding and ultimately causing death. Real-time quantitative PCR (qPCR) is a crucial technique for gene-expression analysis in molecular biology. Reference-gene selection for normalization is critical for ensuring this technique's accuracy. However, no systematic screening or validation of T. gallinae reference genes has been reported. This study quantified the transcript levels of ten candidate reference genes in T. gallinae isolates with different genotypes and culture conditions using qPCR. Using the geNorm, NormFinder, and BestKeeper algorithms, we assessed these reference genes' stabilities and ranked them using RankAggreg analysis. The most stable reference gene was tubulin beta chain (TUBB), while the widely used reference genes TUBG and GAPDH demonstrated poor stability. Additionally, we evaluated these candidate reference genes' stabilities using the T. gallinae TgaAtg8 gene. On using TUBB as a reference gene, TgaAtg8's expression profiles in T. gallinae isolates with different genotypes remained relatively consistent under various culture conditions. Conversely, using ACTB as a reference gene distorted the data. These findings provide valuable reference-gene-selection guidance for functional gene research and gene-expression analysis in T. gallinae.


Subject(s)
Columbidae , Reference Standards , Stress, Physiological , Trichomonas , Trichomonas/genetics , Animals , Columbidae/genetics , Columbidae/parasitology , Stress, Physiological/genetics , Gene Expression Profiling/methods , Real-Time Polymerase Chain Reaction/standards , Real-Time Polymerase Chain Reaction/methods , Tubulin/genetics , Trichomonas Infections/parasitology , Trichomonas Infections/veterinary , Genes, Protozoan , Genotype
3.
BMC Pulm Med ; 24(1): 245, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762468

ABSTRACT

BACKGROUND: Evaluation of the antigen responsible for fibrotic hypersensitivity pneumonitis (HP) is challenging. Serum immunoglobulin (Ig) G testing against HP-associated antigens is performed. Although single-serum IgG testing has been investigated, multiple-serum IgG testing has not yet been studied. METHODS: This study included patients who underwent histopathological examination and positive inhalation challenge test as well as those with moderate or high HP guideline confidence level. Serum IgG testing against pigeon serum was conducted twice using two methods: enzyme linked-immunosorbent assay (ELISA) and ImmunoCAP. The association between changes in serum IgG antibody titers and changes in forced vital capacity (FVC) and other parameters was investigated. RESULTS: In this study, 28 patients (mean age, 64.5 years; mean FVC, 85.3%) with fibrotic avian HP were selected, of whom 20 and 8 underwent surgical lung biopsy and transbronchial lung cryobiopsy, respectively. Of the 28 patients, 19 had been keeping birds for more than 6 months. A correlation was observed between the annual changes in serum IgG antibody titers by ELISA and changes in relative FVC (r = - 0.6221, p < 0.001). Furthermore, there was a correlation between the annual changes in serum IgG antibody titers by ImmunoCAP and changes in relative FVC (r = - 0.4302, p = 0.022). Multiple regression analysis revealed that the change in serum IgG antibody titers by both ELISA and ImmunoCAP also influenced the relative FVC change (p = 0.012 and p = 0.015, respectively). Moreover, 13 patients were given additional treatments between the first and second blood test; however, the additional treatment group was not significantly different in relative FVC change compared to the group with no additional treatment (p = 0.982). CONCLUSIONS: In patients with fibrotic avian HP, the annual changes in serum IgG testing were correlated with FVC changes, highlighting the importance of serum IgG testing over time.


Subject(s)
Bird Fancier's Lung , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Humans , Middle Aged , Male , Female , Immunoglobulin G/blood , Aged , Bird Fancier's Lung/immunology , Bird Fancier's Lung/diagnosis , Bird Fancier's Lung/blood , Animals , Vital Capacity , Columbidae , Lung/pathology , Lung/physiopathology , Longitudinal Studies , Alveolitis, Extrinsic Allergic/blood , Alveolitis, Extrinsic Allergic/immunology , Alveolitis, Extrinsic Allergic/diagnosis , Alveolitis, Extrinsic Allergic/pathology
4.
Anat Histol Embryol ; 53(3): e13052, 2024 May.
Article in English | MEDLINE | ID: mdl-38735035

ABSTRACT

One crucial component of the optical system is the ciliary body (CB). This body secretes the aqueous humour, which is essential to maintain the internal eye pressure as well as the clearness of the lens and cornea. The histological study was designed to provide the morphological differences of CB and iris in the anterior eye chambers of the following vertebrate classes: fish (grass carp), amphibians (Arabian toad), reptiles (semiaquatic turtle, fan-footed gecko, ocellated skink, Egyptian spiny-tailed lizard, Arabian horned viper), birds (common pigeon, common quail, common kestrel), and mammals (BALB/c mouse, rabbit, golden hamster, desert hedgehog, lesser Egyptian jerboa, Egyptian fruit bat). The results showed distinct morphological appearances of the CB and iris in each species, ranging from fish to mammals. The present comparative study concluded that the morphological structure of the CB and iris is the adaptation of species to either their lifestyle or survival in specific habitats.


Subject(s)
Ciliary Body , Iris , Animals , Ciliary Body/anatomy & histology , Iris/anatomy & histology , Rabbits/anatomy & histology , Mice/anatomy & histology , Lizards/anatomy & histology , Vertebrates/anatomy & histology , Reptiles/anatomy & histology , Fishes/anatomy & histology , Birds/anatomy & histology , Anterior Chamber/anatomy & histology , Turtles/anatomy & histology , Carps/anatomy & histology , Mice, Inbred BALB C , Amphibians/anatomy & histology , Cricetinae , Quail/anatomy & histology , Hedgehogs/anatomy & histology , Columbidae/anatomy & histology , Mesocricetus/anatomy & histology
5.
Sci Rep ; 14(1): 10741, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730036

ABSTRACT

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Subject(s)
Columbidae , Genome, Viral , Newcastle Disease , Newcastle disease virus , Phylogeny , Animals , Columbidae/virology , China/epidemiology , Newcastle disease virus/genetics , Newcastle disease virus/isolation & purification , Newcastle disease virus/classification , Newcastle Disease/virology , Newcastle Disease/epidemiology , Genotype , Farms , Meat/virology
6.
Sci Total Environ ; 933: 172956, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38719036

ABSTRACT

Paddy soil, as an ecosystem with alternating drained and flooded conditions, microorganisms in it can maintain the stability of the ecosystem by regulating the composition and diversity of its species when disturbed by external biotic or abiotic factors, and the regulatory mechanism in this process is a controversial topic in ecological research. In this study, we investigate the effects of pigeon feces addition on bacterial communities in three textured soils, two conditions (drained and flooded) based on microcosm experiment using high-throughput sequencing techniques. Our results show that pigeon feces addition reduced environmental heterogeneity and community diversity, both under flooded and drained conditions and in all textured soils, thereby decreasing the effectiveness of environmental selection and increasing diffusion limitations among bacterial communities. Bacterial communities are altered by environmental factors including total organic carbon, available nitrogen, total phosphorus, available phosphorus and available potassium, resulting in the formation of new community structures and dominant genera. Bacteria from pigeon feces did not colonize the original soil in large numbers, and the soil bacterial community structure changed, with some species replaced the indigenous ones as new dominant genera. As nutrient diffusion increases the nutrient content of the soil, this does not lead to species extinction; however, nutrient diffusion creates new nutrient preferences of the bacterial community, which causes direct competition between species, and contributes to the extinction and immigration species. Our results suggest that species replacement is an adaptive strategy of soil bacterial community in response to dispersal of pigeon feces, and that bacterial community regulate diversity and abundance of the community by enhancing species extinction and immigration, thereby preventing bacteria in pigeon feces from colonizing paddy soils and maintaining ecosystem stability.


Subject(s)
Bacteria , Soil Microbiology , Soil , Soil/chemistry , Animals , Bacteria/classification , Microbiota , Feces/microbiology , Nitrogen/analysis , Phosphorus/analysis , Columbidae , Ecosystem , Nutrients/analysis
7.
BMC Genomics ; 25(1): 369, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622517

ABSTRACT

BACKGROUND: Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS: PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS: In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Animals , Columbidae , Phylogeny , Farms , Circovirus/genetics , Circoviridae Infections/veterinary , Nucleotides
8.
J Comp Neurol ; 532(4): e25611, 2024 04.
Article in English | MEDLINE | ID: mdl-38625816

ABSTRACT

A core component of the avian pallial cognitive network is the multimodal nidopallium caudolaterale (NCL) that is considered to be analogous to the mammalian prefrontal cortex (PFC). The NCL plays a key role in a multitude of executive tasks such as working memory, decision-making during navigation, and extinction learning in complex learning environments. Like the PFC, the NCL is positioned at the transition from ascending sensory to descending motor systems. For the latter, it sends descending premotor projections to the intermediate arcopallium (AI) and the medial striatum (MSt). To gain detailed insight into the organization of these projections, we conducted several retrograde and anterograde tracing experiments. First, we tested whether NCL neurons projecting to AI (NCLarco neurons) and MSt (NCLMSt neurons) are constituted by a single neuronal population with bifurcating neurons, or whether they form two distinct populations. Here, we found two distinct projection patterns to both target areas that were associated with different morphologies. Second, we revealed a weak topographic projection toward the medial and lateral striatum and a strong topographic projection toward AI with clearly distinguishable sensory termination fields. Third, we investigated the relationship between the descending NCL pathways to the arcopallium with those from the hyperpallium apicale, which harbors a second major descending pathway of the avian pallium. We embed our findings within a system of parallel pallio-motor loops that carry information from separate sensory modalities to different subpallial systems. Our results also provide insights into the evolution of the avian motor system from which, possibly, the song system has emerged.


Subject(s)
Brain , Columbidae , Animals , Columbidae/physiology , Cerebral Cortex/physiology , Corpus Striatum , Neostriatum/physiology , Mammals
9.
J Integr Neurosci ; 23(4): 72, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38682219

ABSTRACT

BACKGROUND: Exploring the neural encoding mechanism and decoding of motion state switching during flight can advance our knowledge of avian behavior control and contribute to the development of avian robots. However, limited acquisition equipment and neural signal quality have posed challenges, thus we understand little about the neural mechanisms of avian flight. METHODS: We used chronically implanted micro-electrode arrays to record the local field potentials (LFPs) in the formation reticularis medialis mesencephali (FRM) of pigeons during various motion states in their natural outdoor flight. Subsequently, coherence-based functional connectivity networks under different bands were constructed and the topological features were extracted. Finally, we used a support vector machine model to decode different flight states. RESULTS: Our findings indicate that the gamma band (80-150 Hz) in the FRM exhibits significant power for identifying different states in pigeons. Specifically, the avian brain transmitted flight related information more efficiently during the accelerated take-off or decelerated landing states, compared with the uniform flight and baseline states. Finally, we achieved a best average accuracy of 0.86 using the connectivity features in the 80-150 Hz band and 0.89 using the fused features for state decoding. CONCLUSIONS: Our results open up possibilities for further research into the neural mechanism of avian flight and contribute to the understanding of flight behavior control in birds.


Subject(s)
Columbidae , Flight, Animal , Animals , Columbidae/physiology , Flight, Animal/physiology , Support Vector Machine , Gamma Rhythm/physiology , Midbrain Reticular Formation/physiology , Male , Behavior, Animal/physiology , Mesencephalon/physiology
10.
J Exp Anal Behav ; 121(3): 327-345, 2024 May.
Article in English | MEDLINE | ID: mdl-38629655

ABSTRACT

Can simple choice conditional-discrimination choice be accounted for by recent quantitative models of combined stimulus and reinforcer control? In Experiment 1, two sets of five blackout durations, one using shorter intervals and one using longer intervals, conditionally signaled which subsequent choice response might provide food. In seven conditions, the distribution of blackout durations across the sets was varied. An updated version of the generalization-across-dimensions model nicely described the way that choice changed across durations. In Experiment 2, just two blackout durations acted as the conditional stimuli and the durations were varied over 10 conditions. The parameters of the model obtained in Experiment 1 failed adequately to predict choice in Experiment 2, but the model again fitted the data nicely. The failure to predict the Experiment 2 data from the Experiment 1 parameters occurred because in Experiment 1 differential control by reinforcer locations progressively decreased with blackout durations, whereas in Experiment 2 this control remained constant. These experiments extend the ability of the model to describe data from procedures based on concurrent schedules in which reinforcer ratios reverse at fixed times to those from conditional-discrimination procedures. Further research is needed to understand why control by reinforcer location differed between the two experiments.


Subject(s)
Choice Behavior , Discrimination Learning , Generalization, Psychological , Models, Psychological , Reinforcement Schedule , Animals , Reinforcement, Psychology , Conditioning, Operant , Discrimination, Psychological , Columbidae , Time Factors
11.
Poult Sci ; 103(6): 103742, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670056

ABSTRACT

Unlike other poultry, parent pigeons produce "pigeon milk" in their crops to nurture their squabs, which is mainly controlled by prolactin (PRL). Exception for PRL, the pituitary gland may also release various other peptide and protein hormones. However, whether these hormones change during pigeon crop lactation and their potential physiological functions remain unclear. Here, to identify potential peptide or protein hormone genes that regulate crop lactation, we conducted transcriptome analysis of pigeon pituitary glands at 3 different breeding stages (the ceased stage-nonincubation and non-nurturing stage, the 11th d of the incubation, and the 1st d of the nurturing stage) using RNA sequencing (RNA-Seq). Our analysis identified a total of 15,191 mRNAs and screened out 297 differentially expressed genes (DEG), including PRL, VIP, etc. The expression abundance of PRL mRNA on the 1st d of the nurturing stage was respectively 4.93 and 3.62 folds higher when compared to the ceased stage and the 11th d of the incubation stage. Additionally, the expression abundance of VIP is higher in the 1st d of the nurturing stage than in the ceased stage. Protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) analysis identified several vital DEGs (e.g., GHRHR, VIP, etc.), being closely linked with hormone and enriched in neuropeptide signaling pathway and response to the hormone. Expression pattern analysis revealed that these DEGs exhibited 4 distinct expression patterns (profile 10, 16, 18, 19). Genes in profile 10 and 19 presented a trend with the highest expression level on 1st d of the nurturing stage, and functional enrichment analysis indicated that these genes are involved in neuropeptide hormone activity, receptor-ligand activity, and the extracellular matrix, etc. Taken together, being consistent with PRL, some genes encoding peptide and protein hormones (e.g., VIP) presented differentially expressed in different breeding stages. It suggests that these hormones may be involved in regulation of the crop lactation process or corresponding behavior in domestic pigeons. The results of this study help to gain new insights into the role of pituitary gland in regulating pigeon lactation.


Subject(s)
Columbidae , Gene Expression Profiling , Pituitary Gland , Animals , Columbidae/genetics , Columbidae/physiology , Columbidae/metabolism , Pituitary Gland/metabolism , Gene Expression Profiling/veterinary , Female , Avian Proteins/genetics , Avian Proteins/metabolism , Peptide Hormones/genetics , Peptide Hormones/metabolism , Transcriptome , Lactation/genetics , Prolactin/genetics , Prolactin/metabolism
12.
Avian Dis ; 68(1): 33-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687105

ABSTRACT

The aim of this study was to develop a multiplex PCR assay capable of rapidly differentiating two major Avipoxvirus (APV) species, Fowlpox virus (FWPV) and Pigeonpox virus (PGPV), which cause disease in bird species. Despite the importance of a rapid differentiation assay, no such assay exists that can differentiate the APV species without sequencing. To achieve this, species-specific target DNA fragments were selected from the fpv122 gene of FWPV and the HM89_gp120 gene of PGPV, which are unique to each genome. Nine samples collected from unvaccinated chickens, pigeons, and a turkey with typical pox lesions were genetically identified as FWPV and PGPV. The designed primers and target DNA fragments were validated using in silico analyses with the nucleotide Basic Local Alignment Search Tool. The multiplex PCR assay consisted of species-specific primers and previously described PanAPV primers (genus-specific) and was able to differentiate FWPV and PGPV, consistent with the phylogenetic outputs. This study represents the first successful differentiation of FWPV and PGPV genomes using a conventional multiplex PCR test. This assay has the potential to facilitate the rapid diagnosis and control of APV infections.


Desarrollo de un ensayo de PCR múltiple para la diferenciación rápida de los virus de la viruela aviar y la viruela de paloma. El objetivo de este estudio fue desarrollar un ensayo de PCR múltiple capaz de diferenciar rápidamente dos especies principales de Avipoxvirus (APV) (viruela del pollo), el Fowlpox virus (FWPV) y el Pigeonpox virus (PGPV), (viruela de la gallina), que causan enfermedades en especies de aves. A pesar de la importancia de un ensayo de diferenciación rápida, no existe ningún ensayo que pueda diferenciar las especies de APV sin secuenciación. Para lograr esto, se seleccionaron fragmentos blanco de ADN específicos de especie del gene fpv122 de FWPV y el gene HM89_gp120 de Pigeonpox virus, que son únicos para cada genoma. Nueve muestras recolectadas de pollos, palomas y un pavo que no fueron vacunados con lesiones típicas de la viruela se identificaron genéticamente como FWPV y PGPV. Los iniciadores diseñados y los fragmentos de ADN blanco se validaron mediante análisis in silico mediante la herramienta de búsqueda de alineación local básica de nucleótidos (BLAST). El ensayo de PCR múltiple consistió en iniciadores específicos de especie y cebadores PanAPV previamente descritos (específicos de género) y fue capaz de diferenciar entre Fowlpox virus y Pigeonpox virus, de acuerdo con los resultados filogenéticos. Este estudio representa la primera diferenciación exitosa de los genomas de Fowlpox virus y Pigeonpox virus utilizando una prueba de PCR múltiple convencional. Este ensayo tiene el potencial de facilitar el diagnóstico rápido y el control de las infecciones por Avipoxvirus.


Subject(s)
Avipoxvirus , Chickens , Columbidae , Fowlpox virus , Multiplex Polymerase Chain Reaction , Poultry Diseases , Poxviridae Infections , Animals , Multiplex Polymerase Chain Reaction/veterinary , Multiplex Polymerase Chain Reaction/methods , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Poxviridae Infections/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis , Avipoxvirus/genetics , Avipoxvirus/isolation & purification , Avipoxvirus/classification , Turkeys , Fowlpox/virology , Fowlpox/diagnosis , Species Specificity , Phylogeny , Bird Diseases/virology , Bird Diseases/diagnosis
13.
J Phys Chem B ; 128(16): 3844-3855, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38568745

ABSTRACT

Cryptochrome is currently the major contender of a protein to underpin magnetoreception, the ability to sense the Earth's magnetic field. Among various types of cryptochromes, cryptochrome 4 has been identified as the likely magnetoreceptor in migratory birds. All-atom molecular dynamics (MD) studies have offered first insights into the structural dynamics of cryptochrome but are limited to a short time scale due to large computational demands. Here, we employ coarse-grained MD simulations to investigate the emergence of long-lived states and conformational changes in pigeon cryptochrome 4. Our coarse-grained simulations complete the picture by permitting observation on a significantly longer time scale. We observe conformational transitions in the phosphate-binding loop of pigeon cryptochrome 4 upon activation and identify prominent motions in residues 440-460, suggesting a possible role as a signaling state of the protein or as a gated interaction site for forming protein complexes that might facilitate downstream processes. The findings highlight the importance of considering longer time scales in studying cryptochrome dynamics and magnetoreception. Coarse-grained MD simulations offer a valuable tool to unravel the complex behavior of cryptochrome proteins and shed new light on the mechanisms underlying their role in magnetoreception. Further exploration of these conformational changes and their functional implications may contribute to a deeper understanding of the molecular mechanisms of magnetoreception in birds.


Subject(s)
Columbidae , Cryptochromes , Oxidation-Reduction , Animals , Columbidae/genetics , Columbidae/metabolism , Cryptochromes/chemistry , Cryptochromes/metabolism , Molecular Dynamics Simulation , Protein Conformation
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 335-341, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686415

ABSTRACT

Place cell with location tuning characteristics play an important role in brain spatial cognition and navigation, but there is relatively little research on place cell screening and its influencing factors. Taking pigeons as model animals, the screening process of pigeon place cell was given by using the spike signal in pigeon hippocampus under free activity. The effects of grid number and filter kernel size on the place field of place cells during the screening process were analyzed. The results from the real and simulation data showed that the proposed place cell screening method presented in this study could effectively screen out place cell, and the research found that the size of place field was basically inversely proportional to the number of grids divided, and was basically proportional to the size of Gaussian filter kernel in the overall trend. This result will not only help to determine the appropriate parameters in the place cell screening process, but also promote the research on the neural mechanism of spatial cognition and navigation of birds such as pigeons.


Subject(s)
Columbidae , Hippocampus , Columbidae/physiology , Animals , Hippocampus/cytology , Hippocampus/physiology , Place Cells/physiology , Spatial Navigation/physiology , Cognition , Action Potentials
15.
Neurosci Lett ; 828: 137754, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556244

ABSTRACT

While studies have identified age-related cognitive impairment in pigeons (Columba livia), no study has detected the brain atrophy which typically accompanies cognitive impairment in older mammals. Instead, Coppola and Bingman (Aging is associated with larger brain mass and volume in homing pigeons (Columba livia), Neurosci. Letters 698 (2019) 39-43) reported increased whole brain mass and telencephalon volume in older, compared to younger, homing pigeons. One reason for this unexpected finding might be that the older pigeons studied were not old enough to display age-related brain atrophy. Therefore, the current study repeated Coppola and Bingman, but with a sample of older white Carneau pigeons that were on average 5.34 years older. Brains from young and old homing pigeons were weighed and orthogonal measurements of the telencephalon, cerebellum, and optic tectum were obtained. Despite having a heavier body mass than younger pigeons, older pigeons had a significant reduction in whole brain mass and telencephalon volume, but not cerebellum or optic tectum volume. This study is therefore the first to find that pigeons experience age-related brain atrophy.


Subject(s)
Columbidae , Nervous System Diseases , Animals , Brain , Telencephalon , Aging , Atrophy , Mammals
16.
J R Soc Interface ; 21(212): 20230591, 2024 03.
Article in English | MEDLINE | ID: mdl-38503340

ABSTRACT

Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals.


Subject(s)
Columbidae , Stroke , Animals , Columbidae/physiology , Biomechanical Phenomena , Flight, Animal/physiology , Wind , Wings, Animal/physiology
17.
Sci Rep ; 14(1): 7298, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538653

ABSTRACT

A paradox of avian long-distance migrations is that birds must greatly increase their body mass prior to departure, yet this is presumed to substantially increase their energy cost of flight. However, here we show that when homing pigeons flying in a flock are loaded with ventrally located weight, both their heart rate and estimated energy expenditure rise by a remarkably small amount. The net effect is that costs per unit time increase only slightly and per unit mass they decrease. We suggest that this is because these homing flights are relatively fast, and consequently flight costs associated with increases in body parasite drag dominate over those of weight support, leading to an improvement in mass-specific flight economy. We propose that the relatively small absolute aerodynamic penalty for carrying enlarged fuel stores and flight muscles during fast flight has helped to select for the evolution of long-distance migration.


Subject(s)
Columbidae , Flight, Animal , Animals , Flight, Animal/physiology , Columbidae/physiology , Energy Metabolism/physiology , Muscles
18.
Parasitol Res ; 123(3): 158, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460006

ABSTRACT

Cryptosporidium spp., Enterocytozoon bieneusi and Encephalitozoon spp. are the most common protistan parasites of vertebrates. The results show that pigeon populations in Central Europe are parasitised by different species of Cryptosporidium and genotypes of microsporidia of the genera Enterocytozoon and Encephalitozoon. A total of 634 and 306 faecal samples of captive and feral pigeons (Columba livia f. domestica) from 44 locations in the Czech Republic, Slovakia and Poland were analysed for the presence of parasites by microscopy and PCR/sequence analysis of small subunit ribosomal RNA (18S rDNA), 60 kDa glycoprotein (gp60) and internal transcribed spacer (ITS) of SSU rDNA. Phylogenetic analyses revealed the presence of C. meleagridis, C. baileyi, C. parvum, C. andersoni, C. muris, C. galli and C. ornithophilus, E. hellem genotype 1A and 2B, E. cuniculi genotype I and II and E. bieneusi genotype Peru 6, CHN-F1, D, Peru 8, Type IV, ZY37, E, CHN4, SCF2 and WR4. Captive pigeons were significantly more frequently parasitised with screened parasite than feral pigeons. Cryptosporidium meleagridis IIIa and a new subtype IIIl have been described, the oocysts of which are not infectious to immunodeficient mice, whereas chickens are susceptible. This investigation demonstrates that pigeons can be hosts to numerous species, genotypes and subtypes of the studied parasites. Consequently, they represent a potential source of infection for both livestock and humans.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Encephalitozoon , Enterocytozoon , Microsporidiosis , Humans , Animals , Mice , Columbidae , Enterocytozoon/genetics , Cryptosporidium/genetics , Encephalitozoon/genetics , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/parasitology , Phylogeny , Chickens , Europe/epidemiology , DNA, Ribosomal , Genetic Variation , Genotype , Feces/parasitology
19.
Poult Sci ; 103(5): 103587, 2024 May.
Article in English | MEDLINE | ID: mdl-38479099

ABSTRACT

Trichomonas gallinae (T. gallinae) is a globally distributed protozoan parasite and could cause serious damage to the pigeon industry. MiRNAs have important roles in regulating parasite infection, but its impacts on T. gallinae resistance have rarely been reported. In the present study, we identified a new miRNA (novel-miR-741) and its predicted target OTU deubiquitinase 1 (OTUD1) that might be associated with immunity to T. gallinae in pigeon. Novel-miR-741 and OTUD1 over-expression vectors and interference vectors were constructed. Results from dual luciferase activity assay demonstrated that OTUD1 was a downstream target of novel-miR-741. The Cell Counting Kit-8 and apoptosis assays showed that novel-miR-741 inhibited the proliferation and promoted apoptosis of pigeon crop fibroblasts. Meanwhile, mRNA levels of OTUD1 were significantly reduced in novel-miR-741 mimic-transfected fibroblasts, while mRNA levels of OTUD1 were significantly increased in the novel-miR-741 inhibitor-transfected fibroblasts. The regulatory roles of si-OTUD1 on fibroblasts proliferation, apoptosis, and migration were similar to novel-miR-741 mimic. Our findings demonstrated that novel-miR-741 inhibited the proliferation, and migration of crop fibroblasts, while OTUD1 promoted the proliferation and migration of crop fibroblasts. Therefore, the regulation of OTUD1 by novel-miR-741 was proposed as a potential therapeutic strategy for T. gallinae.


Subject(s)
Apoptosis , Cell Proliferation , Columbidae , Fibroblasts , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Fibroblasts/physiology , Columbidae/physiology , Avian Proteins/genetics , Avian Proteins/metabolism
20.
Behav Brain Res ; 465: 114971, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38552743

ABSTRACT

Within their familiar areas homing pigeons rely on familiar visual landscape features and landmarks for homing. However, the neural basis of visual landmark-based navigation has been so far investigated mainly in relation to the role of the hippocampal formation. The avian visual Wulst is the telencephalic projection field of the thalamofugal pathway that has been suggested to be involved in processing lateral visual inputs that originate from the far visual field. The Wulst is therefore a good candidate for a neural structure participating in the visual control of familiar visual landmark-based navigation. We repeatedly released and tracked Wulst-lesioned and control homing pigeons from three sites about 10-15 km from the loft. Wulst lesions did not impair the ability of the pigeons to orient homeward during the first release from each of the three sites nor to localise the loft within the home area. In addition, Wulst-lesioned pigeons displayed unimpaired route fidelity acquisition to a repeated homing path compared to the intact birds. However, compared to control birds, Wulst-lesioned pigeons displayed persistent oscillatory flight patterns across releases, diminished attention to linear (leading lines) landscape features, such as roads and wood edges, and less direct flight paths within the home area. Differences and similarities between the effects of Wulst and hippocampal lesions suggest that although the visual Wulst does not seem to play a direct role in the memory representation of a landscape-landmark map, it does seem to participate in influencing the perceptual construction of such a map.


Subject(s)
Columbidae , Homing Behavior , Animals , Orientation , Telencephalon
SELECTION OF CITATIONS
SEARCH DETAIL
...