Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.004
Filter
1.
Emerg Infect Dis ; 30(6): 1228-1231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782033
2.
PLoS One ; 19(5): e0298591, 2024.
Article in English | MEDLINE | ID: mdl-38758948

ABSTRACT

Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the 'salamander plague' ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely through human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover, ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we compiled those with published data from 319 individuals from 13 sites concluding that Bsal infections were not detected. Our results suggest that the salamander plague so far is absent from the geographic ranges of Alpine salamanders. That means that there is still a chance to timely implement surveillance strategies. Among others, we recommend prevention measures, citizen science approaches, and ex situ conservation breeding of endemic salamandrid lineages.


Subject(s)
Batrachochytrium , Mycoses , Urodela , Animals , Batrachochytrium/genetics , Batrachochytrium/pathogenicity , Mycoses/veterinary , Mycoses/microbiology , Mycoses/epidemiology , Urodela/microbiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Salamandra/microbiology , Europe/epidemiology , Chytridiomycota
3.
Emerg Infect Dis ; 30(5): 1058-1060, 2024 May.
Article in English | MEDLINE | ID: mdl-38666607

ABSTRACT

To determine changes in Bordetella pertussis and B. parapertussis detection rates, we analyzed 1.43 million respiratory multiplex PCR test results from US facilities from 2019 through mid-2023. From mid-2022 through mid-2023, Bordetella spp. detection increased 8.5-fold; 95% of detections were B. parapertussis. While B. parapertussis rates increased, B. pertussis rates decreased.


Subject(s)
Bordetella Infections , Bordetella parapertussis , Communicable Diseases, Emerging , Bordetella parapertussis/genetics , Bordetella parapertussis/isolation & purification , United States/epidemiology , Humans , Bordetella Infections/epidemiology , Bordetella Infections/microbiology , Bordetella Infections/diagnosis , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Bordetella pertussis/genetics , Bordetella pertussis/isolation & purification , History, 21st Century , Child , Child, Preschool , Whooping Cough/epidemiology , Whooping Cough/microbiology , Whooping Cough/diagnosis , Adult , Adolescent , Infant , Multiplex Polymerase Chain Reaction , Young Adult
4.
mSphere ; 9(5): e0016224, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38606973

ABSTRACT

Acinetobacter junii is an opportunistic human and animal pathogen severely understudied. Here, we conducted the largest genomic epidemiological study on this pathogen to date. Our data show that this bacterium has spread globally. Also, we found that some human and non-human isolates are not well differentiated from one another, implying transmission between clinical and non-clinical, non-human settings. Remarkably, human but also some non-human isolates have clinically important antibiotic resistance genes, and some of these genes are located in plasmids. Given these results, we put forward that A. junii should be considered an emerging One Health problem. In this regard, future molecular epidemiological studies about this species will go beyond human isolates and will consider animal-, plant-, and water-associated environments. IMPORTANCE: Acinetobacter baumannii is the most well-known species from the genus Acinetobacter. However, other much less studied Acinetobacter species could be important opportunistic pathogens of animals, plants and humans. Here, we conducted the largest genomic epidemiological study of A. junii, which has been described as a source not only of human but also of animal infections. Our analyses show that this bacterium has spread globally and that, in some instances, human and non-human isolates are not well differentiated. Remarkably, some non-human isolates have important antibiotic resistance genes against important antibiotics used in human medicine. Based on our results, we propose that this pathogen must be considered an issue not only for humans but also for veterinary medicine.


Subject(s)
Acinetobacter Infections , Acinetobacter , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Humans , Acinetobacter/genetics , Acinetobacter/drug effects , Acinetobacter/classification , Acinetobacter/isolation & purification , Acinetobacter/pathogenicity , Animals , One Health , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Molecular Epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/epidemiology , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Genomics
6.
PLoS Negl Trop Dis ; 16(1): e0010100, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35041681

ABSTRACT

BACKGROUND: Leptospirosis is a zoonotic disease with a worldwide distribution, caused by pathogenic serovars in the genus Leptospira. Feral pigs are known carriers of Leptospira species and pig hunting using dogs is a common recreational activity in Queensland, Australia. METHODOLOGY AND PRINCIPAL FINDINGS: This study aimed to determine the seroprevalence of Leptospira spp. serovars in pig-hunting dogs above the Tropic of Capricorn in Queensland and by establishing the geographic distribution, serovars and incidence of human cases of leptospirosis in Queensland, identify potential overlap between human and canine exposure. We also explored the knowledge and risk-taking behaviours of pig-hunting dog owners towards zoonotic diseases. Ninety-eight pig-hunting dogs deemed healthy by physical examination and owned by 41 people from Queensland had serum submitted for Microscopic Agglutination Testing (MAT) to determine antibody titres against Leptospira serovars, while 40/41 dog owners completed a survey on their knowledge of diseases relating to pig hunting. Human leptospirosis cases (n = 330) notified to Queensland Health between 2015-2018 were analysed. Approximately one quarter (23/87; 26%) of unvaccinated pig-hunting dogs were seropositive to Leptospira spp. Although harder to interpret, 8/11 (73%) vaccinated dogs were seropositive to Leptospira spp. Pig hunters may be more likely to contract leptospirosis compared with the general Queensland population, based on responses from surveyed hunters. The highest concentration of human leptospirosis was in the wet tropics region of Far North Queensland. There was little overlap between the serovars dogs were exposed to and those infecting humans. The dominant serovar identified in unvaccinated dogs was Australis (13/23; 57%), with serovar Arborea (36/330; 10.9%) responsible for the highest number of human leptospirosis cases. Topaz was the second most common serovar in both humans and dogs and was previously unrecorded in Australian dogs. Most hunters surveyed used hand washing as a zoonotic disease risk reduction technique. CONCLUSIONS: Leptospirosis is an emerging disease of growing significance. The infection requires a 'one health' approach to understand its epidemiology. With shifting climatic patterns influencing human-animal-environment interactions, ongoing monitoring of diseases like leptospirosis is critical to helping prevent infection of individuals and disease outbreaks.


Subject(s)
Dog Diseases/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Vaccination/veterinary , Animals , Australia/epidemiology , Bacterial Vaccines/immunology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Dog Diseases/microbiology , Dogs , Female , Hand Disinfection , Humans , Hunting/statistics & numerical data , Leptospira/immunology , Male , Personal Protective Equipment/statistics & numerical data , Queensland/epidemiology , Swine/microbiology , Swine Diseases/microbiology
7.
Clin Chem ; 68(1): 83-90, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34969112

ABSTRACT

BACKGROUND: Infections caused by fungi can be important causes of morbidity and mortality in certain patient populations, including those who are highly immunocompromised or critically ill. Invasive mycoses can be caused by well-known species, as well as emerging pathogens, including those that are resistant to clinically available antifungals. CONTENT: This review highlights emerging fungal infections, including newly described species, such as Candida auris, and those that having undergone taxonomic classification and were previously known by other names, including Blastomyces and Emergomyces species, members of the Rasamsonia argillacea species complex, Sporothrix brasiliensis, and Trichophyton indotinae. Antifungal resistance also is highlighted in several of these emerging species, as well as in the well-known opportunistic pathogen Aspergillus fumigatus. Finally, the increased recognition and importance of fungal co-infections with respiratory pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is discussed. SUMMARY: Both clinicians and clinical microbiology laboratories should remain vigilant regarding emerging fungal infections. These may be difficult both to diagnose and treat due to the lack of experience of clinicians and laboratory personnel with these organisms and the infections they may cause. Many of these fungal infections have been associated with poor clinical outcomes, either due to inappropriate therapy or the development of antifungal resistance.


Subject(s)
Antifungal Agents , Communicable Diseases, Emerging/epidemiology , Drug Resistance, Fungal , Mycoses , Antifungal Agents/pharmacology , COVID-19 , Communicable Diseases, Emerging/microbiology , Fungi/drug effects , Fungi/pathogenicity , Humans , Mycoses/drug therapy , Mycoses/epidemiology
8.
Emerg Microbes Infect ; 10(1): 2300-2302, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34792439

ABSTRACT

Diphtheria is a re-emerging disease in resource-rich settings. We here report three cases of cutaneous diphtheria diagnosed and managed in our infectious disease department and discuss the determinants of its re-emergence. Migration, travel and vaccine scepticism are key factors not only for diphtheria re-emergence, but for the future of most preventable diseases.


Subject(s)
Diphtheria/diagnosis , Adolescent , Adult , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/microbiology , Corynebacterium/classification , Corynebacterium/genetics , Corynebacterium/isolation & purification , Diphtheria/microbiology , Female , Humans , Male , Middle Aged , Transients and Migrants/statistics & numerical data
9.
PLoS Genet ; 17(11): e1009864, 2021 11.
Article in English | MEDLINE | ID: mdl-34748531

ABSTRACT

Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.


Subject(s)
Adaptation, Biological/genetics , Communicable Diseases, Emerging/microbiology , Mutation Rate , Streptococcal Infections/microbiology , Streptococcus suis/genetics , Zoonoses/microbiology , Animals , Ecology , Streptococcus suis/isolation & purification , Streptococcus suis/pathogenicity , Virulence/genetics
10.
J Prev Med Hyg ; 62(2): E382-E385, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34604577

ABSTRACT

INTRODUCTION: In recent times, improved diagnostic techniques have revealed an alarming number of cases of mucormycosis in immunocompetent individuals. The Saksenaea species, is a rare cause of mucormycosis, and is often associated with skin and subcutaneous infection due to trauma in both immunocompromised and immunocompetent subjects. The purpose of this study was therefore, through a review of the literature, to investigate the problem of infections caused by Saksenaea Erythrospora, evaluating the clinical manifestations of the infection, the triggering factors, the therapies and patients' outcomes, implementing and updating what already reported in literature. METHODS: A research of peer-reviewed literature in the electronic databases MEDLINE (PubMed) and Scopus was conducted in the period June 2020-January 2021 using the key word "Saksenaea erythrospora". Studies in Italian, English, French, Spanish focused on cases of Saksenaea erythrospora were included, without time restrictions. Studies that provided ambiguous or insufficient data were excluded. RESULTS: Bibliographic research yielded 23 publications; 7 were included in the review. The studies were published between 2011 and 2015 and involved a total of 11 patients of average age 37.9 years (SD 17.23) hospitalized in several hospitals in: USA, India, Argentina, Colombia, Thailand. 6 patients were women, 5 men. All patients had an almost normal immune status. The causes of the infection were: injections, traumas, surgery. Two patients, despite surgical and medical therapy, died. CONCLUSIONS: Our review partially updated what already published, because only one new study was found. Serious necrotizing infections from Saksenaea erythrospora have been observed in recent years and a early identification and timely management are essential to reduce morbidity and mortality. A greater awareness and education about the risks deriving from carrying out surgical procedures abroad, especially in precarious hygiene situations, could be additional effective weapons to reduce the incidence of these infections.


Subject(s)
Breast Neoplasms/microbiology , Communicable Diseases, Emerging/microbiology , Mucorales , Mucormycosis/diagnosis , Adult , Breast Neoplasms/complications , Breast Neoplasms/pathology , Female , Humans , Immunocompetence , Male , Mastectomy , Mucormycosis/immunology
11.
Ticks Tick Borne Dis ; 12(6): 101800, 2021 11.
Article in English | MEDLINE | ID: mdl-34352531

ABSTRACT

Lyme borreliosis is a zoonotic tick-borne infection representing the most frequent vector-borne disease in the northern hemisphere. The Mediterranean rim is generally described as unsuitable for the European vector, Ixodes ricinus. We conducted an epidemiological study to assess whether I. ricinus was present and study its infection status for tick-borne bacteria. Ticks originating from southeastern France were obtained from flagging sampling and removed from animals and tick-bitten patients. Species level identification used morphological keys and MALDI-TOF MS. Quantitative PCR and sequencing assays were used to detect and identify tick-associated bacteria (Borrelia, Rickettsia, Anaplasmataceae, Bartonella, Coxiella burnetii) in each specimen. A total of 1232 ticks were collected in several localities. Among these, 863 were identified as I. ricinus (70%). Bacterial screening allowed identification of Lyme group Borrelia among I. ricinus ticks originating from various regional areas. Other emerging tick-borne pathogens like Borrelia miyamotoi and Rickettsia species were also detected. The Alpes-Maritimes region, part of the French Riviera, harbours I. ricinus ticks infected with Lyme group Borrelia and several other tick-borne bacterial agents. Clinicians and outdoor activity participants should be aware of the local Lyme borreliosis transmission risk.


Subject(s)
Animal Distribution , Communicable Diseases, Emerging/epidemiology , Ixodes , Tick-Borne Diseases/epidemiology , Animals , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/parasitology , Communicable Diseases, Emerging/virology , France/epidemiology , Ixodes/microbiology , Ixodes/parasitology , Ixodes/physiology , Ixodes/virology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/virology
12.
J Med Microbiol ; 70(8)2021 Aug.
Article in English | MEDLINE | ID: mdl-34431761

ABSTRACT

Acinetobacter variabilis (formerly genospecies 15 sensu Tjernberg and Ursing) has been isolated from humans and animals and was proposed to be a novel species in 2015. A multidrug-resistant A. variabilis isolate, RYU24, was obtained in 2012 from an inpatient in Okinawa, Japan, with no record of overseas travel. The isolate was resistant to carbapenems, aminoglycosides and ciprofloxacin, with minimum inhibitory concentrations (MICs) of 32 µg ml-1 for imipenem and meropenem; > 1024 µg ml-1 for amikacin, arbekacin, gentamicin and tobramycin; and 8 µg ml-1 for ciprofloxacin. The isolate was found to harbour a 68-kbp plasmid carrying bla NDM-1, which encodes New Delhi metallo-ß-lactamase-1 (NDM-1); bla OXA-420, which encodes an OXA-58-like carbapenemase and; armA, which encodes ArmA 16S rRNA methylase conferring pan-aminoglycoside resistance. To our knowledge, this is the first report of a plasmid harbouring the three major drug-resistance genes, bla NDM-1, bla OXA-420 and armA.


Subject(s)
Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter/genetics , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Drug Resistance, Multiple, Bacterial , beta-Lactamases/genetics , Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Humans , Japan/epidemiology , Methyltransferases/genetics , Microbial Sensitivity Tests , Public Health Surveillance , RNA, Ribosomal, 16S/genetics
13.
Nat Commun ; 12(1): 4396, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285203

ABSTRACT

Rapid development of antisense therapies can enable on-demand responses to new viral pathogens and make personalized medicine for genetic diseases practical. Antisense phosphorodiamidate morpholino oligomers (PMOs) are promising candidates to fill such a role, but their challenging synthesis limits their widespread application. To rapidly prototype potential PMO drug candidates, we report a fully automated flow-based oligonucleotide synthesizer. Our optimized synthesis platform reduces coupling times by up to 22-fold compared to previously reported methods. We demonstrate the power of our automated technology with the synthesis of milligram quantities of three candidate therapeutic PMO sequences for an unserved class of Duchenne muscular dystrophy (DMD). To further test our platform, we synthesize a PMO that targets the genomic mRNA of SARS-CoV-2 and demonstrate its antiviral effects. This platform could find broad application not only in designing new SARS-CoV-2 and DMD antisense therapeutics, but also for rapid development of PMO candidates to treat new and emerging diseases.


Subject(s)
Chemistry Techniques, Synthetic/instrumentation , Chemistry, Pharmaceutical/instrumentation , High-Throughput Screening Assays/instrumentation , Morpholinos/chemical synthesis , Oligonucleotides, Antisense/chemical synthesis , Animals , COVID-19/virology , Chlorocebus aethiops , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/microbiology , Disease Models, Animal , High-Throughput Screening Assays/methods , Humans , Morpholinos/pharmacology , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Precision Medicine/methods , RNA, Messenger/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/genetics , Time Factors , Vero Cells , COVID-19 Drug Treatment
14.
Anaerobe ; 71: 102418, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34332070

ABSTRACT

Clostridium innocuum is an anaerobic, gram-positive, spore-forming bacterium identified by Smith and King in 1962 after being isolated from a patient with an appendiceal abscess. Its name, C. innocuum, reflected its clinically "innocuous" nature based on observed lack of virulence in animal models of infection. Since that time, C. innocuum has been identified as both part of the normal intestinal flora and the cause of a rare, intrinsically vancomycin-resistant opportunistic infection in immunocompromised patients. More recently, reports from Taiwan suggest that C. innocuum, in addition to being a known extraintestinal pathogen, may also be a diarrheal pathogen that causes a C. difficile infection-like antibiotic-associated diarrheal illness. However, unanswered questions about the clinical relevance of C. innocuum remain. Here we review the microbiological and clinical characteristics of this emerging pathogen.


Subject(s)
Clostridium Infections/microbiology , Communicable Diseases, Emerging/microbiology , Firmicutes/physiology , Animals , Diarrhea/microbiology , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Humans
15.
BMC Infect Dis ; 21(1): 579, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34130635

ABSTRACT

BACKGROUND: Candidatus Neoehrlichia mikurensis (CNM) is an emerging tick-born pathogen and usually causes symptomatic infection only in immunocompromised patients. Apart from one described case found in the literature where cultivation was successful, all cases so far were diagnosed by using broad-range 16S rDNA PCR. CASE PRESENTATION: Our patient presented with a prolonged febrile state of unknown origin. Clinical presentation, extensive medical workup and classic microbiologic testing were non-conclusive. Several infectious agents and other causes for the febrile state were excluded. In the end, a broad-range 16S rDNA PCR was to be performed to confirm the diagnosis of CNM infection. Treatment was successful with doxycycline. CONCLUSIONS: Due to the obscurity of the pathogen, diagnostic workup in CNM is prolonged and challenging. More awareness is need about this emerging infectious disease in countries with high prevalence of tick-borne diseases as standard microbiological methods are not successful in confirming the diagnosis.


Subject(s)
Anaplasmataceae Infections/diagnosis , Anaplasmataceae/isolation & purification , Aged , Anaplasmataceae/genetics , Anaplasmataceae Infections/drug therapy , Anaplasmataceae Infections/microbiology , Animals , Anti-Bacterial Agents/therapeutic use , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Doxycycline/therapeutic use , Female , Humans , Ixodes/microbiology , Polymerase Chain Reaction , Prevalence , RNA, Ribosomal, 16S/isolation & purification , Slovenia , Tick-Borne Diseases/drug therapy , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Ticks/microbiology , Treatment Outcome
16.
PLoS Pathog ; 17(6): e1009583, 2021 06.
Article in English | MEDLINE | ID: mdl-34081744

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives. Proactive detection and mitigation for emerging infectious diseases (EIDs) requires expanded biodiversity infrastructure and training (particularly in biodiverse and lower income countries) and new communication pipelines that connect biorepositories and biomedical communities. To this end, we highlight a novel adaptation of Project ECHO's virtual community of practice model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual network aimed at fostering communication, coordination, and collaborative problem-solving among pathogen researchers, public health officials, and biorepositories in the Americas. MEPA now acts as a model of effective international, interdisciplinary collaboration that can and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife specimens and associated data with public biorepositories, regardless of original collection purpose, and urge biorepositories to embrace new specimen sources, types, and uses to maximize strategic growth and utility for EID research. Taxonomically, geographically, and temporally deep biorepository archives serve as the foundation of a proactive and increasingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation.


Subject(s)
Biological Specimen Banks/organization & administration , Communicable Disease Control , Communicable Diseases, Emerging/prevention & control , Community Networks/organization & administration , Public Health Surveillance/methods , Animals , Animals, Wild , Biodiversity , Biological Specimen Banks/standards , Biological Specimen Banks/supply & distribution , Biological Specimen Banks/trends , COVID-19/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/standards , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/virology , Community Networks/standards , Community Networks/supply & distribution , Community Networks/trends , Disaster Planning/methods , Disaster Planning/organization & administration , Disaster Planning/standards , Geography , Global Health/standards , Global Health/trends , Humans , Medical Countermeasures , Pandemics/prevention & control , Public Health , Risk Assessment , SARS-CoV-2/physiology , Zoonoses/epidemiology , Zoonoses/prevention & control
17.
Zoonoses Public Health ; 68(6): 622-629, 2021 09.
Article in English | MEDLINE | ID: mdl-34002535

ABSTRACT

Salmonella enterica serotype Kentucky (S. Kentucky) is an important Salmonella serotype with multiple sequence types (ST) with a worldwide incidence. We identified 8 STs from 180 strains of S. Kentucky, and ST314 emerged as the most commonly encountered ST. Drug susceptibility testing revealed that ST314 had multiple resistance properties, and 75.5% of the strains were resistant to three or more classes of antimicrobials. The rate of resistance to chloramphenicol, florfenicol, sulfafurazole and tetracycline were greater than 60%. The rates of ST314 resistance to quinolones were as follows: ciprofloxacin, 32.1%; nalidixic acid, 16%; and ofloxacin, 7.5%. Investigating the mechanism of quinolone resistance of ST314 revealed that mutations in the quinolone resistance-determining regions were rare, and resistance mainly occurred due to the resistance genes carried by plasmids. Only 1.9% (2/106) of ST314 strains had mutations in the quinolone resistance-determining regions (QRDR). The drug resistance genes of ST314 were primarily of plasmid-mediated quinolone resistance (PMQR). The detection rate of Salmonella genomic island 1 (SGI1) in ST314 was 12.3%. XbaI-pulsed-field gel electrophoresis revealed that S. enterica Kentucky ST314 was capable of cross-regional and cross-host transmission in China. We found ST314 to be the dominant S. Kentucky ST in China, and it carried multidrug resistance. This is the first report about the emergence of quinolone-resistant S. enterica Kentucky ST314 in China, which is different from previous reports, and the findings of the present study suggest that the mechanism of quinolone resistance in these strains are plasmid-mediated. Notably, plasmids carrying resistance genes may promote the rapid spread of ciprofloxacin resistance.


Subject(s)
Communicable Diseases, Emerging/veterinary , Environmental Microbiology , Food Microbiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/drug effects , Animals , Anti-Bacterial Agents/pharmacology , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Drug Resistance, Multiple, Bacterial , Humans , Multilocus Sequence Typing , Salmonella Infections, Animal/epidemiology
18.
Zoonoses Public Health ; 68(6): 563-577, 2021 09.
Article in English | MEDLINE | ID: mdl-34018336

ABSTRACT

Zoonotic spillover and subsequent disease emergence cause significant, long-lasting impacts on our social, economic, environmental and political systems. Identifying and averting spillover transmission is crucial for preventing outbreaks and mitigating infectious disease burdens. Investigating the processes that lead to spillover fundamentally involves interactions between animals, humans, pathogens and the environments they inhabit. Accordingly, it is recognized that transdisciplinary approaches provide a more holistic understanding of spillover phenomena. To characterize the discourse about spillover within and between disciplines, we conducted a review of review papers about spillover from multiple disciplines. We systematically searched and screened literature from several databases to identify a corpus of review papers from ten academic disciplines. We performed qualitative content analysis on text where authors described either a spillover pathway, or a conceptual gap in spillover theory. Cluster analysis of pathway data identified nine major spillover processes discussed in the review literature. We summarized the main features of each process, how different disciplines contributed to them, and identified specialist and generalist disciplines based on the breadth of processes they studied. Network analyses showed strong similarities between concepts reviewed by 'One Health' disciplines (e.g. Veterinary Science & Animal Health, Public Health & Medicine, Ecology & Evolution, Environmental Science), which had broad conceptual scope and were well-connected to other disciplines. By contrast, awas focused on processes that are relatively overlooked by other disciplines, especially those involving food behaviour and livestock husbandry practices. Virology and Cellular & Molecular Biology were narrower in scope, primarily focusing on concepts related to adaption and evolution of zoonotic viruses. Finally, we identified priority areas for future research into zoonotic spillover by studying the gap data.


Subject(s)
Communicable Diseases, Emerging/veterinary , Public Health , Zoonoses/transmission , Animals , Animals, Wild , Cluster Analysis , Communicable Diseases, Emerging/microbiology , Humans , Livestock
19.
Elife ; 102021 04 27.
Article in English | MEDLINE | ID: mdl-33904402

ABSTRACT

Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid, and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to (a) speciate host mosquito, (b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, (c) associate animal pathogens with specific blood meal sources, and (d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the approaches described here can provide actionable information for public health surveillance and intervention decisions.


Subject(s)
Communicable Diseases, Emerging/transmission , Culicidae/genetics , Disease Reservoirs , Gene Expression Profiling , Insect Vectors/genetics , Aedes/genetics , Animals , California , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/virology , Culex/genetics , Culicidae/microbiology , Culicidae/virology , Disease Reservoirs/microbiology , Disease Reservoirs/virology , Gene Expression Profiling/methods , Insect Vectors/microbiology , Insect Vectors/virology , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...