Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.946
Filter
1.
Front Immunol ; 15: 1404752, 2024.
Article in English | MEDLINE | ID: mdl-38690267

ABSTRACT

Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.


Subject(s)
Calreticulin , Complement C1q , Immune Evasion , Trichinella spiralis , Trichinella spiralis/immunology , Complement C1q/immunology , Complement C1q/metabolism , Complement C1q/chemistry , Animals , Calreticulin/immunology , Calreticulin/chemistry , Calreticulin/metabolism , Crystallography, X-Ray , Protein Binding , Molecular Docking Simulation , Helminth Proteins/immunology , Helminth Proteins/chemistry , Complement Activation/immunology , Immunoglobulin G/immunology , Humans , Antigens, Helminth/immunology , Antigens, Helminth/chemistry , Trichinellosis/immunology , Trichinellosis/parasitology , Complement Pathway, Classical/immunology , Protein Conformation
2.
J Immunol ; 212(12): 1922-1931, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38683124

ABSTRACT

Although high titers of neutralizing Abs in human serum are associated with protection from reinfection by SARS-CoV-2, there is considerable heterogeneity in human serum-neutralizing Abs against SARS-CoV-2 during convalescence between individuals. Standard human serum live virus neutralization assays require inactivation of serum/plasma prior to testing. In this study, we report that the SARS-CoV-2 neutralization titers of human convalescent sera were relatively consistent across all disease states except for severe COVID-19, which yielded significantly higher neutralization titers. Furthermore, we show that heat inactivation of human serum significantly lowered neutralization activity in a live virus SARS-CoV-2 neutralization assay. Heat inactivation of human convalescent serum was shown to inactivate complement proteins, and the contribution of complement in SARS-CoV-2 neutralization was often >50% of the neutralizing activity of human sera without heat inactivation and could account for neutralizing activity when standard titers were zero after heat inactivation. This effect was also observed in COVID-19 vaccinees and could be abolished in individuals who were undergoing treatment with therapeutic anti-complement Abs. Complement activity was mainly dependent on the classical pathway with little contributions from mannose-binding lectin and alternative pathways. Our study demonstrates the importance of the complement pathway in significantly increasing viral neutralization activity against SARS-CoV-2 in spike seropositive individuals.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Complement Pathway, Classical , Neutralization Tests , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Complement Pathway, Classical/immunology , COVID-19 Vaccines/immunology , Male , Female , Middle Aged , Adult , Convalescence , Aged , Complement System Proteins/immunology
3.
J Biol Chem ; 300(5): 107236, 2024 May.
Article in English | MEDLINE | ID: mdl-38552741

ABSTRACT

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Subject(s)
Borrelia burgdorferi , Complement Pathway, Classical , Borrelia burgdorferi/immunology , Borrelia burgdorferi/metabolism , Borrelia burgdorferi/genetics , Complement Pathway, Classical/immunology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/chemistry , Humans , Lipoproteins/metabolism , Lipoproteins/genetics , Lipoproteins/chemistry , Lipoproteins/immunology , Complement C1s/metabolism , Complement C1s/genetics , Complement C1s/chemistry , Protein Binding , Lyme Disease/immunology , Lyme Disease/microbiology , Lyme Disease/metabolism , Lyme Disease/genetics , Complement C1r/metabolism , Complement C1r/genetics
4.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38149922

ABSTRACT

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Subject(s)
Complement C1s , Complement Pathway, Classical , Animals , Sheep , Peptide Hydrolases , Complement C1/metabolism , Endopeptidases , Pyridines/pharmacology
5.
Muscle Nerve ; 68(5): 798-804, 2023 11.
Article in English | MEDLINE | ID: mdl-37705312

ABSTRACT

INTRODUCTION/AIMS: Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction (NMJ) of skeletal muscle. Complement activation is one of the mechanisms by which anti-acetylcholine receptor (anti-AChR) autoantibodies reduce synaptic transmission at the NMJ. In this study, we aimed to examine the activation of the complement pathways, including the classical pathway, as potential contributors to the pathogenesis of MG with anti-AChR antibodies. METHODS: In this single-center, observational study of 45 patients with anti-AChR-antibody-positive generalized MG, serum concentrations of major components of the complement pathways, including C1q, C5, C5a, soluble C5b-9 (sC5b-9), Ba, and complement factor H, were measured using an enzyme-linked immunosorbent assay. A total of 25 patients with a non-inflammatory neurological disorder served as controls. In addition, the relationships of complement activation with clinical characteristics were examined. RESULTS: The patients with MG exhibited lower serum levels of C5 (p = .0001) and higher serum levels of sC5b-9 (p = .004) compared with the control group. At about 6 months (range, 172-209 days) after the start of immunotherapy, serum levels of Ba were significantly higher than baseline levels (p = .002) and were associated with improvement in MG clinical scores. DISCUSSION: Herein, we provide evidence for the activation of the classical complement pathway and its association with disease activity in anti-AChR-antibody-positive generalized MG.


Subject(s)
Complement Pathway, Classical , Myasthenia Gravis , Humans , Receptors, Cholinergic , Autoantibodies , Neuromuscular Junction/metabolism , Complement Membrane Attack Complex
6.
Clin Exp Immunol ; 214(1): 18-25, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37407023

ABSTRACT

Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Complement Pathway, Classical , Lectins , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Complement Activation , Lupus Nephritis/diagnosis
7.
Virulence ; 14(1): 2235461, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37450582

ABSTRACT

Streptococcus equi subsp. zooepidemicus (SEZ) is a major equine pathogen that causes pneumonia, abortion, and polyarthritis. It can also cause invasive infections in humans. SEZ expresses the M-like protein SzM, which recruits host proteins such as fibrinogen to the bacterial surface. Equine SEZ strain C2, which binds only comparably low amounts of human fibrinogen in comparison to human SEZ strain C33, was previously shown to proliferate in equine and human blood. As the expression of SzM_C2 was necessary for survival in blood, this study investigated the working hypothesis that SzM_C2 inhibits complement activation through a mechanism other than fibrinogen and non-immune immunoglobulin binding. Loss-of-function experiments showed that SEZ C2, but not C33, binds C1q via SzM in IgG-free human plasma. Furthermore, SzM C2 expression is necessary for recruiting purified human or equine C1q to the bacterial surface. Flow cytometry analysis demonstrated that SzM expression in SEZ C2 is crucial for the significant reduction of C3b labelling in human plasma. Addition of human plasma to immobilized rSzM_C2 and immobilized aggregated IgG led to binding of C1q, but only the latter activated the complement system, as shown by the detection of C4 deposition. Complement activation induced by aggregated IgG was significantly reduced if human plasma was pre-incubated with rSzM_C2. Furthermore, rSzM_C2, but not rSzM_C33, inhibited the activation of the classical complement pathway in human plasma, as determined in an erythrocyte lysis experiment. In conclusion, the immunoglobulin-independent binding of C1q to SzM_C2 is associated with complement inhibition.


Subject(s)
Streptococcus equi , Animals , Horses , Humans , Streptococcus equi/genetics , Streptococcus equi/metabolism , Complement C1q/metabolism , Complement Pathway, Classical , Complement Activation , Fibrinogen , Immunoglobulins
8.
Clin Immunol ; 251: 109629, 2023 06.
Article in English | MEDLINE | ID: mdl-37149117

ABSTRACT

The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.


Subject(s)
Anemia, Hemolytic, Autoimmune , Complement C1s , Humans , Complement C1s/metabolism , Complement Activation , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Complement Inactivating Agents/therapeutic use , Complement Pathway, Classical
9.
Eur J Neurol ; 30(5): 1409-1416, 2023 05.
Article in English | MEDLINE | ID: mdl-36752022

ABSTRACT

BACKGROUND AND PURPOSE: Complement component 5 (C5) targeting therapies are clinically beneficial in patients with acetylcholine receptor antibody+ (AChR-Ab+ ) generalized myasthenia gravis (MG). That clearly implicates antibody-mediated complement activation in MG pathogenesis. Here, classical and alternative complement pathways were profiled in patients from different MG subgroups. METHODS: In a case-control study, concentrations of C3a, C5a and sC5b9 were simultaneously quantified, indicating general activation of the complement system, whether via the classical and lectin pathways (C4a) or the alternative pathway (factors Ba and Bb) in MG patients with AChR or muscle-specific kinase antibodies (MuSK-Abs) or seronegative MG compared to healthy donors. RESULTS: Treatment-naïve patients with AChR-Ab+ MG showed substantially increased plasma levels of cleaved complement components, indicating activation of the classical and alternative as well as the terminal complement pathways. These increases were still present in a validation cohort of AChR-Ab+ patients under standard immunosuppressive therapies; notably, they were not evident in patients with MuSK-Abs or seronegative MG. Neither clinical severity parameters (at the time of sampling or 1 year later) nor anti-AChR titres correlated significantly with activated complement levels. CONCLUSIONS: Markers indicative of complement activation are prominently increased in patients with AChR-Ab MG despite standard immunosuppressive therapies. Complement inhibition proximal to C5 cleavage should be explored for its potential therapeutic benefits in AChR-Ab+ MG.


Subject(s)
Autoantibodies , Complement Activation , Myasthenia Gravis , Receptors, Cholinergic , Humans , Autoantibodies/immunology , Case-Control Studies , Complement Activation/immunology , Complement System Proteins/analysis , Complement System Proteins/immunology , Myasthenia Gravis/classification , Myasthenia Gravis/drug therapy , Myasthenia Gravis/immunology , Receptors, Cholinergic/immunology , Complement Pathway, Alternative , Complement Pathway, Classical , Male , Female , Young Adult , Adult , Middle Aged
10.
Clin Transl Sci ; 16(4): 673-685, 2023 04.
Article in English | MEDLINE | ID: mdl-36661084

ABSTRACT

SAR445088 is an anti-C1s humanized monoclonal antibody that inhibits activated C1s in the proximal portion of the classical complement system and has the potential to provide clinical benefit in the treatment of complement-mediated diseases. A phase I, first-in-human, double-blind, randomized, placebo-controlled, dose-escalation trial of single and multiple doses of SAR445088 was conducted in 93 healthy participants to evaluate the safety, tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) profiles. Single (intravenous [i.v.] and subcutaneous [s.c.]) ascending doses (SAD) and multiple (s.c.) ascending doses (MAD) of SAR445088 were well-tolerated. The PK of SAR445088 was characterized by slow absorption after the s.c. dose and a long half-life (mean terminal half-life [t1/2 ] 8-15 weeks). Two PD assays were used to measure inhibition of the classical complement pathway (CP): Wieslab CP and complement mediated hemolytic capacity (CH50). The estimated half-maximal inhibitory concentration (IC50 ) and 90% inhibitory concentration (IC90 ) for the Wieslab CP assay were 96.4 and 458 µg/ml, respectively, and 16.6 and 57.0 µg/ml, respectively, for the CH50 assay. In summary, SAR445088 was well-tolerated and had favorable PK and PD profiles after SAD (i.v. or s.c.) and MAD (s.c.) in humans. These findings warrant further clinical investigations in patients with classical complement-mediated disorders.


Subject(s)
Antibodies, Monoclonal, Humanized , Complement Pathway, Classical , Humans , Administration, Intravenous , Double-Blind Method , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Healthy Volunteers
11.
CEN Case Rep ; 12(1): 14-22, 2023 02.
Article in English | MEDLINE | ID: mdl-35711019

ABSTRACT

Immunoglobulin G (IgG) nephropathy refers to a rare group of diseases characterized by deposits of IgG in the mesangial region. However, IgG nephropathy is controversial as a single disease entity, and its pathogenesis remains to be elucidated. In the present report, we discuss a case of IgG nephropathy in which we observed activation of the classical complement pathway.A 47-year-old woman was admitted to our hospital with nephrotic syndrome. Light-microscopic examination revealed neither proliferative nor sclerotic lesions in the glomeruli. However, unusual and large deposits were observed in the paramesangial area. An immunofluorescence study revealed predominant IgG and C1q and slight C3 deposits in the paramesangial area, suggesting immune-complex-type glomerular disease. An electron microscopic study also revealed different sizes of non-organized electron-dense deposits with a similar pattern of distribution, which were accompanied by foot process effacement. Clinically, there was no evidence of systemic diseases, such as infectious or autoimmune diseases (including systemic lupus erythematosus). Based on these findings, she was diagnosed with IgG nephropathy and treated with prednisolone. Steroid therapy was effective, and complete remission was maintained.Additional immunological examination revealed that IgG deposits were polyclonal and consisted mainly of the IgG1 and IgG3 subclasses. Furthermore, staining was positive for C4d and C5b-9. The present findings indicate that the pathogenesis of IgG nephropathy in our patient may have involved activation of the classical complement pathway.


Subject(s)
Immunoglobulin G , Nephrotic Syndrome , Female , Humans , Middle Aged , Complement Pathway, Classical , Kidney Glomerulus/pathology , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/etiology , Nephrotic Syndrome/pathology , Glomerular Mesangium/pathology
12.
Brain Pathol ; 33(3): e13141, 2023 05.
Article in English | MEDLINE | ID: mdl-36564349

ABSTRACT

Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies. Neocortical tissues were collected from 20 subjects, mainly adults with a mean age at surgery of 31 years, admitted to epilepsy surgery with a neuropathological diagnosis of: cryptogenic, temporal lobe epilepsy with hippocampal sclerosis, and Type IIa/b FCD. Dendritic spine density quantitation, evaluated in a previous paper using Golgi impregnation, was available in a subgroup. Immunohistochemistry, in situ hybridization, electron microscopy, and organotypic cultures were utilized to study complement/microglial activation patterns. FCD Type II samples presenting dendritic spine loss were characterized by an activation of the classical complement pathway and microglial reactivity. In the same samples, a close relationship between microglial cells and dendritic segments/synapses was found. These features were consistently observed in Type IIb FCD and in 1 of 3 Type IIa cases. In other patient groups and in perilesional areas outside the dysplasia, not presenting spine loss, these features were not observed. In vitro treatment with complement proteins of organotypic slices of cortical tissue with no sign of FCD induced a reduction in dendritic spine density. These data suggest that dysregulation of the complement system plays a role in microglia-mediated spine loss. This mechanism, known to be involved in the removal of redundant synapses during development, is likely reactivated in Type II FCD, particularly in Type IIb; local treatment with anticomplement drugs could in principle modify the course of disease in these patients.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Focal Cortical Dysplasia , Malformations of Cortical Development , Adult , Humans , Dendritic Spines/pathology , Complement Pathway, Classical , Malformations of Cortical Development/pathology , Epilepsy/pathology , Drug Resistant Epilepsy/pathology
14.
Blood Adv ; 7(6): 987-996, 2023 03 28.
Article in English | MEDLINE | ID: mdl-35973190

ABSTRACT

Chronic/refractory immune thrombocytopenia (ITP) is a rare and pathophysiologically heterogeneous disorder with variable responsiveness to available treatments. Sutimlimab, a first-in-class humanized monoclonal anti-C1s IgG4 antibody, selectively inhibits the classical pathway. This phase 1 study (NCT03275454) assessed the safety, efficacy, pharmacokinetics, and pharmacodynamics of biweekly sutimlimab in patients with chronic/refractory ITP with an inadequate response to ≥2 therapies (platelet count ≤ 30 × 109/L). Twelve patients (median age 42 years) received sutimlimab for a median of 20.5 weeks followed by a median 2-week washout period (part A). In part B, 7 of the 12 eligible patients received sutimlimab retreatment for a median of 113 weeks. In part A, the mean (standard deviation) platelet count increased from 25 × 109/L (17) to 54 × 109/L (60) 24 hours after starting sutimlimab, maintaining ≥50 × 109/L throughout part A. Five patients (42%) achieved durable platelet count responses (≥50 × 109/L in ≥50% of follow-up visits) and 4 achieved complete response (platelet count ≥100 × 109/L). The mean platelet count returned to baseline during washout and increased upon retreatment in part B. The mean platelet count improvements accompanied the rapid inhibition of the classical pathway. There were 74 treatment-emergent adverse events in part A (n = 10) and 70 in part B (n = 6). Five serious adverse events were observed; 1 event (migraine) was assessed by the investigator as related to sutimlimab. These results demonstrated that in some patients with ITP, autoantibodies activate the classical complement pathway, accelerating platelet destruction or impairing platelet production and contributing to treatment failure. Thus, C1s inhibition may be a safe and beneficial therapeutic approach for patients with chronic/refractory ITP.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Humans , Adult , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Complement Pathway, Classical , Platelet Count , Antibodies, Monoclonal, Humanized/therapeutic use
15.
Front Immunol ; 13: 958273, 2022.
Article in English | MEDLINE | ID: mdl-35990646

ABSTRACT

The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.


Subject(s)
Complement C1q , Complement Pathway, Classical , Animals , Autoimmunity , Complement Activation , Humans , Mice , Mice, Knockout
16.
Methods Mol Biol ; 2470: 673-678, 2022.
Article in English | MEDLINE | ID: mdl-35881382

ABSTRACT

Enzyme-linked immunosorbent assays (ELISA) have a wide range of applications, ranging from specific antibody titer determination to quantification of any biological or non-biological substance with a specific binding partner (usually an antibody). The activity of biological cascades, such as the complement cascade of the innate immune system, can also be assessed by ELISA. We present here an assay optimized for the detection of the activation of the classical complement pathway by polyclonal and monoclonal antibodies (mAbs) specific for Plasmodium falciparum-infected erythrocyte surface antigens.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Antibodies, Protozoan , Antigens, Protozoan , Antigens, Surface/metabolism , Complement Pathway, Classical , Enzyme-Linked Immunosorbent Assay , Erythrocytes/metabolism , Humans , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
17.
Clin Exp Immunol ; 209(2): 151-160, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35648651

ABSTRACT

The classical pathway of the complement cascade has been recognized as a key activation arm, partnering with the lectin activation arm and the alternative pathway to cleave C3 and initiate the assembly of the terminal components. While deficiencies of classical pathway components have been recognized since 1966, only recently have gain-of-function variants been described for some of these proteins. Loss-of-function variants in C1, C4, and C2 are most often associated with lupus and systemic infections with encapsulated bacteria. C3 deficiency varies slightly from this phenotypic class with membranoproliferative glomerulonephritis and infection as the dominant phenotypes. The gain-of-function variants recently described for C1r and C1s lead to periodontal Ehlers Danlos syndrome, a surprisingly structural phenotype. Gain-of-function in C3 and C2 are associated with endothelial manifestations including hemolytic uremic syndrome and vasculitis with C2 gain-of-function variants thus far having been reported in patients with a C3 glomerulopathy. This review will discuss the loss-of-function and gain-of-function phenotypes and place them within the larger context of complement deficiencies.


Subject(s)
Complement Activation , Complement System Proteins , Complement C4 , Complement Pathway, Classical , Complement System Proteins/genetics
18.
J Biol Chem ; 298(7): 102113, 2022 07.
Article in English | MEDLINE | ID: mdl-35690144

ABSTRACT

Complement component C1q is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway. In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs, which comprised the globular interaction recognition parts of mouse C1q (globular part of C1q [gC1q]) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an Escherichia coli expression system, and their structure and capabilities to bind known complement pathway activators were validated by mass spectrometry, analytical size-exclusion chromatography, analytical ultracentrifugation, CD spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.


Subject(s)
Complement C1q , Complement Pathway, Classical , Animals , Enzyme-Linked Immunosorbent Assay , Mice
19.
Arthritis Rheumatol ; 74(11): 1842-1850, 2022 11.
Article in English | MEDLINE | ID: mdl-35729719

ABSTRACT

OBJECTIVE: Complete genetic deficiency of the complement component C2 is a strong risk factor for monogenic systemic lupus erythematosus (SLE), but whether heterozygous C2 deficiency adds to the risk of SLE or primary Sjögren's syndrome (SS) has not been studied systematically. This study was undertaken to investigate potential associations of heterozygous C2 deficiency and C4 copy number variation with clinical manifestations in patients with SLE and patients with primary SS. METHODS: The presence of the common 28-bp C2 deletion rs9332736 and C4 copy number variation was examined in Scandinavian patients who had received a diagnosis of SLE (n = 958) or primary SS (n = 911) and in 2,262 healthy controls through the use of DNA sequencing. The concentration of complement proteins in plasma and classical complement function were analyzed in a subgroup of SLE patients. RESULTS: Heterozygous C2 deficiency-when present in combination with a low C4A copy number-substantially increased the risk of SLE (odds ratio [OR] 10.2 [95% confidence interval (95% CI) 3.5-37.0]) and the risk of primary SS (OR 13.0 [95% CI 4.5-48.4]) when compared to individuals with 2 C4A copies and normal C2. For patients heterozygous for rs9332736 with 1 C4A copy, the median age at diagnosis was 7 years earlier in patients with SLE and 12 years earlier in patients with primary SS when compared to patients with normal C2. Reduced C2 levels in plasma (P = 2 × 10-9 ) and impaired function of the classical complement pathway (P = 0.03) were detected in SLE patients with heterozygous C2 deficiency. Finally, in a primary SS patient homozygous for C2 deficiency, we observed low levels of anti-Scl-70, which suggests a risk of developing systemic sclerosis or potential overlap between primary SS and other systemic autoimmune diseases. CONCLUSION: We demonstrate that a genetic pattern involving partial deficiencies of C2 and C4A in the classical complement pathway is a strong risk factor for SLE and for primary SS. Our results emphasize the central role of the complement system in the pathogenesis of both SLE and primary SS.


Subject(s)
Lupus Erythematosus, Systemic , Sjogren's Syndrome , Humans , Complement Pathway, Classical , DNA Copy Number Variations , Sjogren's Syndrome/genetics , Complement System Proteins/genetics , Hereditary Complement Deficiency Diseases , Complement C4/genetics
20.
Immunobiology ; 227(3): 152225, 2022 05.
Article in English | MEDLINE | ID: mdl-35567980

ABSTRACT

Several disorders associated with the total or partial absence of components of the human complement system are known. Deficiencies of classical pathway (CP) components are generally linked to systemic lupus erythematosus (SLE) or SLE-like syndromes. However, only approximately one-third of patients who lack C2 show mild symptoms of SLE. The relatively high frequency of homozygous C2 deficiency without or with minor disease manifestation suggests that there might be a compensatory mechanism which allows the activation of the CP of complement without the absolute requirement of C2. In this study we show that factor B (FB), the C2 homologue of the alternative pathway (AP) of complement, can substitute for C2. This was confirmed by using C4b as immobilised ligand and FB as analyte in Surface Plasmon Resonance (BIACORE). C2 binding to the immobilised C3b-like molecule C3(CH3NH2) was not seen. The estimated binding constant for C4bB complex formation was 2.00 * 10-5 [M]. We were further able to demonstrate that C4b supports the cleavage of Factor B by Factor D. Finally, cleavage of 125I-C3 by C4bBb was evaluated and gave strong evidence that the "hybrid" convertase C4bBb can cleave and activate C3 in vitro. Cleavage activity is very low, but consistent with some of the "C2-bypass" observations of others.


Subject(s)
Complement C4 , Lupus Erythematosus, Systemic , Complement Activation , Complement C2/metabolism , Complement C3/metabolism , Complement C3-C5 Convertases/metabolism , Complement C3b , Complement Factor B , Complement Pathway, Classical , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...