Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.145
Filter
1.
Front Immunol ; 15: 1351656, 2024.
Article in English | MEDLINE | ID: mdl-38711524

ABSTRACT

Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.


Subject(s)
Carrier Proteins , Complement C1q , Immune Checkpoint Inhibitors , Membrane Glycoproteins , Mitochondrial Proteins , Neoplasms , Receptors, Complement , Humans , Complement C1q/metabolism , Complement C1q/immunology , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Complement/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Tumor Microenvironment/immunology
2.
Front Immunol ; 15: 1404752, 2024.
Article in English | MEDLINE | ID: mdl-38690267

ABSTRACT

Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.


Subject(s)
Calreticulin , Complement C1q , Immune Evasion , Trichinella spiralis , Trichinella spiralis/immunology , Complement C1q/immunology , Complement C1q/metabolism , Complement C1q/chemistry , Animals , Calreticulin/immunology , Calreticulin/chemistry , Calreticulin/metabolism , Crystallography, X-Ray , Protein Binding , Molecular Docking Simulation , Helminth Proteins/immunology , Helminth Proteins/chemistry , Complement Activation/immunology , Immunoglobulin G/immunology , Humans , Antigens, Helminth/immunology , Antigens, Helminth/chemistry , Trichinellosis/immunology , Trichinellosis/parasitology , Complement Pathway, Classical/immunology , Protein Conformation
3.
Lipids Health Dis ; 23(1): 131, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704561

ABSTRACT

BACKGROUND: In the past few years, circulating complement C1q involvement in atherosclerosis has garnered growing research interest in addition to the emerging recognition of the novel lipid marker named atherogenic index of plasma (AIP). Nevertheless, among patients experiencing low-density lipoprotein cholesterol (LDL-C) levels less than 1.8mmol/L, the interplay between C1q combined with the AIP for coronary artery disease (CAD) is ambiguous. METHODS: Patients were stratified into a non-CAD and CAD group according to their coronary angiography. The association between C1q in conjunction with the AIP and CAD was explored using restricted cubic spline analyses and logistic regression models. To assess how it predicted, a receiver operating characteristic analysis was undertaken. RESULTS: A total of 7270 patients comprised 1476 non-CAD patients and 5794 patients diagnosed with CAD were analyzed. A comparison of the two groups showed that the C1q levels were notably higher compared to the CAD group, while AIP exhibited an inverse trend. Across quartiles of C1q, the AIP demonstrated a decline with increasing C1q levels, and significant differences were observed between the groups. A correlation analysis underscored a notable negative correlation between the two variables. Univariate and multivariate logistic regression analyses revealed significant associations between CAD and the C1q quartile groups/AIP. Furthermore, compared with the Q4 group, a decrease in the C1q levels corresponded to an escalation in CAD risk, with the odds ratio rising from 1.661 to 2.314. CONCLUSIONS: In conclusion, there appears to be a notable positive correlation between the combination of C1q with the AIP and CAD.


Subject(s)
Cholesterol, LDL , Complement C1q , Coronary Artery Disease , Humans , Complement C1q/metabolism , Male , Coronary Artery Disease/blood , Female , Middle Aged , Aged , Cholesterol, LDL/blood , Coronary Angiography , Biomarkers/blood , ROC Curve , Logistic Models , Atherosclerosis/blood , Risk Factors
4.
Clin Appl Thromb Hemost ; 30: 10760296241257517, 2024.
Article in English | MEDLINE | ID: mdl-38778544

ABSTRACT

Early identification of biomarkers that can predict the onset of sepsis-induced coagulopathy (SIC) in septic patients is clinically important. This study endeavors to examine the diagnostic and prognostic utility of serum C1q in the context of SIC. Clinical data from 279 patients diagnosed with sepsis at the Departments of Intensive Care, Respiratory Intensive Care, and Infectious Diseases at the Renmin Hospital of Wuhan University were gathered spanning from January 2022 to January 2024. These patients were categorized into two groups: the SIC group comprising 108 cases and the non-SIC group consisting of 171 cases, based on the presence of SIC. Within the SIC group, patients were further subdivided into a survival group (43 cases) and non-survival group (65 cases). The concentration of serum C1q in the SIC group was significantly lower than that in the non-SIC group. Furthermore, A significant correlation was observed between serum C1q levels and both SIC score and coagulation indices. C1q demonstrated superior diagnostic and prognostic performance for SIC patients, as indicated by a higher area under the curve (AUC). Notably, when combined with CRP, PCT, and SOFA score, C1q displayed the most robust diagnostic efficacy for SIC. Moreover, the combination of C1q with the SOFA score heightened predictive value concerning the 28-day mortality of SIC patients.


Subject(s)
Blood Coagulation Disorders , Complement C1q , Sepsis , Humans , Sepsis/blood , Sepsis/complications , Sepsis/diagnosis , Sepsis/mortality , Male , Female , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/blood , Middle Aged , Complement C1q/metabolism , Prognosis , Aged , Biomarkers/blood
5.
Biochem Biophys Res Commun ; 720: 150076, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38772224

ABSTRACT

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.


Subject(s)
Basolateral Nuclear Complex , Disks Large Homolog 4 Protein , Memory , Morphine , Substance Withdrawal Syndrome , Animals , Morphine/pharmacology , Substance Withdrawal Syndrome/metabolism , Male , Mice , Memory/drug effects , Disks Large Homolog 4 Protein/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/drug effects , Complement C1q/metabolism , Mice, Inbred C57BL , Naloxone/pharmacology
6.
Int J Biol Macromol ; 268(Pt 1): 131863, 2024 May.
Article in English | MEDLINE | ID: mdl-38670188

ABSTRACT

The complement system is pivotal in innate immune defense, with Complement 1qb (C1qb) playing a key role in recognizing immune complexes and initiating the classical pathway. In this research, we cloned the full-length cDNA of silver pomfret (Pampus argenteus) c1qb and demonstrated its role in mediating defense responses against Nocardia seriolae (N. seriolae) infection, which notably causes significant economic losses in the aquaculture industry. Our investigation revealed that N. seriolae infection led to tissue damage in fish bodies, as observed in tissue sections. Subsequent analysis of differential genes (DEGs) in the transcriptome highlighted genes linked to apoptosis and inflammation. Through experiments involving overexpression and interference of c1qb in vitro, we confirmed that c1qb could suppress N. seriolae-induced apoptosis and inflammation. Moreover, overexpression of c1qb hindered N. seriolae invasion, and the purified and replicated C1qb protein displayed antimicrobial properties. Additionally, our study unveiled that overexpression of c1qb might stimulate the expression of membrane attack complexes (MAC), potentially enhancing opsonization and antibacterial effects. In conclusion, our findings offer valuable insights into the immune antibacterial mechanisms of c1qb and contribute to the development of strategies for controlling N. seriolae.


Subject(s)
Apoptosis , Complement C1q , Complement Membrane Attack Complex , Inflammation , Nocardia , Complement C1q/metabolism , Complement C1q/genetics , Apoptosis/genetics , Animals , Complement Membrane Attack Complex/metabolism , Inflammation/genetics , Inflammation/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Nocardia Infections/immunology , Nocardia Infections/microbiology , Nocardia Infections/metabolism , Nocardia Infections/genetics
7.
Brain Behav Immun ; 119: 454-464, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642614

ABSTRACT

BACKGROUND: Both functional brain imaging studies and autopsy reports have indicated the presence of synaptic loss in the brains of depressed patients. The activated microglia may dysfunctionally engulf neuronal synapses, leading to synaptic loss and behavioral impairments in depression. However, the mechanisms of microglial-synaptic interaction under depressive conditions remain unclear. METHODS: We utilized lipopolysaccharide (LPS) to induce a mouse model of depression, examining the effects of LPS on behaviors, synapses, microglia, microglial phagocytosis of synapses, and the C1q/C3-CR3 complement signaling pathway. Additionally, a C1q neutralizing antibody was employed to inhibit the C1q/C3-CR3 signaling pathway and assess its impact on microglial phagocytosis of synapses and behaviors in the mice. RESULTS: LPS administration resulted in depressive and anxiety-like behaviors, synaptic loss, and abnormal microglial phagocytosis of synapses in the hippocampal dentate gyrus (DG) of mice. We found that the C1q/C3-CR3 signaling pathway plays a crucial role in this abnormal microglial activity. Treatment with the C1q neutralizing antibody moderated the C1q/C3-CR3 pathway, leading to a decrease in abnormal microglial phagocytosis, reduced synaptic loss, and improved behavioral impairments in the mice. CONCLUSIONS: The study suggests that the C1q/C3-CR3 complement signaling pathway, which mediates abnormal microglial phagocytosis of synapses, presents a novel potential therapeutic target for depression treatment.


Subject(s)
Complement C1q , Complement C3 , Depression , Disease Models, Animal , Microglia , Phagocytosis , Signal Transduction , Synapses , Animals , Complement C1q/metabolism , Microglia/metabolism , Synapses/metabolism , Mice , Signal Transduction/physiology , Depression/metabolism , Phagocytosis/physiology , Complement C3/metabolism , Male , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL
8.
Sci Rep ; 14(1): 9477, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38658599

ABSTRACT

To determine the association between complement C1q and vulnerable plaque morphology among coronary artery disease (CAD) patients. We conducted a retrospective observational study of 221 CAD patients admitted to The Second Affiliated Hospital of Xi'an Jiaotong University. Intravascular optical coherence tomography was utilized to describe the culprit plaques' morphology. Using logistic regression analysis to explore the correlation between C1q and vulnerable plaques, and receiver operator characteristic (ROC) analysis assess the predictive accuracy. As reported, the complement C1q level was lower in ACS patients than CCS patients (18.25 ± 3.88 vs. 19.18 ± 4.25, P = 0.045). The low complement-C1q-level group was more prone to develop vulnerable plaques. In lipid-rich plaques, the complement C1q level was positively correlated with the thickness of fibrous cap (r = 0.480, P = 0.041). Univariate and multivariate logistic regression analyses suggested that complement C1q could be an independent contributor to plaques' vulnerability. For plaque rupture, erosion, thrombus, and cholesterol crystals, the areas under the ROC curve of complement C1q level were 0.873, 0.816, 0.785, and 0.837, respectively (P < 0.05 for all). In CAD patients, the complement C1q could be a valuable indicator of plaque vulnerability.


Subject(s)
Complement C1q , Coronary Artery Disease , Plaque, Atherosclerotic , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Male , Female , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Middle Aged , Complement C1q/metabolism , Complement C1q/analysis , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/pathology , Aged , Retrospective Studies , ROC Curve
9.
Int J Biol Macromol ; 262(Pt 2): 129930, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325676

ABSTRACT

In the present study we report a novel interaction of human C1q, a primary activator of the Complement system, with human Galectin-3 (Gal-3). We investigated the potential recognition between C1q and Gal-3 on a solid hydrophobic surface by ELISA, by fluorescence spectroscopy, molecular docking and molecular dynamics (MD). The data showed that C1q and Gal-3 had a pronounced affinity for protein-protein interaction and supramolecular binding, locating the binding sites within the globular domains of C1q (gC1q) and on the backside of the carbohydrate recognition domain (CRD) of Gal-3. Fluorescence spectroscopy gave quantitative assessment of the recognition with KD value of 0.04 µM. MD analysis showed that when the active AAs of the two proteins interacted, electrostatic attraction, aided by a large number of hydrogen bonds, was dominant for the stabilization of the complex. When the contact of C1q and Gal-3 was not limited to active residues, the complex between them was stabilized mainly by Van der Waals interactions and smaller in number but stronger hydrogen bonds. This is the first report analyzing the interaction of Gal-3 with C1q, which could open the way to new applications of this protein-protein complex.


Subject(s)
Complement C1q , Galectin 3 , Humans , Galectin 3/metabolism , Complement C1q/chemistry , Complement C1q/metabolism , Molecular Docking Simulation , Ligands , Binding Sites , Protein Binding
10.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38348774

ABSTRACT

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Subject(s)
Adiponectin , Endothelial Progenitor Cells , Glycoproteins , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Endothelial Progenitor Cells/metabolism , Complement C1q/metabolism , Complement C1q/pharmacology , AMP-Activated Protein Kinases/metabolism , Cytokines/metabolism , Nitric Oxide Synthase Type III/metabolism , Mice, Nude , Receptors, Adiponectin/metabolism , Nitrites , Cell Movement , Glucose/pharmacology , Glucose/metabolism , Cadherins/metabolism , Tumor Necrosis Factors/metabolism , Tumor Necrosis Factors/pharmacology , Nitric Oxide/metabolism , Cells, Cultured
11.
Int J Biol Markers ; 39(2): 130-140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38303516

ABSTRACT

BACKGROUND: This study aimed to establish a nomogram to distinguish advanced- and early-stage lung cancer based on coagulation-related biomarkers and liver-related biomarkers. METHODS: A total of 306 patients with lung cancer and 172 patients with benign pulmonary disease were enrolled. Subgroup analyses based on histologic type, clinical stage, and neoplasm metastasis status were carried out and multivariable logistic regression analysis was applied. Furthermore, a nomogram model was developed and validated with bootstrap resampling. RESULTS: The concentrations of complement C1q, fibrinogen, and D-dimers, fibronectin, inorganic phosphate, and prealbumin were significantly changed in lung cancer patients compared to benign pulmonary disease patients. Multiple regression analysis based on subgroup analysis of clinical stage showed that compared with early-stage lung cancer, female (P < 0.001), asymptomatic admission (P = 0.001), and total bile acids (P = 0.011) were negatively related to advanced lung cancer, while C1q (P = 0.038), fibrinogen (P < 0.001), and D-dimers (P = 0.001) were positively related. A nomogram model based on gender, symptom, and the levels of total bile acids, C1q, fibrinogen, and D-dimers was constructed for distinguishing advanced lung cancer and early-stage lung cancer, with an area under the receiver operating characteristic curve of 0.919. The calibration curve for this nomogram revealed good predictive accuracy (P-Hosmer-Lemeshow = 0.697) between the predicted probability and the actual probability. CONCLUSIONS: We developed a nomogram based on gender, symptom, and the levels of fibrinogen, D-dimers, total bile acids, and C1q that can individually distinguish early- and advanced-stage lung cancer.


Subject(s)
Bile Acids and Salts , Biomarkers, Tumor , Complement C1q , Lung Neoplasms , Nomograms , Humans , Lung Neoplasms/blood , Lung Neoplasms/pathology , Female , Male , Middle Aged , Complement C1q/metabolism , Bile Acids and Salts/blood , Biomarkers, Tumor/blood , Aged , Neoplasm Staging , Fibrinogen/metabolism , Fibrinogen/analysis , Blood Coagulation
12.
Br J Pharmacol ; 181(12): 1812-1828, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369641

ABSTRACT

BACKGROUND AND PURPOSE: To deepen our knowledge of the role of complement in synaptic impairment in experimental autoimmune encephalomyelitis (EAE) mice, we investigated the distribution of C1q and C3 proteins and the role of complement as a promoter of glutamate release in purified nerve endings (synaptosomes) and astrocytic processes (gliosomes) isolated from the cortex of EAE mice at the acute stage of the disease (21 ± 1 day post-immunization). EXPERIMENTAL APPROACH: EAE cortical synaptosomes and gliosomes were analysed for glutamate release efficiency (measured as release of preloaded [3H]D-aspartate ([3H]D-ASP)), C1q and C3 protein density, and for viability and ongoing apoptosis. KEY RESULTS: In healthy mice, complement releases [3H]D-ASP from gliosomes more efficiently than from synaptosomes. The releasing activity occurs in a dilution-dependent manner and involves the reversal of the excitatory amino acid transporters (EAATs). In EAE mice, the complement-induced releasing activity is significantly reduced in cortical synaptosomes but amplified in cortical gliosomes. These adaptations are paralleled by decreased density of the EAAT2 protein in synaptosomes and increased EAAT1 staining in gliosomes. Concomitantly, PSD95, GFAP, and CD11b, but not SNAP25, proteins are overexpressed in the cortex of the EAE mice. Similarly, C1q and C3 protein immunostaining is increased in EAE cortical synaptosomes and gliosomes, although signs of ongoing apoptosis or altered viability are not detectable. CONCLUSION AND IMPLICATIONS: Our results unveil a new noncanonical role of complement in the CNS of EAE mice relevant to disease progression and central synaptopathy that suggests new therapeutic targets for the management of MS.


Subject(s)
Complement C1q , Complement C3 , Encephalomyelitis, Autoimmune, Experimental , Glutamic Acid , Mice, Inbred C57BL , Synaptosomes , Animals , Glutamic Acid/metabolism , Synaptosomes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Complement C1q/metabolism , Complement C3/metabolism , Mice , Synapses/metabolism , Disease Models, Animal , Excitatory Amino Acid Transporter 2/metabolism , Apoptosis , Astrocytes/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology
13.
Mol Cell Endocrinol ; 584: 112161, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280475

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is commonly regarded as a key driver accounted for the leading causes of morbidity and mortality among cardiovascular and cerebrovascular diseases. A growing body of evidence indicates that autophagy in macrophages involved in AS might be a potential therapeutic target. C1q/TNF-related protein 9 (CTRP9) has been proven to delay the progression of cardiovascular diseases. However, the relations between CTRP9 and Sirt1, as well as their effects on macrophages autophagy have not been fully explored. METHODS: Macrophages were differentiated from mononuclear cells collected from peripheral blood samples of healthy donors. The in vitro AS models were constructed by ox-LDL treatment. Cell viability was determined by CCK-8 assay. Immunofluorescence assay of LC3 was implemented for evaluating autophagy activity. Oil Red O staining was performed for lipid accumulation detection. ELISA, cholesterol concentration assay and cholesterol efflux analysis were conducted using commercial kits. Cycloheximide assay was implemented for revealing protein stability. RT-qPCR was used for mRNA expression detection, and western blotting was performed for protein level monitoring. RESULTS: CTRP9 attenuated impaired cell viability, autophagy inhibition and increased lipid accumulation induced by ox-LDL. Moreover, CTRP9 maintained Sirt1 protein level through enhancing its stability through de-ubiquitination, which was mediated by upregulated USP22 level. CRTP9 exerted its protective role in promoting autophagy and reducing lipid accumulation through the USP22/Sirt1 axis. CONCLUSION: Collectively, CTRP9 alleviates lipid accumulation and facilitated the macrophages autophagy by upregulating USP22 level and maintaining Sirt1 protein expression, thereby exerting a protective role in AS progression in vitro.


Subject(s)
Atherosclerosis , Sirtuin 1 , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , Complement C1q/genetics , Complement C1q/metabolism , Complement C1q/pharmacology , Macrophages/metabolism , Lipoproteins, LDL/pharmacology , Cholesterol/metabolism , Atherosclerosis/metabolism , Autophagy , Ubiquitination
14.
Article in English | MEDLINE | ID: mdl-38191049

ABSTRACT

Emerging findings point to a role for C1q/TNF-related protein 4 (CTRP4) in feeding in mammals. However, it remains unknown whether CTRP4 regulates feeding in fish. This study aimed to determine the feeding regulation function of CTRP4 in Siberian sturgeon (Acipenser baerii). In this study, the Siberian sturgeon ctrp4 (Abctrp4) gene was cloned, and Abctrp4 mRNA was shown to be highly expressed in the hypothalamus. In the hypothalamus, Abctrp4 mRNA decreased during fasting and reversed after refeeding. Subsequently, we obtained the AbCTRP4 recombinant protein by prokaryotic expression and optimized the expression and purification conditions. Siberian sturgeon (81.28 ± 14.75 g) were injected intraperitoneally using 30, 100, and 300 ng/g Body weight (BW) AbCTRP4 to investigate its effect on feeding. The results showed that 30, 100, and 300 ng/g BW of the AbCTRP4 significantly reduced the cumulative food intake of Siberian sturgeon at 1, 3, and 6 h. Finally, to investigate the potential mechanism of CTRP4 feeding inhibition, 300 ng/g BW AbCTRP4 was injected intraperitoneally. The findings demonstrated that AbCTRP4 treatment for 1 h significantly promoted the mRNA levels of anorexigenic peptides (pomc, cart, and leptin) while suppressing the mRNA abundances of orexigenic peptides (npy and agrp).In addition, the jak2/stat3 pathway in the hypothalamus was significantly activated after 1 h of AbCTRP4 treatment. In conclusion., this study confirms the anorexigenic effect of CTRP4 in Siberian sturgeon.


Subject(s)
Appetite , Complement C1q , Animals , Appetite/genetics , Complement C1q/metabolism , Complement C1q/pharmacology , Eating/physiology , Fishes/physiology , Peptides/genetics , Peptides/pharmacology , Peptides/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/metabolism
15.
J Hypertens ; 42(2): 315-328, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37850974

ABSTRACT

BACKGROUND AND PURPOSE: Reducing hypertensive myocardial fibrosis is the fundamental approach to preventing hypertensive ventricular remodelling. C1q/TNF-related protein-3 (CTRP3) is closely associated with hypertension. However, the role and mechanism of CTRP3 in hypertensive myocardial fibrosis are unclear. In this study, we aimed to explore the effect of CTRP3 on hypertensive myocardial fibrosis and the potential mechanism. METHODS AND RESULTS: WKY and SHR rats were employed, blood pressure, body weight, heart weight, H/BW were measured, and fibrotic-related proteins, CTRP3 and Collagen I were tested in myocardium at 12 and 20 weeks by immunohistochemical staining and Western blotting, respectively. The results showed that compared with the WKY, SBP, DBP, mean arterial pressure and heart rate (HR) were all significantly increased in SHR at 12 and 20 weeks, while heart weight and H/BW were only increased at 20 weeks. Meanwhile, CTRP3 decreased, while Collagen I increased significantly in the SHR rat myocardium at 20 weeks, which compared to the WKY. Moreover, the expression of α-SMA increased from 12 weeks, Collagen I/III and MMP2/9 increased and TIMP-2 decreased until 20 weeks. In order to explore the function and mechanism of CTRP3 in hypertensive fibrosis, Angiotensin II (Ang II) was used to induce hypertension in primary neonatal rat cardiac fibroblasts in vitro . CTRP3 significantly inhibited the Ang II induced activation of fibrotic proteins, purinergic 2X7 receptor (P2X7R)-NLRP3 inflammasome pathway. The P2X7R agonist BzATP significantly exacerbated Ang II-induced NLRP3 inflammasome activation, which was decreased by the P2X7R antagonists A43079, CTRP3 and MCC950. CONCLUSION: CTRP3 expression was decreased in the myocardium of SHR rats, and exogenous CTRP3 inhibited Ang II-induced fibrosis in cardiac fibroblasts by regulating the P2X7R-NLRP3 inflammasome pathway, suggesting that CTRP3 is a potential drug for alleviating myocardial fibrosis in hypertensive conditions.


Subject(s)
Cardiomyopathies , Hypertension , Rats , Animals , Rats, Inbred SHR , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Complement C1q/metabolism , Rats, Inbred WKY , Cardiomyopathies/complications , Myocardium/pathology , Hypertension/complications , Angiotensin II/pharmacology , Collagen/metabolism , Fibrosis
16.
Geroscience ; 46(2): 2503-2519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37989825

ABSTRACT

Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Microglia , Complement C1q/genetics , Complement C1q/metabolism , CD47 Antigen/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Alzheimer Disease/metabolism , Synapses/metabolism
17.
Cell Stress Chaperones ; 28(6): 959-968, 2023 11.
Article in English | MEDLINE | ID: mdl-37880562

ABSTRACT

Apoptosis is a key defense process for multiple immune system functions, playing a central role in maintaining homeostasis and cell development. The purpose of this study was to evaluate the effects of environmental pollutant exposure on immune-related apoptotic pathways in crab tissues and human cells. To do this, we characterized the multifunctional immune complement component 1q (C1q) gene and analyzed C1q expression in Macrophthalmus japonicus crabs after exposure to di(2-ethylhexyl) phthalate (DEHP) or hexabromocyclododecanes (HBCDs). Moreover, the responses of apoptotic signal-related genes were observed in M. japonicus tissues and human cell lines (HEK293T and HCT116). C1q gene expression was downregulated in the gills and hepatopancreas of M. japonicus after exposure to DEHP or HBCD. Pollutant exposure also increased antioxidant enzyme activities and altered transcription of 15 apoptotic signaling genes in M. japonicus. However, patterns in apoptotic signaling in response to these pollutants differed in human cells. HBCD exposure generated an apoptotic signal (cleaved caspase-3) and inhibited cell growth in both cell lines, whereas DEHP exposure did not produce such a response. These results suggest that exposure to environmental pollutants induced different levels of immune-related apoptosis depending on the cell or tissue type and that this induction of apoptotic signaling may trigger an initiation of carcinogenesis in M. japonicus and in humans as consumers.


Subject(s)
Brachyura , Diethylhexyl Phthalate , Environmental Pollutants , Animals , Humans , Complement C1q/genetics , Complement C1q/metabolism , Complement C1q/pharmacology , Brachyura/genetics , Brachyura/metabolism , Diethylhexyl Phthalate/pharmacology , Environmental Pollutants/toxicity , HEK293 Cells , Apoptosis/genetics
18.
Sci Rep ; 13(1): 17563, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845276

ABSTRACT

The C1Q complement protein C1QL1 is highly conserved in mammals where it is expressed in various tissues including the brain. This secreted protein interacts with Brain-specific Angiogenesis Inhibitor 3, BAI3/ADGRB3, and controls synapse formation and maintenance. C1ql1 is expressed in the inferior olivary neurons that send projections to cerebellar Purkinje cells, but its expression in the rest of the brain is less documented. To map C1ql1 expression and enable the specific targeting of C1ql1-expressing cells, we generated a knockin mouse model expressing the Cre recombinase under the control of C1ql1 regulatory sequences. We characterized the capacity for Cre-driven recombination in the brain and mapped Cre expression in various neuron types using reporter mouse lines. Using an intersectional strategy with viral particle injections, we show that this mouse line can be used to target specific afferents of Purkinje cells. As C1ql1 is also expressed in other regions of the brain, as well as in other tissues such as adrenal glands and colon, our mouse model is a useful tool to target C1ql1-expressing cells in a broad variety of tissues.


Subject(s)
Brain , Neurons , Mice , Animals , Neurons/metabolism , Brain/metabolism , Purkinje Cells/metabolism , Mice, Transgenic , Integrases/metabolism , Mammals/metabolism , Complement C1q/metabolism
19.
J Allergy Clin Immunol ; 152(5): 1141-1152.e2, 2023 11.
Article in English | MEDLINE | ID: mdl-37562753

ABSTRACT

BACKGROUND: Dendritic cells (DCs) are heterogeneous, comprising multiple subsets with unique functional specifications. Our previous work has demonstrated that the specific conventional type 2 DC subset, CSF1R+cDC2s, plays a critical role in sensing aeroallergens. OBJECTIVE: It remains to be understood how CSF1R+cDC2s recognize inhaled allergens. We sought to elucidate the transcriptomic programs and receptor-ligand interactions essential for function of this subset in allergen sensitization. METHODS: We applied single-cell RNA sequencing to mouse lung DCs. Conventional DC-selective knockout mouse models were employed, and mice were subjected to inhaled allergen sensitization with multiple readouts of asthma pathology. Under the clinical arm of this work, human lung transcriptomic data were integrated with mouse data, and bronchoalveolar lavage (BAL) specimens were collected from subjects undergoing allergen provocation, with samples assayed for C1q. RESULTS: We found that C1q is selectively enriched in lung CSF1R+cDC2s, but not in other lung cDC2 or cDC1 subsets. Depletion of C1q in conventional DCs significantly attenuates allergen sensing and features of asthma. Additionally, we found that C1q binds directly to human dust mite allergen, and the C1q receptor CD91 (LRP1) is required for lung CSF1R+cDC2s to recognize the C1q-allergen complex and induce allergic lung inflammation. Lastly, C1q is enriched in human BAL samples following subsegmental allergen challenge, and human RNA sequencing data demonstrate close homology between lung IGSF21+DCs and mouse CSF1R+cDC2s. CONCLUSIONS: C1q is secreted from the CSF1R+cDC2 subset among conventional DCs. Our data indicate that the C1q-LRP1 axis represents a candidate for translational therapeutics in the prevention and suppression of allergic lung inflammation.


Subject(s)
Asthma , Pneumonia , Animals , Humans , Mice , Allergens/metabolism , Asthma/metabolism , Complement C1q/metabolism , Dendritic Cells , Mice, Knockout , Pneumonia/metabolism , Receptor Protein-Tyrosine Kinases , Receptors, Colony-Stimulating Factor/metabolism
20.
Nat Commun ; 14(1): 4027, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419978

ABSTRACT

IgG3 is unique among the IgG subclasses due to its extended hinge, allotypic diversity and enhanced effector functions, including highly efficient pathogen neutralisation and complement activation. It is also underrepresented as an immunotherapeutic candidate, partly due to a lack of structural information. Here, we use cryoEM to solve structures of antigen-bound IgG3 alone and in complex with complement components. These structures reveal a propensity for IgG3-Fab clustering, which is possible due to the IgG3-specific flexible upper hinge region and may maximise pathogen neutralisation by forming high-density antibody arrays. IgG3 forms elevated hexameric Fc platforms that extend above the protein corona to maximise binding to receptors and the complement C1 complex, which here adopts a unique protease conformation that may precede C1 activation. Mass spectrometry reveals that C1 deposits C4b directly onto specific IgG3 residues proximal to the Fab domains. Structural analysis shows this to be caused by the height of the C1-IgG3 complex. Together, these data provide structural insights into the role of the unique IgG3 extended hinge, which will aid the development and design of upcoming immunotherapeutics based on IgG3.


Subject(s)
Complement System Proteins , Immunoglobulin G , Complement Activation , Antigens , Complement C1q/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...