Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
1.
BMC Nephrol ; 25(1): 164, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745129

ABSTRACT

BACKGROUND: Atypical haemolytic uremic syndrome (aHUS) is an uncommon form of thrombotic microangiopathy (TMA). However, it remains difficult to diagnose the disease early, given its non-specific and overlapping presentation to other conditions such as thrombotic thrombocytopenic purpura and typical HUS. It is also important to identify the underlying causes and to distinguish between primary (due to a genetic abnormality leading to a dysregulated alternative complement pathway) and secondary (often attributed by severe infection or inflammation) forms of the disease, as there is now effective treatment such as monoclonal antibodies against C5 for primary aHUS. However, primary aHUS with severe inflammation are often mistaken as a secondary HUS. We presented an unusual case of adult-onset Still's disease (AOSD) with macrophage activation syndrome (MAS), which is in fact associated with anti-complement factor H (anti-CFH) antibodies related aHUS. Although the aHUS may be triggered by the severe inflammation from the AOSD, the presence of anti-CFH antibodies suggests an underlying genetic defect in the alternative complement pathway, predisposing to primary aHUS. One should note that anti-CFH antibodies associated aHUS may not always associate with genetic predisposition to complement dysregulation and can be an autoimmune form of aHUS, highlighting the importance of genetic testing. CASE PRESENTATION: A 42 years old man was admitted with suspected adult-onset Still's disease. Intravenous methylprednisolone was started but patient was complicated with acute encephalopathy and low platelet. ADAMTS13 test returned to be normal and concurrent aHUS was eventually suspected, 26 days after the initial thrombocytopenia was presented. Plasma exchange was started and patient eventually had 2 doses of eculizumab after funding was approved. Concurrent tocilizumab was also used to treat the adult-onset Still's disease with MAS. The patient was eventually stabilised and long-term tocilizumab maintenance treatment was planned instead of eculizumab following haematology review. Although the aHUS may be a secondary event to MAS according to haematology opinion and the genetic test came back negative for the five major aHUS gene, high titre of anti-CFH antibodies was detected (1242 AU/ml). CONCLUSION: Our case highlighted the importance of prompt anti-CFH antibodies test and genetic testing for aHUS in patients with severe AOSD and features of TMA. Our case also emphasized testing for structural variants within the CFH and CFH-related proteins gene region, as part of the routine genetic analysis in patients with anti-CFH antibodies associated aHUS to improve diagnostic approaches.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Complement Factor H , Still's Disease, Adult-Onset , Humans , Still's Disease, Adult-Onset/complications , Still's Disease, Adult-Onset/diagnosis , Still's Disease, Adult-Onset/drug therapy , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/immunology , Complement Factor H/immunology , Adult , Male , Autoantibodies/blood , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/complications , Macrophage Activation Syndrome/immunology
2.
Front Immunol ; 15: 1352022, 2024.
Article in English | MEDLINE | ID: mdl-38698856

ABSTRACT

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Subject(s)
Complement Factor H , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Protein Binding , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Animals , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/metabolism , Influenza A virus/immunology , Influenza A virus/physiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Binding Sites , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/metabolism , Birds/virology , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology
3.
Front Immunol ; 15: 1288597, 2024.
Article in English | MEDLINE | ID: mdl-38817607

ABSTRACT

Complement activation protects against infection but also contributes to pathological mechanisms in a range of clinical conditions such as autoimmune diseases and transplant rejection. Complement-inhibitory drugs, either approved or in development, usually act systemically, thereby increasing the risk for infections. We therefore envisioned a novel class of bispecific antibodies (bsAbs) which are capable of site-directed complement inhibition by bringing endogenous complement regulators in the vicinity of defined cell surface antigens. Here, we analyzed a comprehensive set of obligate bsAbs designed to crosslink a specific target with either complement regulator factor H (FH) or C4b-binding protein (C4BP). The bsAbs were assessed for their capacity to inhibit complement activation and cell lysis in an antigen-targeted manner. We observed that the bsAbs inhibited classical, lectin, and alternative pathway complement activation in which sufficient endogenous serum FH and C4BP could be recruited to achieve local inhibition. Importantly, the bsAbs effectively protected antigen-positive liposomes, erythrocytes, and human leukocytes from complement-mediated lysis. In conclusion, localized complement inhibition by bsAbs capable of recruiting endogenous human complement regulators (such as FH or C4BP) to cell surfaces potentially provides a novel therapeutic approach for the targeted treatment of complement-mediated diseases.


Subject(s)
Antibodies, Bispecific , Complement Activation , Complement C4b-Binding Protein , Complement Factor H , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Complement Activation/immunology , Complement C4b-Binding Protein/immunology , Complement C4b-Binding Protein/metabolism , Complement Factor H/immunology , Complement Factor H/metabolism , Antigens/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Protein Binding
4.
J Immunol ; 212(10): 1589-1601, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38558134

ABSTRACT

Tumor-targeting Abs can be used to initiate an antitumor immune program, which appears essential to achieve a long-term durable clinical response to cancer. We previously identified an anti-complement factor H (CFH) autoantibody associated with patients with early-stage non-small cell lung cancer. We cloned from their peripheral B cells an mAb, GT103, that specifically recognizes CFH on tumor cells. Although the underlying mechanisms are not well defined, GT103 targets a conformationally distinct CFH epitope that is created when CFH is associated with tumor cells, kills tumor cells in vitro, and has potent antitumor activity in vivo. In the effort to better understand how an Ab targeting a tumor epitope can promote an effective antitumor immune response, we used the syngeneic CMT167 lung tumor C57BL/6 mouse model, and we found that murinized GT103 (mGT103) activates complement and enhances antitumor immunity through multiple pathways. It creates a favorable tumor microenvironment by decreasing immunosuppressive regulatory T cells and myeloid-derived suppressor cells, enhances Ag-specific effector T cells, and has an additive antitumor effect with anti-PD-L1 mAb. Furthermore, the immune landscape of tumors from early-stage patients expressing the anti-CFH autoantibody is associated with an immunologically active tumor microenvironment. More broadly, our results using an mAb cloned from autoantibody-expressing B cells provides novel, to our knowledge, mechanistic insights into how a tumor-specific, complement-activating Ab can generate an immune program to kill tumor cells and inhibit tumor growth.


Subject(s)
Complement Activation , Mice, Inbred C57BL , Animals , Mice , Humans , Complement Activation/immunology , Cell Line, Tumor , Complement Factor H/immunology , Tumor Microenvironment/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Autoantibodies/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Female , T-Lymphocytes, Regulatory/immunology
5.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401844

ABSTRACT

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Subject(s)
Complement Factor H , Receptors, Complement 3b , Recombinant Fusion Proteins , Humans , Complement Factor H/metabolism , Complement Factor H/genetics , Complement Factor H/chemistry , Complement Factor H/immunology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Complement Activation/drug effects , CD55 Antigens/genetics , CD55 Antigens/metabolism , Hemolysis/drug effects , Complement Pathway, Alternative/drug effects , Complement Inactivating Agents/pharmacology , Erythrocytes/metabolism
6.
Pediatr Nephrol ; 39(7): 2091-2097, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38270601

ABSTRACT

BACKGROUND: Plasma exchanges (PEX) and immunosuppression are the cornerstone of management of anti-factor H (FH) antibody-associated atypical hemolytic uremic syndrome (aHUS), particularly if access to eculizumab is limited. The duration of therapy with PEX for anti-FH aHUS is empirical. METHODS: We compared the efficacy of abbreviated PEX protocol (10-12 sessions) in a prospective cohort of patients diagnosed with anti-FH aHUS (2020-2022), to standard PEX protocol (20-22 sessions) in a historical cohort (2016-2019; n = 65). Efficacy was defined as 70% decline in anti-FH titers or fall to ≤ 1300 AU/ml at 4 weeks. Patients in both cohorts received similar immunosuppression with oral prednisolone, IV cyclophosphamide (5 doses) and mycophenolate mofetil. Outcomes included efficacy, rates of hematological remission and adverse kidney outcomes at 1, 3 and 6 months. RESULTS: Of 23 patients, 8.2 ± 2.1 years old enrolled prospectively, two were excluded for significant protocol deviation. PEX was abbreviated in 18/21 (86%) patients to 11.5 ± 3.3 sessions. Abbreviation failed for lack of hematological remission by day 14 (n = 2) and persistent neurological manifestations (n = 1). All patients in whom PEX was abbreviated achieved > 70% reduction in anti-FH titers at day 28. The percentage fall in anti-FH titers was similar for the abbreviated vs. standard PEX protocols at 1, 3 and 6 months. At last follow-up, at median 50 months and 25 months for standard and abbreviated cohorts, the estimated GFR was similar at 104.8 ± 29.1 vs. 93.7 ± 53.4, respectively (P = 0.42). CONCLUSION: Abbreviation of the duration of PEX is feasible and efficacious in reducing anti-FH titers. Short-term outcomes were comparable in patients managed by abbreviated and standard PEX protocols.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Complement Factor H , Plasma Exchange , Humans , Plasma Exchange/methods , Male , Female , Prospective Studies , Child , Atypical Hemolytic Uremic Syndrome/therapy , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/blood , Complement Factor H/immunology , Child, Preschool , Treatment Outcome , Immunosuppressive Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Autoantibodies/blood , Autoantibodies/immunology , Adolescent , Mycophenolic Acid/therapeutic use , Mycophenolic Acid/administration & dosage
7.
Front Immunol ; 13: 931210, 2022.
Article in English | MEDLINE | ID: mdl-36091034

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) an important form of a thrombotic microangiopathy (TMA) that can frequently lead to acute kidney injury (AKI). An important subset of aHUS is the anti-factor H associated aHUS. This variant of aHUS can occur due to deletion of the complement factor H genes, CFHR1 and CFHR3, along with the presence of anti-factor H antibodies. However, it is a point of interest to note that not all patients with anti-factor H associated aHUS have a CFHR1/R3 deletion. Factor-H has a vital role in the regulation of the complement system, specifically the alternate pathway. Therefore, dysregulation of the complement system can lead to inflammatory or autoimmune diseases. Patients with this disease respond well to treatment with plasma exchange therapy along with Eculizumab and immunosuppressant therapy. Anti-factor H antibody associated aHUS has a certain genetic predilection therefore there is focus on further advancements in the diagnosis and management of this disease. In this article we discuss the baseline characteristics of patients with anti-factor H associated aHUS, their triggers, various treatment modalities and future perspectives.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Complement System Proteins , Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , Acute Kidney Injury/therapy , Antibodies/genetics , Antibodies/immunology , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/therapy , Blood Proteins/genetics , Complement C3b Inactivator Proteins/genetics , Complement Factor H/antagonists & inhibitors , Complement Factor H/genetics , Complement Factor H/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Humans , Plasma Exchange
8.
Cells ; 10(12)2021 12 18.
Article in English | MEDLINE | ID: mdl-34944087

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a rare disorder characterized by dysregulation of the alternate pathway. The diagnosis of aHUS is one of exclusion, which complicates its early detection and corresponding intervention to mitigate its high rate of mortality and associated morbidity. Heterozygous mutations in complement regulatory proteins linked to aHUS are not always phenotypically active, and may require a particular trigger for the disease to manifest. This list of triggers continues to expand as more data is aggregated, particularly centered around COVID-19 and pediatric vaccinations. Novel genetic mutations continue to be identified though advancements in technology as well as greater access to cohorts of interest, as in diacylglycerol kinase epsilon (DGKE). DGKE mutations associated with aHUS are the first non-complement regulatory proteins associated with the disease, drastically changing the established framework. Additional markers that are less understood, but continue to be acknowledged, include the unique autoantibodies to complement factor H and complement factor I which are pathogenic drivers in aHUS. Interventional therapeutics have undergone the most advancements, as pharmacokinetic and pharmacodynamic properties are modified as needed in addition to their as biosimilar counterparts. As data continues to be gathered in this field, future advancements will optimally decrease the mortality and morbidity of this disease in children.


Subject(s)
Atypical Hemolytic Uremic Syndrome/genetics , Complement Factor H/genetics , Complement Factor I/genetics , Diacylglycerol Kinase/genetics , Mutation , Atypical Hemolytic Uremic Syndrome/drug therapy , Atypical Hemolytic Uremic Syndrome/immunology , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Child , Complement Factor H/immunology , Complement Factor I/immunology , Diacylglycerol Kinase/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19 Drug Treatment
9.
Front Immunol ; 12: 752916, 2021.
Article in English | MEDLINE | ID: mdl-34956184

ABSTRACT

C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway (AP) of complement and treatment options remain inadequate. Factor H (FH) is a potent regulator of the AP. An in-depth analysis of FH-related protein dimerised minimal (mini)-FH constructs has recently been published. This analysis showed that addition of a dimerisation module to mini-FH not only increased serum half-life but also improved complement regulatory function, thus providing a potential treatment option for C3G. Herein, we describe the production of a murine version of homodimeric mini-FH [mHDM-FH (mFH1-5^18-20^R1-2)], developed to reduce the risk of anti-drug antibody formation during long-term experiments in murine models of C3G and other complement-driven pathologies. Our analysis of mHDM-FH indicates that it binds with higher affinity and avidity to WT mC3b when compared to mouse (m)FH (mHDM-FH KD=505 nM; mFH KD=1370 nM) analogous to what we observed with the respective human proteins. The improved binding avidity resulted in enhanced complement regulatory function in haemolytic assays. Extended interval dosing studies in CFH-/- mice (5mg/kg every 72hrs) were partially effective and bio-distribution analysis in CFH-/- mice, through in vivo imaging technologies, demonstrates that mHDM-FH is preferentially deposited and remains fixed in the kidneys (and liver) for up to 4 days. Extended dosing using an AAV- human HDM-FH (hHDM-FH) construct achieved complete normalisation of C3 levels in CFH-/- mice for 3 months and was associated with a significant reduction in glomerular C3 staining. Our data demonstrate the ability of gene therapy delivery of mini-FH constructs to enhance complement regulation in vivo and support the application of this approach as a novel treatment strategy in diseases such as C3G.


Subject(s)
Complement C3/immunology , Complement Factor H/immunology , Animals , Complement Factor H/deficiency , Kidney/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Front Immunol ; 12: 769242, 2021.
Article in English | MEDLINE | ID: mdl-34819935

ABSTRACT

Complement Factor H-Related 3 (FHR-3) is a major regulator of the complement system, which is associated with different diseases, such as age-related macular degeneration (AMD). However, the non-canonical local, cellular functions of FHR-3 remained poorly understood. Here, we report that FHR-3 bound to oxidative stress epitopes and competed with FH for interaction. Furthermore, FHR-3 was internalized by viable RPE cells and modulated time-dependently complement component (C3, FB) and receptor (C3aR, CR3) expression of human RPE cells. Independently of any external blood-derived proteins, complement activation products were detected. Anaphylatoxin C3a was visualized in treated cells and showed a translocation from the cytoplasm to the cell membrane after FHR-3 exposure. Subsequently, FHR-3 induced a RPE cell dependent pro-inflammatory microenvironment. Inflammasome NLRP3 activation and pro-inflammatory cytokine secretion of IL-1ß, IL-18, IL-6 and TNF-α were induced after FHR-3-RPE interaction. Our previously published monoclonal anti-FHR-3 antibody, which was chimerized to reduce immunogenicity, RETC-2-ximab, ameliorated the effect of FHR-3 on ARPE-19 cells. Our studies suggest FHR-3 as an exogenous trigger molecule for the RPE cell "complosome" and as a putative target for a therapeutic approach for associated degenerative diseases.


Subject(s)
Blood Proteins/immunology , Complement Activation/immunology , Complement Factor H/immunology , Epithelial Cells/immunology , Retinal Pigment Epithelium/cytology , Blood Proteins/genetics , Blood Proteins/metabolism , Cell Line , Complement Activation/genetics , Complement C3/genetics , Complement C3/immunology , Complement C3/metabolism , Complement Factor H/genetics , Complement Factor H/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/immunology , Gene Expression/genetics , Gene Expression/immunology , HEK293 Cells , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/immunology , Macrophage-1 Antigen/metabolism , Macular Degeneration/genetics , Macular Degeneration/immunology , Macular Degeneration/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology
11.
Clin J Am Soc Nephrol ; 16(11): 1639-1651, 2021 11.
Article in English | MEDLINE | ID: mdl-34551983

ABSTRACT

BACKGROUND AND OBJECTIVES: Membranoproliferative GN and C3 glomerulopathy are rare and overlapping disorders associated with dysregulation of the alternative complement pathway. Specific etiologic data for pediatric membranoproliferative GN/C3 glomerulopathy are lacking, and outcome data are based on retrospective studies without etiologic data. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: A total of 80 prevalent pediatric patients with membranoproliferative GN/C3 glomerulopathy underwent detailed phenotyping and long-term follow-up within the National Registry of Rare Kidney Diseases (RaDaR). Risk factors for kidney survival were determined using a Cox proportional hazards model. Kidney and transplant graft survival was determined using the Kaplan-Meier method. RESULTS: Central histology review determined 39 patients with C3 glomerulopathy, 31 with immune-complex membranoproliferative GN, and ten with immune-complex GN. Patients were aged 2-15 (median, 9; interquartile range, 7-11) years. Median complement C3 and C4 levels were 0.31 g/L and 0.14 g/L, respectively; acquired (anticomplement autoantibodies) or genetic alternative pathway abnormalities were detected in 46% and 9% of patients, respectively, across all groups, including those with immune-complex GN. Median follow-up was 5.18 (interquartile range, 2.13-8.08) years. Eleven patients (14%) progressed to kidney failure, with nine transplants performed in eight patients, two of which failed due to recurrent disease. Presence of >50% crescents on the initial biopsy specimen was the sole variable associated with kidney failure in multivariable analysis (hazard ratio, 6.2; 95% confidence interval, 1.05 to 36.6; P<0.05). Three distinct C3 glomerulopathy prognostic groups were identified according to presenting eGFR and >50% crescents on the initial biopsy specimen. CONCLUSIONS: Crescentic disease was a key risk factor associated with kidney failure in a national cohort of pediatric patients with membranoproliferative GN/C3 glomerulopathy and immune-complex GN. Presenting eGFR and crescentic disease help define prognostic groups in pediatric C3 glomerulopathy. Acquired abnormalities of the alternative pathway were commonly identified but not a risk factor for kidney failure.


Subject(s)
Autoantibodies/blood , Complement C3/metabolism , Glomerulonephritis, Membranoproliferative/blood , Glomerulonephritis, Membranoproliferative/etiology , Phenotype , Adolescent , Child , Child, Preschool , Complement C3/genetics , Complement C3b/immunology , Complement C4/metabolism , Complement Factor B/immunology , Complement Factor H/immunology , Disease Progression , Female , Follow-Up Studies , Glomerular Filtration Rate , Glomerulonephritis, Membranoproliferative/pathology , Glomerulonephritis, Membranoproliferative/therapy , Graft Survival , Humans , Kaplan-Meier Estimate , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/surgery , Kidney Transplantation , Male , Prognosis , Proportional Hazards Models , Prospective Studies , Recurrence , Registries , Risk Factors
12.
Stem Cell Reports ; 16(9): 2305-2319, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34388364

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a rare disease associated with high morbidity and mortality. Existing evidence suggests that the central pathogenesis to aHUS might be endothelial cell damage. Nevertheless, the role of endothelial cell alterations in aHUS has not been well characterized and the underlying mechanisms remain unclear. Utilizing an induced pluripotent stem cell-derived endothelial cell (iPSC-EC) model, we showed that anti-complement factor H autoantibody-associated aHUS patient-specific iPSC-ECs exhibited an intrinsic defect in endothelial functions. Stimulation using aHUS serums exacerbated endothelial dysfunctions, leading to cell apoptosis in iPSC-ECs. Importantly, we identified p38 as a novel signaling pathway contributing to endothelial dysfunctions in aHUS. These results illustrate that iPSC-ECs can be a reliable model to recapitulate EC pathological features, thus providing a unique platform for gaining mechanistic insights into EC injury in aHUS. Our findings highlight that the p38 MAPK signaling pathway can be a therapeutic target for treatment of aHUS.


Subject(s)
Atypical Hemolytic Uremic Syndrome/etiology , Atypical Hemolytic Uremic Syndrome/metabolism , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases/metabolism , Apoptosis , Atypical Hemolytic Uremic Syndrome/diagnosis , Autoantibodies/immunology , Autoimmunity , Biomarkers , Complement Factor H/immunology , Disease Susceptibility , Endothelial Cells/cytology , Endothelium/metabolism , Endothelium/physiopathology , Humans , Phenotype
13.
PLoS One ; 16(6): e0252577, 2021.
Article in English | MEDLINE | ID: mdl-34133431

ABSTRACT

Exosomes are a class of extracellular vesicles (EVs) that are mediators of normal intercellular communication, but exosomes are also used by tumor cells to promote oncogenesis and metastasis. Complement factor H (CFH) protects host cells from attack and destruction by the alternative pathway of complement-dependent cytotoxicity (CDC). Here we show that CFH can protect exosomes from complement-mediated lysis and phagocytosis. CFH was found to be associated with EVs from a variety of tumor cell lines as well as EVs isolated from the plasma of patients with metastatic non-small cell lung cancer. Higher levels of CFH-containing EVs correlated with higher metastatic potential of cell lines. GT103, a previously described antibody to CFH that preferentially causes CDC of tumor cells, was used to probe the susceptibility of tumor cell-derived exosomes to destruction. Exosomes were purified from EVs using CD63 beads. Incubation of GT103 with tumor cell-derived exosomes triggered exosome lysis primarily by the classical complement pathway as well as antibody-dependent exosome phagocytosis by macrophages. These results imply that GT103-mediated exosome destruction can be triggered by antibody Fc-C1q interaction (in the case of lysis), and antibody-Fc receptor interactions (in the case of phagocytosis). Thus, this work demonstrates CFH is expressed on tumor cell derived exosomes, can protect them from complement lysis and phagocytosis, and that an anti-CFH antibody can be used to target tumor-derived exosomes for exosome destruction via innate immune mechanisms. These findings suggest that a therapeutic CFH antibody has the potential to inhibit tumor progression and reduce metastasis promoted by exosomes.


Subject(s)
Complement Factor H/metabolism , Exosomes/metabolism , Macrophages/immunology , Phagocytosis/physiology , Antibodies/immunology , Antibodies/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Complement Factor H/immunology , Humans , Immunity, Innate , Leukocytes, Mononuclear/cytology , Lung Neoplasms/pathology , Macrophages/cytology , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Neoplasm Staging , Receptors, Complement/metabolism , Tumor Cells, Cultured
14.
PLoS Pathog ; 17(6): e1009655, 2021 06.
Article in English | MEDLINE | ID: mdl-34125873

ABSTRACT

Microbial pathogens bind host complement regulatory proteins to evade the immune system. The bacterial pathogen Neisseria meningitidis, or meningococcus, binds several complement regulators, including human Factor H (FH). FH binding protein (FHbp) is a component of two licensed meningococcal vaccines and in mice FHbp elicits antibodies that inhibit binding of FH to FHbp, which defeat the bacterial evasion mechanism. However, humans vaccinated with FHbp develop antibodies that enhance binding of FH to the bacteria, which could limit the effectiveness of the vaccines. In the present study, we show that two vaccine-elicited antibody fragments (Fabs) isolated from different human subjects increase binding of complement FH to meningococcal FHbp by ELISA. The two Fabs have different effects on the kinetics of FH binding to immobilized FHbp as measured by surface plasmon resonance. The 1.7- and 2.0-Å resolution X-ray crystal structures of the Fabs in complexes with FHbp illustrate that the two Fabs bind to similar epitopes on the amino-terminal domain of FHbp, adjacent to the FH binding site. Superposition models of ternary complexes of each Fab with FHbp and FH show that there is likely minimal contact between the Fabs and FH. Collectively, the structures reveal that the Fabs enhance binding of FH to FHbp by altering the conformations and mobilities of two loops adjacent to the FH binding site of FHbp. In addition, the 1.5 Å-resolution structure of one of the isolated Fabs defines the structural rearrangements associated with binding to FHbp. The FH-enhancing human Fabs, which are mirrored in the human polyclonal antibody responses, have important implications for tuning the effectiveness of FHbp-based vaccines.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Complement Factor H/immunology , Meningococcal Vaccines/immunology , Antibodies, Bacterial/metabolism , Complement Factor H/metabolism , Humans , Meningococcal Infections/prevention & control , Neisseria meningitidis , Receptors, Complement/immunology , Receptors, Complement/metabolism , Virulence Factors/immunology
15.
Clin Nephrol ; 96(2): 124-128, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34032207

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal injury, which results from thrombotic microangiopathy (TMA) within the glomerular capillaries and arterioles. We report a case of a biopsy-proven renal TMA attributed to hypertension in a 42-year-old woman with undiagnosed alternative complement pathway dysregulation resulting from a rare association between complement factor H (CFH) autoantibodies and a heterozygous variant in the CFH gene. We propose that severe hypertension triggered an over-activation of the alternative complement pathway in a patient with genetic predisposition. In this case, blood pressure control allowed normalization of hematologic parameters and partial recovery of renal function, supporting the idea that shear stress is an important complement-amplifying factor.


Subject(s)
Autoantibodies/blood , Complement Factor H , Hypertension , Thrombotic Microangiopathies , Adult , Complement Factor H/genetics , Complement Factor H/immunology , Female , Humans , Hypertension/complications , Hypertension/diagnosis , Thrombotic Microangiopathies/blood , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/etiology
16.
Clin Nephrol ; 96(2): 82-89, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34032209

ABSTRACT

AIMS: The complement factor H (CFH) is a regulator for the alternative complement pathway. The prevalence and roles of anti-CFH antibodies in the clinical outcome of primary membranous nephropathy (MN) patients remain unclear. MATERIALS AND METHODS: A total of 106 biopsy-proven kidney disease patients and 18 healthy controls were retrospectively investigated in this study. 36 patients had primary MN and 70 patients were diseased controls (31 minimal change nephrotic syndrome (MCNS), 19 rapidly progressive glomerulonephritis (RPGN), and 20 IgA glomerulonephritis (IgAGN)). Serum anti-CFH antibody titers were measured by enzyme-linked immunosorbent assay. RESULTS: 77.8% of MN patients were positive for anti-CFH antibodies. However, only 27.1% of diseased control patients and 5.6% of healthy controls were positive for anti-CFH antibodies. Moreover, median anti-CFH antibody titers were significantly higher in MN patients (4.69 AU/mL) than in diseased control patients (MCNS patients (0 AU/mL, p < 0.01), RPGN patients (0 AU/mL, p < 0.05), IgAGN patients (0 AU/mL, p < 0.01)), and healthy controls (0 AU/mL, p < 0.01). Anti-CFH antibody titer was selected as an independent unfavorable predictor of renal dysfunction by Cox proportional hazards analysis. CONCLUSION: These data suggest that anti-CFH antibodies may be involved in the deterioration of renal function in primary MN.


Subject(s)
Autoantibodies/blood , Complement Factor H/immunology , Glomerulonephritis, Membranous , Kidney/physiopathology , Glomerulonephritis, Membranous/epidemiology , Glomerulonephritis, Membranous/immunology , Glomerulonephritis, Membranous/physiopathology , Humans , Retrospective Studies , Treatment Outcome
17.
Front Immunol ; 12: 660382, 2021.
Article in English | MEDLINE | ID: mdl-33986750

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS), characterized by pathogenic, complement-activating autoantibodies against the main water channel in the CNS, aquaporin 4 (AQP4). NMOSD is frequently associated with additional autoantibodies and antibody-mediated diseases. Because the alternative pathway amplifies complement activation, our aim was to evaluate the presence of autoantibodies against the alternative pathway C3 convertase, its components C3b and factor B, and the complement regulator factor H (FH) in NMOSD. Four out of 45 AQP4-seropositive NMOSD patients (~9%) had FH autoantibodies in serum and none had antibodies to C3b, factor B and C3bBb. The FH autoantibody titers were low in three and high in one of the patients, and the avidity indexes were low. FH-IgG complexes were detected in the purified IgG fractions by Western blot. The autoantibodies bound to FH domains 19-20, and also recognized the homologous FH-related protein 1 (FHR-1), similar to FH autoantibodies associated with atypical hemolytic uremic syndrome (aHUS). However, in contrast to the majority of autoantibody-positive aHUS patients, these four NMOSD patients did not lack FHR-1. Analysis of autoantibody binding to FH19-20 mutants and linear synthetic peptides of the C-terminal FH and FHR-1 domains, as well as reduced FH, revealed differences in the exact binding sites of the autoantibodies. Importantly, all four autoantibodies inhibited C3b binding to FH. In conclusion, our results demonstrate that FH autoantibodies are not uncommon in NMOSD and suggest that generation of antibodies against complement regulating factors among other autoantibodies may contribute to the complement-mediated damage in NMOSD.


Subject(s)
Autoantibodies/blood , Complement Factor H/immunology , Neuromyelitis Optica/blood , Neuromyelitis Optica/immunology , Adult , Blood Proteins/genetics , Complement C3b/metabolism , Complement Factor H/metabolism , Epitope Mapping , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Middle Aged , Neuromyelitis Optica/physiopathology , Young Adult
18.
Front Immunol ; 12: 642860, 2021.
Article in English | MEDLINE | ID: mdl-33995361

ABSTRACT

Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1ß, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.


Subject(s)
COVID-19/immunology , Complement Activation , Cytokine Release Syndrome/immunology , Interleukin-10/immunology , Interleukin-6/immunology , Leukocytes, Mononuclear/immunology , Models, Immunological , SARS-CoV-2/immunology , COVID-19/pathology , Complement Factor H/immunology , Cytokine Release Syndrome/pathology , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology
19.
Front Endocrinol (Lausanne) ; 12: 641361, 2021.
Article in English | MEDLINE | ID: mdl-33859618

ABSTRACT

Introduction: Gestational Diabetes Mellitus (GDM) development is related to underlying metabolic syndrome that is associated with elevated complement C3 and C4. Elevated C3 levels have been associated with preeclampsia and the development of macrosomia. Methods: This case-control study included 34 pregnant women with GDM and 16 non-diabetic (ND) women in their second trimester. Complement-related proteins were measured and correlated with demographic, biochemical, and pregnancy outcome data. Results: GDM women were older with a higher BMI (p<0.001); complement C3, C4 and Factor-H were significantly elevated (p=0.001, p=0.05, p=0.01, respectively). When adjusted for age and BMI, Complement C3 (p=0.04) and Factor-H (p=0.04) remained significant. Partial correlation showed significant correlation between C4 with serum alanine aminotransferase (ALT) (p<0.05) and 2nd term diastolic blood pressure (p<0.05); Factor-H and C-reactive protein (CRP; p<0.05). Pearson bivariate analysis revealed significant correlations between C3, C4, and Factor-H and CRP; p<0.05; C3 and gestational age at delivery (GA; p<0.05); C4 and ALT and second-trimester systolic blood pressure (STBP) (p=0.008 and p<0.05, respectively); Factor-H and glycated hemoglobin (HbA1c) (p<0.05). Regression analysis showed that the elevation of C3 could be accounted for by age, BMI, GA and CRP, with CRP being the most important predictor (p=0.02). C4 elevation could be accounted for by ALT, CRP and STBP. CRP predicted Factor-H elevation. Conclusion: The increased C3, C4 and Factor-H during the second trimester of pregnancy in GDM are not independently associated with GDM; inflammation and high BMI may be responsible for their elevation. The elevation of second trimester C3 in GDM is associated with earlier delivery and further work is needed to determine if this is predictive.


Subject(s)
Complement C3/immunology , Complement C4/immunology , Diabetes, Gestational/immunology , Fetal Macrosomia/immunology , Pre-Eclampsia/immunology , Adult , Blood Pressure , Body Mass Index , C-Reactive Protein/biosynthesis , Case-Control Studies , Complement Factor H/immunology , Female , Gestational Age , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Humans , Pregnancy , Pregnancy Complications/immunology , Pregnancy Outcome , Pregnancy Trimester, Second
SELECTION OF CITATIONS
SEARCH DETAIL
...