Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.330
Filter
1.
BMC Oral Health ; 24(1): 650, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824555

ABSTRACT

BACKGROUND: The formation of white spots, which represent early carious lesions, is a major issue with fixed orthodontics. The addition of remineralizing agents to orthodontic adhesives may prevent the formation of white spots. The aim of this study was to produce a composite orthodontic adhesive combined with nano-bioactive glass-silver (nBG@Ag) for bracket bonding to enamel and to investigate its cytotoxicity, antimicrobial activity, remineralization capability, and bond strength. METHODS: nBG@Ag was synthesized using the sol-gel method, and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy with an attenuated total reflectance attachment (ATR-FTIR). The cytotoxicity test (MTT) and antimicrobial activity of adhesives containing 1%, 3%, and 5% (wt/wt) nBG@Ag were evaluated, and the shear bond strength of the adhesives was measured using a universal testing machine. Remineralization was assessed through microhardness testing with a Vickers microhardness tester and scanning electron microscopy (SEM). Statistical analyses were conducted using the Shapiro-Wilk test, Levene test, one-way ANOVA, Robust-Welch test, Tukey HSD method, and two-way ANOVA. RESULTS: The biocompatibility of the adhesives was found to be high, as confirmed by the lack of significant differences in the cytotoxicity between the sample and control groups. Discs made from composites containing nBG@Ag exhibited a significant reduction in the growth of Streptococcus mutans (p < 0.05), and the antibacterial activity increased with higher percentages of nBG@Ag. The shear bond strength of the adhesives decreased significantly (p < 0.001) after the addition of nanoparticles, but it remained above the recommended value. The addition of nBG@Ag showed improvement in the microhardness of the teeth, although the differences in microhardness between the study groups were not statistically significant. The formation of hydroxyapatite deposits on the tooth surface was confirmed through SEM and energy-dispersive X-ray spectroscopy (EDX). CONCLUSION: Adding nBG@Ag to orthodontic adhesives can be an effective approach to enhance antimicrobial activity and reduce enamel demineralization around the orthodontic brackets, without compromising biocompatibility and bond strength.


Subject(s)
Anti-Bacterial Agents , Dental Cements , Orthodontic Brackets , Silver , Tooth Remineralization , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Tooth Remineralization/methods , Dental Cements/pharmacology , Materials Testing , Nanostructures/therapeutic use , Streptococcus mutans/drug effects , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Glass/chemistry , Microscopy, Electron, Transmission , Ceramics , Humans , Composite Resins/pharmacology , Composite Resins/chemistry , Shear Strength , Hardness , Dental Bonding/methods , Dental Enamel/drug effects
2.
Pediatr Dent ; 46(3): 192-198, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38822501

ABSTRACT

Purpose: The purposes of this study were to evaluate the effect of silver diammine fluoride (SDF) on the shear bond strength (SBS) of pink opaquer (PO) compared to resin-modified glass ionomer (RMGI) and conventional composite (COMP) on demineralized dentin, and also to investigate the mode of failure (MOF). Methods: Sixty extracted third molars were prepared, demineralized for 14 days, and divided into four groups: (1) COMP; (2) SDF+PO; (3) SDF+RMGI; and (4) SDF+COMP (restoration size: two by two mm). SBS, MOF, modified adhesive remnant index (MARI), and remnant adhesive volume (RAV) were evaluated using an Instron® machine, light microscopy, 3D digital scanner ( 3Shape©), and GeoMagic Wrap© software. Results: There was no significant difference in SBS (MPa) among the COMP mean??standard deviation (2.5±1.59), SDF+COMP (2.28±1.05), SDF+PO (3.31±2.63), and SDF+RMGI groups (3.74±2.34). There was no significant difference in MOF and MARI among the four groups (P>0.05). There was no significant difference in RAV (mm3) among the COMP (0.5±0.33), SDF+COMP (0.39±0.44), SDF+PO (0.42±0.38), and SDF+RMGI groups (0.42±0.38; P>0.05). A significant correlation existed between MOF and RAV (R equals 0.721; P<0.001). MOF, MARI, and RAV did not show any correlations with SBS (P>0.05). Conclusions: Silver diammine fluoride does not affect shear bond strength between carious dentinal surface and tooth color restorative materials. The amount of material left on the interface is not related to the amount of shear force needed to break the restoration.


Subject(s)
Composite Resins , Dental Bonding , Dentin , Fluorides, Topical , Shear Strength , Silver Compounds , Humans , Silver Compounds/chemistry , Dentin/drug effects , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Quaternary Ammonium Compounds/chemistry , Materials Testing , Dental Restoration, Permanent/methods , Dental Materials/chemistry , Dental Stress Analysis , Tooth Demineralization/prevention & control , In Vitro Techniques , Acrylic Resins/chemistry , Color
3.
Prog Orthod ; 25(1): 22, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825612

ABSTRACT

BACKGROUND: The aim of the present study was to investigate qualitatively and quantitatively the elution of substances from polyester-urethane (Invisalign™) aligners and resin composite attachments (Tetric EvoFlow) in vivo. METHODS: Patients (n = 11) treated with the aligners and attachments (16 per patient, without other composite restorations) for an average of 20 months, who were planned for attachment removed were enrolled in the study. Patients were instructed to rinse with 50 mL of distilled water upon entry and the rinsing solution was collected (before removal). Then, the attachments were removed with low-speed tungsten carbide burs for adhesive residue removal, a thorough water rinsing was performed immediately after the grinding process to discard grinding particle residues, and subsequently, after a second water-rinsing the solution was collected for analysis (after removal). The rinsing solutions were analyzed for targeted (LC-MS/MS: Bis-GMA, DCDMA, UDMA, BPA) and untargeted (LC-HRMS: screening of leached species and their degradation products) compounds. RESULTS: Targeted analysis revealed a significant reduction in BPA after attachment removal (4 times lower). Bis-GMA, DCDMA, UDMA were below the detection limit before removal but were all detectable after removal with Bis-GMA and UDMA at quantifiable levels. Untargeted analysis reviled the presence of mono-methacrylate transformation products of Bis-GMA (Bis-GMA-M1) and UDMA (UDMA-M1), UDMA without methacrylate moieties (UDMA-M2), and 4-(dimethylamino) benzoic acid (DMAB), the degradation product of the photo-initiator ethyl-4-(dimethylamino) benzoate (EDMAB), all after attachment removal. Several amino acids and endogenous metabolites were also found both before and after removal. CONCLUSIONS: Elevated levels of BPA were traced instantaneously in patients treated with Invisalign™ and flowable resin composite attachments for the testing period. BPA was reduced after attachment removal, but residual monomers and resin degradation products were found after removal. Alternative resin formulations and attachment materials may be utilized to reduce eluents.


Subject(s)
Composite Resins , Methacrylates , Polyurethanes , Humans , Polyurethanes/chemistry , Composite Resins/chemistry , Female , Male , Methacrylates/chemistry , Saliva/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Adult , Orthodontic Appliances, Removable , Polyesters/chemistry , para-Aminobenzoates/analysis , Young Adult , Adolescent , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Tandem Mass Spectrometry , Chromatography, Liquid
4.
BMC Oral Health ; 24(1): 696, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879492

ABSTRACT

BACKGROUND: An optimum restoration for reconstructing endodontically treated teeth should provide excellent marginal adaptation, high fracture resistance as well as maximum tooth structure conservation. The purpose of this study was to evaluate the marginal adaptation and fatigue resistance of different coronal restorations in endodontically treated premolars. METHODS: Thirty sound maxillary first premolars were endodontically treated and received MOD cavities. Teeth were randomly allocated into three groups (n = 10) according to the type of coronal restoration: Group R: polyethylene fibers (ribbond), fibers-reinforced composite (everX posterior) and final layer of nano-hybrid composite. Group O: indirect lithium disilicate overlay and Group C: fiber-post, resin composite restoration, and lithium disilicate crown. Marginal gap assessment was performed before and after thermocycling (5000 cycles) using stereomicroscope. Samples were subjected to stepwise-stress loading starting at 200 N, and increased by 100 N in each step until failure occurred. Statistical analysis was done by One-way ANOVA followed Tukey`s Post Hoc test for multiple comparison. Paired t test was used to compare the marginal adaptation before and after thermocycling. Survival probability was evaluated by Life table survival analysis. Failure mode analysis was performed with Chi-square test. RESULTS: Marginal gap was significantly the lowest in group R (37.49 ± 5.05) and (42.68 ± 2.38), while being the highest in group C (59.78 ± 5.67) and (71.52 ± 5.18) in before and after thermocycling respectively (P < 0.0001). Fatigue resistance was the highest for group O (1310.8 ± 196.7), and the lowest for group R (905.4 ± 170.51) with a significant difference between groups (P < 0.0001). Crown group had the highest percentage (80%) of catastrophic failure, while, overlay group exhibited the lowest (20%). CONCLUSIONS: Direct restoration without cuspal coverage using ribbon fibers with short FRC provided better marginal adaptation than indirect overlays and crowns, but fatigue resistance wasn't significantly improved. Adhesive ceramic overlays showed the best fatigue performance and the least catastrophic failure rate compared to both direct fiber-reinforced composite and indirect ceramic full coverage restorations. CLINICAL SIGNIFICANCE: Indirect adhesive overlays are a suitable, more conservative restorative option for endodontically treated teeth than full coverage restorations, especially when tooth structure is severely compromised.


Subject(s)
Bicuspid , Composite Resins , Crowns , Dental Marginal Adaptation , Post and Core Technique , Tooth, Nonvital , Humans , Composite Resins/chemistry , In Vitro Techniques , Dental Restoration, Permanent/methods , Dental Porcelain/chemistry , Dental Stress Analysis , Polyethylenes/chemistry , Dental Restoration Failure , Materials Testing , Dental Materials/chemistry
5.
Biomed Res Int ; 2024: 7457900, 2024.
Article in English | MEDLINE | ID: mdl-38884017

ABSTRACT

Objective: To evaluate the enamel bonding ability and orthodontic adhesive resin degree of conversion using the experimental bracket design. Material and Methods. Thirteen bovine teeth were used in the study. The experimental bracket was modified with a translucent region in the center of its body. After enamel etching, Orthocem orthodontic adhesive (FGM, Joinville, Brazil) was applied on the bracket base for bonding. The groups were divided as follows (n = 10 per group): (1) control (CB) with standard brackets and (2) spot bracket (SB) with experimental brackets featuring a 0.8 mm translucent region at the center using carbide bur. Shear bond strength (SBS) was evaluated after 24 hours in a universal testing machine and adhesive remnant index (ARI). The degree of conversion (DC) was analyzed using Raman spectroscopy (n = 3 per group). Data were then analyzed using Student's t-test and Mann-Whitney statistical methods. Results: The SB group exhibited a higher mean SBS (10.33 MPa) compared to the CB Group (8.77 MPa). However, there was no statistical difference between the groups (p = 0.376). Both SB and CB groups had a mean ARI score of 1. Raman analysis revealed a higher degree of conversion in the SB group (49.3%) compared to the CB group (25.9%). Conclusions: The experimental support showed a higher degree of adhesive conversion, although there was no significant increase in bond strength.


Subject(s)
Composite Resins , Dental Bonding , Dental Enamel , Orthodontic Brackets , Polymerization , Shear Strength , Animals , Cattle , Dental Bonding/methods , Dental Enamel/chemistry , Composite Resins/chemistry , Materials Testing , Dental Cements/chemistry , Resin Cements/chemistry
6.
Eur J Orthod ; 46(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38884540

ABSTRACT

AIM: The aim of the present study was to assess the alterations in morphology, roughness, and composition of the surfaces of a conventional and a flowable composite attachment engaged with aligners, and to evaluate the release of resin monomers and their derivatives in an aqueous environment. METHODS: Zirconia tooth-arch frames (n = 20) and corresponding thermoformed PET-G aligners with bonded attachments comprising two composite materials (universal-C and flowable-F) were fabricated. The morphological features (stereomicroscopy), roughness (optical profilometry), and surface composition (ATR-FTIR) of the attachments were examined before and after immersion in water. To simulate intraoral use, the aligners were removed and re-seated to the frames four times per day for a 7-day immersion period. After testing, the eluents were analyzed by LC-MS/MS targeting the compounds Bis-GMA, UDMA, 2-HEMA, TEGDMA and BPA and by LC-HRMS for suspect screening of the leached dental material compounds and their degradation products. RESULTS: After testing, abrasion-induced defects were found on attachment surfaces such as scratches, marginal cracks, loss of surface texturing, and fractures. The morphological changes and debonding rate were greater in F. Comparisons (before-after testing) revealed a significantly lower Sc roughness parameter in F. The surface composition of the aligners after testing showed minor changes from the control, with insignificant differences in the degree of C = C conversion, except for few cases with strong evidence of hydrolytic degradation. Targeted analysis results revealed a significant difference in the compounds released between Days 1 and 7 in both materials. Insignificant differences were found when C was compared with F in both timeframes. Several degradation products were detected on Day 7, with a strong reduction in the concentration of the targeted compounds. CONCLUSIONS: The use of aligners affects the surface characteristics and degradation rate of composite attachments in an aqueous environment, releasing monomers, and monomer hydrolysates within 1-week simulated use.


Subject(s)
Composite Resins , Materials Testing , Methacrylates , Surface Properties , Zirconium , Zirconium/chemistry , Composite Resins/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Polyurethanes/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Dental Materials/chemistry , In Vitro Techniques , Humans , Tooth Movement Techniques/instrumentation , Tooth Movement Techniques/methods , Spectroscopy, Fourier Transform Infrared/methods
7.
BMC Oral Health ; 24(1): 676, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858745

ABSTRACT

BACKGROUND: Clinicians often utilize both flowable and packable composites concurrently in bonding fixed retainers. Thus, this study aimed to assess the synergistic effect of these composites in the bonding process. METHODS: This in vitro study divided specimens into three groups: flowable composite (nano-hybrid, Tetric N-Flow, Ivoclar Vivadent), packable composite (nano-hybrid, Tetric N-ceram, Ivoclar Vivadent), and combined use of flowable and packable composite. Shear bond strength (SBS), adhesive remnant index (ARI), and wire pull-out resistance were compared among the groups. Statistical analyses were conducted using ANOVA and Tukey tests to compare study groups. Additionally, Chi-square and Kruskal-Wallis tests were employed to analyze the ARI index among the groups. RESULTS: ANOVA results indicated no statistically significant differences among test groups (P = 0.129) regarding SBS. However, a significant difference existed between flowable and packable composite groups (P = 0.01) regarding ARI scores. Among the study groups, flowable composite exhibited the highest frequencies of ARI scores of 1 and 2, whereas packable composite showed the highest frequency of ARI scores of 0. The combined group had higher frequencies of ARI scores of 0 and 1 compared to the flowable composite. The wire pull-out test revealed that the combined application of flowable and packable composite resulted in significantly lower detachments compared to the packable composite alone (P = 0.008). However, no significant differences were observed in the comparisons between the flowable-packable (P = 0.522) and combined-flowable (P = 0.128) groups. CONCLUSION: The combined use of flowable and packable composites for fixed retainers demonstrated adequate shear bond strength and ideal ARI scores, suggesting it as a suitable adhesive system for bonding orthodontic fixed retainers.


Subject(s)
Composite Resins , Materials Testing , Orthodontic Retainers , Shear Strength , Composite Resins/chemistry , In Vitro Techniques , Dental Bonding/methods , Dental Stress Analysis , Humans
8.
Am J Dent ; 37(2): 59-65, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704847

ABSTRACT

PURPOSE: To investigate the effect of toothbrushing with new and used toothbrushes on the surface of resin composites and dental enamel. METHODS: The extracted human incisors were selected after vestibular enamel surfaces (ES) were examined. Disc-shaped specimens of direct composite (DC) and indirect composite (IC) were fabricated. Computer-aided design-computer-aided manufacturing (CAD-CAM) composite blocks (CC) were sliced in 2 mm thickness (n= 8). The surface roughness, gloss, and color were measured. The measurements were performed before and after 3 months of toothbrushing simulation (TBS) for 2,500 circular cycles. The wear index was calculated by using the ImageJ program. The specimens were subjected to an additional 2,500 cycles and the same measurements were repeated. RESULTS: No significant increase in surface roughness values was observed in DC, IC, and CC groups after 3 and 6 months of TBS except in the ES group. The highest change in surface gloss was observed in the DC group. Although the wear index of toothbrushes increased over time, only the increase in the IC group was statistically significant (P= 0.033). CLINICAL SIGNIFICANCE: Changes in surface roughness, gloss, and discoloration of the dental enamel and restorations and wear of toothbrush bristles were increased over time.


Subject(s)
Composite Resins , Dental Enamel , Surface Properties , Toothbrushing , Toothbrushing/instrumentation , Humans , Composite Resins/chemistry , Computer-Aided Design , Materials Testing
9.
Am J Dent ; 37(2): 66-70, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704848

ABSTRACT

PURPOSE: To evaluate the effect of different finishing and polishing systems on the surface roughness of a resin composite subjected to simulated saliva-, acid-, and enzyme-induced degradation. METHODS: 160 specimens (n= 40) were fabricated with Filtek Z350 XT nanofilled composite and analyzed for average surface roughness (Ra). The specimens were finished and polished using: AD - Al2O3-impreginated rubberized discs (medium, fine, and superfine grit, Sof-Lex); SD - silicon carbide and Al2O3-impregnated rubberized discs (coarse, medium and fine grit, Jiffy,); MB - 12- and 30-multiblade burs. The control group (CT) (n= 40) comprised specimens with a Mylar-strip-created surface. Specimens from each group were immersed in 1 mL of one of the degradation methods (n= 10): artificial saliva (ArS: pH 6.75), cariogenic challenge (CaC: pH 4.3), erosive challenge (ErC: 0.05M citric acid, pH 2.3) or enzymatic challenge (EzC: artificial saliva with 700 µg/mL of albumin, pH 6.75). The immersion period simulated a time frame of 180 days. Ra measurements were also performed at the post-polishing and post-degradation time points. The data were evaluated by three-way ANOVA for repeated measures and the Tukey tests. RESULTS: There was significant interaction between the finishing/polishing system and the degradation method (P= 0.001). AD presented the greatest smoothness, followed by SD. After degradation, CT, AD and SD groups became significantly rougher, but not the MB group, which presented no difference in roughness before or after degradation. CT and AD groups showed greater roughness in CaC, ErC and EzC than in ArS. The SD group showed no difference in roughness when the specimens were polished with CaC, EzC or ArS, but those treated with ErC had greater roughness. In the MB group, the lower roughness values were found after using CaC and EzC, while the higher values were found using ErC or ArS. CLINICAL SIGNIFICANCE: As far as degradation resistance of nanofilled composite to hydrolysis, bacterial and dietary acids and enzymatic reactions is concerned, restorations that had been finished and polished with Al2O3-impregnated discs had the smoothest surfaces.


Subject(s)
Aluminum Oxide , Composite Resins , Dental Polishing , Saliva, Artificial , Silicon Compounds , Surface Properties , Composite Resins/chemistry , Dental Polishing/methods , Humans , Saliva, Artificial/chemistry , Hydrogen-Ion Concentration , Aluminum Oxide/chemistry , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Materials Testing , Nanocomposites/chemistry , Citric Acid/chemistry , Saliva/enzymology , Saliva/metabolism , Saliva/chemistry , Tooth Erosion , Rubber/chemistry , Dental Materials/chemistry
10.
Am J Dent ; 37(2): 71-77, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704849

ABSTRACT

PURPOSE: To investigate the effect of painless low-power Er:YAG laser irradiation of conventional and polymer-infiltrated ceramic network (PICN) type CAD-CAM resin-based composites (RBCs) on resin bonding. METHODS: An Er:YAG laser system, phosphoric acid etchant, universal adhesive, RBC, and two types of CAD-CAM RBC block were used. Microtensile bond strength, fracture mode, scanning electron microscopy (SEM) observations of bonding interfaces and CAD-CAM surfaces, and surface roughness of ground and pretreated surfaces were investigated. As pretreatment methods, low-power Er:YAG laser irradiation and air-abrasion with alumina particles were used. RESULTS: The effect of low-power Er:YAG laser irradiation of CAD-CAM RBCs on bonding to repair resin varied depending on the type of CAD-CAM RBCs. CLINICAL SIGNIFICANCE: The low-power Er:YAG laser irradiation of the conventional CAD-CAM RBCs was shown to be effective as a surface pretreatment for resin bonding, while the laser irradiation of PICN-type CAD-CAM RBCs was not effective.


Subject(s)
Composite Resins , Computer-Aided Design , Dental Bonding , Lasers, Solid-State , Microscopy, Electron, Scanning , Surface Properties , Composite Resins/chemistry , Tensile Strength , Materials Testing , Humans , Ceramics/chemistry , Acid Etching, Dental
11.
Am J Dent ; 37(2): 91-100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704852

ABSTRACT

PURPOSE: To compare the internal adaptation of restorative systems bonded to mid-coronal and gingival dentin using light-cured, chemical-cured, and dual-cured adhesives, both immediately and after aging. METHODS: 60 molars were selected and received occluso-mesial preparations with dentin gingival margins. Restorations were performed using different restorative systems with light-cured, chemical-cured, and dual-cured adhesives. Internal adaptation was assessed by examining the percentage of continuous margin (%CM) at the pulpal and gingival dentin under a scanning electron microscope at x200 magnification. Half of the teeth were stored in sterile water for 24 hours, while the other half underwent 10,000 thermal cycles. Micro-morphological analysis was conducted on representative samples at x1,000 magnification. RESULTS: The restorative system with light-cured adhesive exhibited significantly lower %CM values at the gingival dentin, particularly after aging. Aging had a negative impact on the %CM values of the pulpal and gingival dentin in restorative systems with light-cured and dual-cured adhesives. Regional dentin variations influenced the %CM values, especially after aging, regardless of the restorative system used. The tested restorative system with chemical-cured adhesive is preferable for achieving improved internal adaptation when bonding to both mid-coronal and gingival dentin, compared to the other tested systems. CLINICAL SIGNIFICANCE: The study highlights the variations in adhesive performance between different regional dentin areas using the tested restorative systems.


Subject(s)
Composite Resins , Gingiva , Humans , Composite Resins/chemistry , Dental Pulp , Dental Restoration, Permanent , Dental Marginal Adaptation , Microscopy, Electron, Scanning , Dentin , Resin Cements/chemistry , Molar , In Vitro Techniques , Light-Curing of Dental Adhesives , Materials Testing
12.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690698

ABSTRACT

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Subject(s)
Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
13.
J Contemp Dent Pract ; 25(3): 221-225, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690693

ABSTRACT

AIM: This study aimed to assess the color stability of bioactive restorative materials vs nanohybrid resin composites after 3 months of immersion in three frequently consumed beverages. MATERIALS AND METHODS: Thirty disk-shaped specimens of Giomer dental restorative material (Shofu, Japan) and nanohybrid resin composite (Tokuyama, Japan) were performed using a Teflon mold. Super-Snap system (Shofu, Japan) was utilized to finish and polish the specimens to be preserved for 24 hours in distilled water at 37°C. The samples had been divided into three subgroups (Coffee, tea, Pepsi) (n = 5). The initially displayed color measurements of the samples were performed using a spectrophotometer (VITA Easyshade® V). After 7 days, 30 days, and 90 days, color measurements were repeated, and the E of each sample was estimated. E of each sample was calculated. RESULTS: The Giomer group showed statistically significant higher E values than the nanohybrid resin composite where the p-value was ≤0.0001. Tea subgroup showed the highest statistically significant E values in both groups where the p-value was ≤ 0.0001. The highest statistically significant color change was recorded at 3 months. CONCLUSION: The color of bioactive restorative material is less stable if compared with nanohybrid resin composite. CLINICAL SIGNIFICANCE: As tea and coffee are popular beverages, particularly in Middle Eastern nations, dentists must advise patients about the color change of resin restorations. Patients are advised to brush their teeth immediately after consuming these beverages. How to cite this article: Saber EH, Abielhassan MH, Abed YA, et al. Color Stability of Bioactive Restorative Material vs Nanohybrid Resin Composite: An In Vitro Study. J Contemp Dent Pract 2024;25(3):221-225.


Subject(s)
Color , Composite Resins , Materials Testing , Tea , Composite Resins/chemistry , In Vitro Techniques , Coffee , Spectrophotometry , Dental Restoration, Permanent , Nanocomposites/chemistry , Dental Materials/chemistry , Humans , Beverages
14.
BMC Oral Health ; 24(1): 557, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735940

ABSTRACT

BACKGROUND: Dental resin-based composites are widely recognized for their aesthetic appeal and adhesive properties, which make them integral to modern restorative dentistry. Despite their advantages, adhesion and biomechanical performance challenges persist, necessitating innovative strategies for improvement. This study addressed the challenges associated with adhesion and biomechanical properties in dental resin-based composites by employing molecular docking and dynamics simulation. METHODS: Molecular docking assesses the binding energies and provides valuable insights into the interactions between monomers, fillers, and coupling agents. This investigation prioritizes SiO2 and TRIS, considering their consistent influence. Molecular dynamics simulations, executed with the Forcite module and COMPASS II force field, extend the analysis to the mechanical properties of dental composite complexes. The simulations encompassed energy minimization, controlled NVT and NPT ensemble simulations, and equilibration stages. Notably, the molecular dynamics simulations spanned a duration of 50 ns. RESULTS: SiO2 and TRIS consistently emerged as influential components, showcasing their versatility in promoting solid interactions. A correlation matrix underscores the significant roles of van der Waals and desolvation energies in determining the overall binding energy. Molecular dynamics simulations provide in-depth insights into the mechanical properties of dental composite complexes. HEMA-SiO2-TRIS excelled in stiffness, BisGMA-SiO2-TRIS prevailed in terms of flexural strength, and EBPADMA-SiO2-TRIS offered a balanced combination of mechanical properties. CONCLUSION: These findings provide valuable insights into optimizing dental composites tailored to diverse clinical requirements. While EBPADMA-SiO2-TRIS demonstrates distinct strengths, this study emphasizes the need for further research. Future investigations should validate the computational findings experimentally and assess the material's response to dynamic environmental factors.


Subject(s)
Biocompatible Materials , Composite Resins , Molecular Docking Simulation , Molecular Dynamics Simulation , Silicon Dioxide , Composite Resins/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Polyurethanes/chemistry , Polymethacrylic Acids/chemistry , Polyethylene Glycols/chemistry , Acrylic Resins/chemistry
15.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38770704

ABSTRACT

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Subject(s)
Ceramics , Dental Bonding , Materials Testing , Resin Cements , Shear Strength , Silicon Dioxide , Silicon Dioxide/chemistry , Ceramics/chemistry , Time Factors , Resin Cements/chemistry , Computer-Aided Design , Surface Properties , Dental Stress Analysis , Cementation/methods , Dental Porcelain/chemistry , Humans , Composite Resins/chemistry , Dental Cements/chemistry , Potassium Compounds/chemistry , Aluminum Silicates/chemistry , Temperature
16.
J Adhes Dent ; 26(1): 135-145, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38771025

ABSTRACT

PURPOSE: To measure zirconia-to-zirconia microtensile bond strength (µTBS) using composite cements with and without primer. MATERIALS AND METHODS: Two Initial Zirconia UHT (GC) sticks (1.8x1.8x5.0 mm) were bonded using four cements with and without their respective manufacturer's primer/adhesive (G-CEM ONE [GOne] and G-Multi Primer, GC; Panavia V5 [Pv5]), and Panavia SA Cement Universal [PSAu], and Clearfil Ceramic Plus, Kuraray Noritake; RelyX Universal (RXu) and Scotchbond Universal Plus [SBUp], 3M Oral Care). Specimens were trimmed to an hour-glass shaped specimen whose isthmus is circular in cross-section. After 1-week water storage, the specimens were either tested immediately (1-week µTBS) or first subjected to 50,000 thermocycles (50kTC-aged µTBS). The fracture mode was categorized as either adhesive interfacial failure, cohesive failure in composite cement, or mixed failure, followed by SEM fracture analysis of selected specimens. Data were analyzed using linear mixed-effects statistics (α = 0.05; variables: composite cement, primer/adhesive application, aging). RESULTS: The statistical analysis revealed no significant differences with aging (p = 0.3662). No significant difference in µTBS with/without primer and aging was recorded for GOne and PSAu. A significantly higher µTBS was recorded for Pv5 and RXu when applied with their respective primer/adhesive. Comparing the four composite cements when they were applied in the manner that resulted in their best performance, a significant difference in 50kTC-aged µTBS was found for PSAu compared to Pv5 and RXu. A significant decrease in µTBS upon 50kTC aging was only recorded for RXu in combination with SBUp. CONCLUSION: Adequate bonding to zirconia requires the functional monomer 10-MDP either contained in the composite cement, in which case a separate 10-MDP primer is no longer needed, or in the separately applied primer/adhesive.


Subject(s)
Composite Resins , Dental Bonding , Materials Testing , Methacrylates , Resin Cements , Tensile Strength , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Composite Resins/chemistry , Methacrylates/chemistry , Dental Cements/chemistry , Ceramics/chemistry , Dental Stress Analysis , Humans , Time Factors , Water/chemistry , Temperature , Dental Porcelain/chemistry , Surface Properties , Dental Materials/chemistry , Glass Ionomer Cements
17.
Eur J Paediatr Dent ; 25: 1, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38775099

ABSTRACT

AIM: Prosthetic rehabilitation of deciduous teeth in paediatric age using pre-formed crowns has been considered one of the best methods of dental restoration since their introduction. Their main advantages are related to durability, longevity and a low rate of recurrent cavities. Since stainless steel crowns do not coincide with aesthetic needs of parents and patients, preformed paedodontic crowns made of zirconia and nano-hybrid composite was introduced. The aim of the study is to evaluate the degree of wear on the enamel and on themselves of the different paedodontic crowns. MATERIALS: Nine bovine teeth and nine paedodontic crowns for deciduous molars were selected for the study, three of which in zirconia, three in nano-hybrid composite and three in stainless steel. Wear test was carried out on the Rtech™ Instruments tribometer applying a force of 50 N. After that, both the bovine teeth and the paedodontic crowns were observed using a stereo microscope (Zeiss Stemi C-500) and a scanning electron microscope (SEM, Cambridge Stereoscan 440). The areas of wear were calculated with a software [ImageJ, version 1x, Wayne Rasband, Maryland, USA]. CONCLUSION: Pre-formed paediatric crowns in zirconia, nano-hybrid composite and stainless steel are a valid aid for the restoration of deciduous teeth and do not compromise the physiological wear characteristic of the phases of the dental exchange. The stainless steel crown is preferable for the restorations in the posterior sectors as its behaviour is the most similar to that of a natural tooth. Zirconia and nano-hybrid composite crowns showed an inversely proportional behaviour between their wear volume and that of the opposing tooth.


Subject(s)
Crowns , Stainless Steel , Tooth, Deciduous , Zirconium , Cattle , Zirconium/chemistry , Stainless Steel/chemistry , Animals , Humans , Composite Resins/chemistry , Microscopy, Electron, Scanning , Dental Restoration Wear , Dental Materials/chemistry , Dental Enamel , Tooth Wear , Child
18.
Int J Prosthodont ; 37(7): 165-173, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38787581

ABSTRACT

PURPOSE: To investigate the impact of printing layer thickness on the optical properties and surface roughness of various 3D-printed resins manufactured by digital light processing (DLP) and indicated for provisional and definitive restorations. MATERIALS AND METHODS: A total of 240 specimens from four different 3D-printing resins-VarseoSmile Crown Plus (Bego; VS), Crowntec (Saremco Dental; CR), GC Temp PRINT (GC Dental; TG), and NextDent C&B MFH (NextDent; ND)-were divided into four groups (n = 60 per group). Each group was further divided into three subgroups (n = 20) according to printing layer thickness (25, 50, and 100 µm). All specimens were subjected to thermocycling with coffee before measurements were taken with a spectroradiometer to calculate color differences. The Kubelka-Munk (K-M) absorption (K) and scattering coefficients (S), translucency parameters (TP), and surface roughness (Ra) values were calculated for each printing layer thickness and compared with those of the 2M2 shade tab (target). The data were analyzed using Mann-Whitney U test, the variance accounted for (VAF) coefficient by Cauchy-Schwarz, and post hoc comparisons using Tukey test (α ≤ .05). RESULTS: S (79% ≤ VAF ≤ 100%) and K (40.45% ≤ VAF ≤ 100%) spectral distribution depended on the wavelength. A 25-µm layer thickness resulted in no significant differences from the 2M2 shade for S (P > .230) and K (P > .200). VS showed significantly different S (P = .004) and K (P = .003) values from those of the shade tab with 50-µm layering thickness, whereas other materials did not show significant differences from the 2M2 shade for S (P > .280) and K (P > .301). The 100-µm layer thickness specimens had significantly different S and K values compared to the 2M2 shade tab (P < .004). TP values of resins with 100-µm layer thickness were significantly lower than resins in 25- and 50-µm layer thicknesses (P < .001). The Ra values of resins increased significantly with 100-µm layer thickness (P ≤ .001). CONCLUSIONS: All tested materials, except for VS, showed color properties similar to the target shade when 25- and 50-µm printing layer thicknesses were used. The translucency of resins tended toward an inverse relationship with printing layer thickness. The surface roughness of resins increased significantly with 100-µm layer thickness. However, all resins with a printing thickness of 25 µm showed better color properties and surface roughness.


Subject(s)
Printing, Three-Dimensional , Surface Properties , Materials Testing , In Vitro Techniques , Composite Resins/chemistry , Resins, Synthetic/chemistry
19.
Int J Prosthodont ; 37(7): 203-207, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38787585

ABSTRACT

AIM: The aim of this study was to evaluate the flexural strength properties of three different aged and nonaged 3D-printed resins built by different 3D printing systems used in dental applications. MATERIALS AND METHODS: Bars (2 × 2 × 25 mm) were additively fabricated using a 3D printer and different dental crown resins (Saremco Crowntec, Senertek P-Crown V2, and Senertek P-Crown V3) per the manufacturers' recommendations. Each subgroup was divided into aged and nonaged subgroups (n = 10 bars per group). Thermocycling procedures (5° to 55°C; 5,000 cycles) were performed under favorable conditions for the aged subgroups from each material. Flexural strength (MPa) was measured in all samples using a universal test machine. RESULTS: When both aged and nonaged resins are compared, significant differences were found in flexural strength measurements (P < .001). The highest flexural strength was observed in the Saremco Crowntec group, while the lowest flexural strength was observed in the Senertek P Crown V2 group. The flexural strength measurements of Saremco Crowntec and Senertek P Crown V3 displayed no significant difference between their aged and nonaged groups (P > .05), while Senertek P Crown V2 (P = .039) showed significant differences between its aged and nonaged groups. CONCLUSIONS: Saremco Crowntec showed the highest flexural strength both in aged and nonaged groups, while Senertek P Crown V2 had the lowest strength. The artificial aging process decreased flexural strength values in all 3D-printed resin groups.


Subject(s)
Crowns , Flexural Strength , Materials Testing , Printing, Three-Dimensional , Dental Stress Analysis , Time Factors , Composite Resins/chemistry
20.
Int J Prosthodont ; 37(7): 175-185, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38787582

ABSTRACT

PURPOSE: To assess the manufacturing accuracy, intaglio surface adaptation, and survival of resin-based CAD/CAM definitive crowns created via additive manufacturing (AM) or subtractive manufacturing (SM). MATERIALS AND METHODS: A maxillary right first molar crown was digitally designed and manufactured using AM hybrid resin composite (VarseoSmile Crown Plus, Bego [AM-HRC]), AM glass filler-reinforced resin composite (Crowntec, Saremco Dental [AM-RC]), and SM polymer-infiltrated ceramic (Vita Enamic, VITA Zahnfabrik [SM-PICN]). Manufacturing accuracy (trueness and precision) was assessed by computing the root mean square (RMS) error (in µm; n = 15 per material). Intaglio surface adaptation was assessed by calculating the average gap distance (µm). Ten crowns from each group were cemented on fiberglass-reinforced epoxy resin dies and cyclically loaded to simulate 5 years of functional loading. One-way ANOVA, post hoc Bonferroni comparison tests, and Levene's test were used to analyze the data (α = .05). RESULTS: AM-RC had higher overall trueness than AM-HRC and SM-PICN (P ≤ .05), whereas the trueness of AM-RC on the external surface was similar to that of SM-PICN (P = .99) and higher than AM-HRC (P = .001). SM-PICN had lower precision than AM-RC and AM-HRC overall and at internal occlusal surfaces (P ≤ .05). Overall intaglio surface adaptation was similar between all groups (P = .531). However, for the axial intaglio surface, AM-RC and AM-HRC had higher adaptation than SM-PICN (P ≤ .05). All tested crowns survived the cyclic loading simulation of 5 years clinical use. CONCLUSIONS: AM-RC showed high manufacturing accuracy and adaptation. The tested resin-based CAD/CAM materials demonstrated clinically acceptable manufacturing accuracy and simulated medium-term durability, justifying the initiation of clinical investigations to determine their potential implementation in daily clinical practice.


Subject(s)
Composite Resins , Computer-Aided Design , Crowns , Dental Prosthesis Design , In Vitro Techniques , Composite Resins/chemistry , Humans , Dental Marginal Adaptation , Surface Properties , Materials Testing , Dental Stress Analysis , Ceramics/chemistry , Molar
SELECTION OF CITATIONS
SEARCH DETAIL
...