Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.996
Filter
1.
Bioresour Technol ; 404: 130914, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823563

ABSTRACT

As a new technology for accurate utilization of sludge resources, sludge inorganic-organic matter separation (IOMS) has attracted wide attention. This study examined the impact of this pretreatment on environmental and economic performance of sludge composting and incineration using life cycle assessment (LCA) and whole life costing (WLC). LCA results indicated that IOMS pretreatment reduced the energy conservation and emission reduction (ECER) values of composting and incineration by 56 % and 76 %, respectively. Meanwhile, WLC exhibited that IOMS pretreatment could cut the break-even year of incineration from 11 years to 4 years. The combination of organic sludge incineration/composting with inorganic sludge sintering ceramsite reveals excellent environmental and economic performance. The application optimization hypothesis analysis of these two routes in various provinces of China indicates that Jiangsu has the greatest development potential and should become a major promotion region.


Subject(s)
Sewage , Composting/methods , Incineration , Environment , China
2.
BMC Plant Biol ; 24(1): 545, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872089

ABSTRACT

The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.


Subject(s)
Arsenic , Biodegradation, Environmental , Charcoal , Oryza , Soil Pollutants , Oryza/metabolism , Oryza/growth & development , Arsenic/metabolism , Soil Pollutants/metabolism , Composting/methods , Araceae/metabolism , Araceae/drug effects , Araceae/growth & development , Soil/chemistry
3.
BMC Plant Biol ; 24(1): 548, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872106

ABSTRACT

Enhancing wheat productivity by implementing a comprehensive approach that combines irrigation, nutrition, and organic amendments shows potential for collectively enhancing crop performance. This study examined the individual and combined effects of using irrigation systems (IS), foliar potassium bicarbonate (PBR) application, and compost application methods (CM) on nine traits related to the growth, physiology, and yield of the Giza-171 wheat cultivar. Analysis of variance revealed significant (P ≤ 0.05) main effects of IS, PBR, and CM on wheat growth, physiology, and yield traits over the two growing seasons of the study. Drip irrigation resulted in a 16% increase in plant height, leaf area index, crop growth rate, yield components, and grain yield compared to spray irrigation. Additionally, the application of foliar PBR at a concentration of 0.08 g/L boosted these parameters by up to 22% compared to the control. Furthermore, the application of compost using the role method resulted in enhanced wheat performance compared to the treatment including mix application. Importantly, the combined analysis revealed that the three-way interaction between the three factors had a significant effect (P ≤ 0.05) on all the studied traits, with drip irrigation at 0.08 g PBR rate and role compost application method (referred as Drip_0.08g_Role) resulting in the best performance across all traits, while sprinkle irrigation without PBR and conventional mixed compost method (referred as sprinkle_CK_Mix) produced the poorest results. This highlights the potential to synergistically improve wheat performance through optimized agronomic inputs.


Subject(s)
Agricultural Irrigation , Triticum , Triticum/growth & development , Triticum/metabolism , Agricultural Irrigation/methods , Fertilizers , Bicarbonates/metabolism , Composting/methods , Potassium Compounds , Soil/chemistry
4.
BMC Plant Biol ; 24(1): 538, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867179

ABSTRACT

BACKGROUND: The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS: In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS: Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.


Subject(s)
Charcoal , Composting , Seeds , Soil , Trigonella , Trigonella/metabolism , Trigonella/physiology , Trigonella/growth & development , Soil/chemistry , Seeds/growth & development , Composting/methods , Dehydration , Water/metabolism , Salinity
5.
Sci Total Environ ; 942: 173567, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38848918

ABSTRACT

The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion. Specifically, the effects of exogenous additives on the contents, fractionation, and fate of phosphorus (P) and potentially toxic elements (PTEs) during the composting process have been comprehensively reviewed in this article. The composting process can transform biomass-P and additive-born P into plant available forms. PTEs can be passivated during the composting process. Biochar can accelerate the passivation of PTEs in the composting process through different physiochemical interactions such as surface adsorption, precipitation, and cation exchange reactions. The addition of exogenous calcium, magnesium and phosphate in the compost can reduce the mobility of PTEs such as copper, cadmium, and zinc. Based on critical analysis, this paper recommends an eco-innovative perspective for the improvement and practical application of composting technology for the utilization of agricultural biowastes to meet the circular economy approach and achieve the SDGs.


Subject(s)
Agriculture , Composting , Phosphorus , Phosphorus/analysis , Agriculture/methods , Composting/methods , Waste Management/methods
6.
Waste Manag ; 185: 55-63, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38843757

ABSTRACT

Composted materials serve as an effective soil nutrient amendment. Organic matter in compost plays an important role in quantifying composted materials overall quality and nutrient content. Measuring organic matter content traditionally takes considerable time, resources, and various laboratory equipment (e.g., oven, muffle furnace, crucibles, precision balance). Much like the quantitative color indices (e.g., sRGB R, sRGB G, sRGB B, CIEL*a* b*) derived from the low-cost NixPro2 color sensor have proven adept at predicting soil organic matter in-situ, the NixPro2 color sensor has the potential to be effective for predicting organic matter in composted materials without the need for traditional laboratory methods. In this study, a total of 200 compost samples (13 different compost types) were measured for organic matter content via traditional loss-on-ignition (LOI) and via the NixPro2 color sensor. The NixPro2 color sensor showed promising results with an LOI-prediction model utilizing the CIEL*a* b* color model through the application of the Generalized Additive Model (GAM) algorithm yielding an excellent prediction accuracy (validation R2 = 0.87, validation RMSE = 4.66 %). Moreover, the PCA scoreplot differentiated the three lowest organic matter compost types from the remaining 10 compost types. These results have valuable practical significance for the compost industry by predicting compost organic matter in real time without the need for laborious, time-consuming methods.


Subject(s)
Color , Composting , Soil , Composting/methods , Soil/chemistry
7.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1331-1336, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886432

ABSTRACT

Understanding the effects of food waste biogas residue composting and chemical amendments on soil aggregates composition of different particle sizes, stability, and organic matter distribution in relocation sites could provide primary data for improving soil quality and land utilization of food waste biogas residue composting. We analyzed the characteristics of soil aggregates distribution, stability of aggregates, and organic matter content in different particle sizes under treatments with different application amounts of food waste biogas residue composting, chemical amendments (ß-cyclodextrin, calcium sulfate and ferric oxide were mixed at a mass ratio of 1:1:1), and control (100% soil). The results showed that 20% (soil: biogas residue composting=8:2) and 30% (soil: biogas residue composting =7:3) biogas residue composting significantly decreased the micro-aggregates content with the particle size of <0.106 mm and increased the large aggregates content with the particle size of 0.5-1.0 mm. All treatments significantly increased large aggregates content with the particle size of ≥2.0 mm, soil aggregate structure content, and mean weight diameter, but reduced the percentage of aggregate destruction. Among all the treatments, the effect of mixes application of 20% biogas residue composting and chemical amendments was the best. Biogas residue composting treatments significantly affected the distribution of organic matter in soil aggregates, with the strongest effect under 30% biogas residue composting treatment. Biogas residue composting treatments significantly increased soil organic matter content in all aggregates, with the maximal increase of organic matter content in soil micro-aggregates with the particle size of 0.106-0.25 mm. In conclusion, biogas residue composting could increase organic matter content of soil aggregates in different particle sizes, promote the formation of large soil aggregates, and improve the stability of aggregation. Specifically, the mixed application of biogas residue composting and chemical amendments performed better on soil improvement in relocation site.


Subject(s)
Biofuels , Composting , Organic Chemicals , Refuse Disposal , Soil , Soil/chemistry , Composting/methods , Biofuels/analysis , Organic Chemicals/analysis , Organic Chemicals/chemistry , Refuse Disposal/methods , Particle Size , Food , Food Loss and Waste
8.
An Acad Bras Cienc ; 96(3): e20221063, 2024.
Article in English | MEDLINE | ID: mdl-38865506

ABSTRACT

This study evaluated the influence of milk production, number of lactations, and days in milk (DIM) on the quality and composition of milk from dairy cows housed in a compost barn (CB) system. The study was carried out using a six-year database, counting 31,268 observations from 2,037 cows of European breeds. Multiparous cows showed higher fat and protein production. Lactose showed high levels for primiparous and the initial stage of lactation (4.65%) and was negatively influenced by somatic cell count (SCC). Milk urea nitrogen was higher (14.01%) from 106 to 205 days in milk, and the other components were higher at >305 days. Therefore, the solids content was higher in the first and second lactations due to the high contents of lactose, fat, and milk protein, but lactose was reduced over lactations. In contrast, high DIM increased SCC and concentrated solids due to lower milk production. The effect of milk production, stage, and lactation order on the composition and milk quality of herds housed in CB showed the same pattern as in other production systems.


Subject(s)
Dairying , Lactation , Milk , Animals , Lactation/physiology , Milk/chemistry , Milk/cytology , Female , Cattle , Dairying/methods , Composting , Lactose/analysis , Time Factors , Milk Proteins/analysis
9.
Chemosphere ; 361: 142520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834092

ABSTRACT

Organic fertilizers have become a vector for the transport of microplastics (MPs), which pose human health concerns through the food chain. This study aimed to quantify and characterize MPs in eight different compost samples of various raw materials and their subsequent translocation to lettuce (Lacuta sativa) grown on contaminated composts. The results revealed that the MP abundance ranged from 3810 to 16530 MP/kg. Municipal solid waste compost (MSWC) had highest abundance (16082 ± 632 MP/kg), followed by leaf compost (LC) and organic compost (OC) (6299 ± 1011 and 3680 ± 419 MP/kg, respectively). MPs of <100 µm in size were most dominant in MSWC and LC. Fragments and fibers were the prevalent shape types, with white/transparent colored MPs being more abundant. Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were the dominant polymers. MPs accumulation in the lettuce leaves was greatest in the lettuce plants grown on MSWC, followed by those grown on LC and OC, indicating that MSWC grown lettuce is not suitable for human consumption. The decrease in the growth (leaf length, number of leaves, leaf fresh and weights) and physiological (membrane stability index, relative water contents) parameters of lettuce was in line with the trend of MP accumulations. Hence, it is highly important to regulate the plastic contents in compost because it is a threat to ecosystems and human health.


Subject(s)
Composting , Lactuca , Microplastics , Soil Pollutants , Microplastics/analysis , Lactuca/metabolism , Lactuca/growth & development , Lactuca/chemistry , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Environmental Monitoring , Polymers/analysis , Solid Waste/analysis , Polyethylene , Fertilizers/analysis , Polypropylenes
10.
Huan Jing Ke Xue ; 45(6): 3638-3648, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897783

ABSTRACT

To achieve efficient resource utilization of fly ash and multi-source organic waste, a composting experiment was carried out to investigate the effects of fly ash on co-aerobic composting using kitchens, chicken manure, and sawdust (15:5:2). The effects of different application doses (5 % and 10 %, calculated in total wet weight of organic solid waste) of fly ash on physical and chemical properties, nutrient elements, and bacterial community structure during co-composting were evaluated. The results showed that the addition dose of 5 % and 10 % fly ash significantly increased the highest temperature (56.6 ℃ and 56.9 ℃) and extended the thermophilic period to nine days. Compared with that in the control, the total nutrient content of compost products in the treatments of 5 % FA and 10 % FA was increased by 4.09 % and 13.55 %, respectively. The bacterial community structure changed greatly throughout the composting, and the bacterial diversity of all treatments increased obviously. In the initial stage of composting, Proteobacteria was the dominant phylum of bacteria, with a relative abundance ranging from 35.26 % to 39.40 %. In the thermophilic period, Firmicutes dominated; its relative abundance peaked at 52.46 % in the 5 % FA treatment and 67.72 % in the 10 % FA treatment. Bacillus and Thermobifida were the predominant groups in the thermophilic period of composting. The relative abundance of Bacillus and Thermobifida in the 5 % FA and 10 % FA treatments were 33.41 % and 62.89 %(Bacillus) and 33.06 % and 12.23 %(Thermobifida), respectively. The results of the redundancy analysis (RDA) revealed that different physicochemical indicators had varying degrees of influence on bacteria, with organic matter, pH, available phosphorus, and available potassium being the main environmental factors influencing bacterial community structure. In summary, the addition of fly ash promoted the harmlessness and maturation of co- aerobic composting of urban multi-source organic waste, while optimizing microbial community structure and improving the quality and efficiency of composting.


Subject(s)
Bacteria , Cities , Coal Ash , Composting , Organic Chemicals , Refuse Disposal , Solid Waste , Composting/methods , Refuse Disposal/methods , Organic Chemicals/analysis , Solid Waste/analysis , Bacteria/classification , Bacteria/growth & development , Manure , Proteobacteria , Microbiota
11.
Bioresour Technol ; 403: 130862, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768664

ABSTRACT

Humus is the stable form of carbon storage in straw compost. The phenol-amine reaction is a pathway for humus formation in straw compost. In this study, two reaction systems, GP group (pyrogallol and glycine) and GCP group (catechol, pyrogallol, and glycine), were constructed in a simulated composting environment and revealed the molecular binding mechanism of the phenol-amine reaction through spectroscopy and mass spectrometry. The results showed that phenolic self-polymerization was faster than phenol-amine reaction. Therefore, the aromatization degree of GP was 27.14 % higher than that of GCP. The phenol-amine reaction first produced fulvic acid, and then formed humus units rich in active functional group structures (i.e., phenolic hydroxyl and carboxyl groups). These units further captured small molecule compounds to form humic acid eventually. This study would provide theoretical support for exploring the humus formation process and the promotion of straw humification by adding phenol or amino acids to compost.


Subject(s)
Amines , Composting , Humic Substances , Mass Spectrometry , Phenol , Humic Substances/analysis , Amines/chemistry , Composting/methods , Mass Spectrometry/methods , Phenol/chemistry , Soil/chemistry , Phenols , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
12.
Bioresour Technol ; 403: 130863, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772520

ABSTRACT

The OH production by adding magnetite (MGT) alone has been reported in composting. However, the potential of nitrilotriacetic acid (NTA) addition for magnetite-amended sludge composting remained unclear. Three treatments with different addition [control check (CK); T1: 5 % MGT; T2: 5 % MGT + 5 % NTA] were investigated to characterize hydroxyl radical, humification and bacterial community response. The NTA addition manifested the best performance, with the peak OH content increase by 52 % through facilitating the cycle of Fe(Ⅱ)/Fe(Ⅲ). It led to the highest organic matters degradation (22.3 %) and humic acids content (36.1 g/kg). Furthermore, NTA addition altered bacterial community response, promoting relative abundances of iron-redox related genera, and amino acid metabolism but decreasing carbohydrate metabolism. Structural equation model indicated that temperature and Streptomyces were the primary factors affecting OH content. The study suggests that utilizing chelators is a promising strategy to strengthen humification in sewage sludge composting with adding iron-containing minerals.


Subject(s)
Composting , Ferrosoferric Oxide , Humic Substances , Hydroxyl Radical , Nitrilotriacetic Acid , Sewage , Nitrilotriacetic Acid/chemistry , Ferrosoferric Oxide/chemistry , Composting/methods , Iron/chemistry
13.
Bioresour Technol ; 403: 130859, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777228

ABSTRACT

The effects of microbial agents on nitrogen (N) conversion during cotton straw composting remains unclear. In this study, inoculation increased the germination index and total nitrogen (TN) by 24-29 % and 7-10 g/kg, respectively. Inoculation enhanced the abundance of nifH, glnA, and amoA and reduced that of major denitrification genes (nirK, narG, and nirS). Inoculation not only produced high differences in the assembly process and strong community replacement but also weakened environmental constraints. Partial least squares path modelling demonstrated that enzyme activity and bacterial community were the main driving factors influencing TN. In addition, network analysis and the random forest model showed distinct changing patterns of bacterial communities after inoculation and identified keystone microorganisms in maintaining network complexity and synergy, as well as system function to promote nitrogen preservation. Findings provide a novel perspective on high-quality resource recovery of agricultural waste.


Subject(s)
Bacteria , Composting , Gossypium , Nitrogen , Gossypium/microbiology , Gossypium/genetics , Composting/methods , Bacteria/genetics , Genes, Bacterial , Denitrification , Soil Microbiology , Soil/chemistry
14.
Environ Res ; 255: 119188, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795950

ABSTRACT

The efficient use of livestock and poultry manure waste has become a global challenge, with microorganisms playing an important role. To investigate the impact of novel ammonifying microorganism cultures (NAMC) on microbial community dynamics and carbon and nitrogen metabolism, five treatments [5% (v/w) sterilized distilled water, Amm-1, Amm-2, Amm-3, and Amm-4] were applied to cow manure compost. Inoculation with NAMC improved the structure of bacterial and fungal communities, enriched the populations of the functional microorganisms, enhanced the role of specific microorganisms, and promoted the formation of tight modularity within the microbial network. Further functional predictions indicated a significant increase in both carbon metabolism (CMB) and nitrogen metabolism (NMB). During the thermophilic phase, inoculated NAMC treatments boosted carbon metabolism annotation by 10.55%-33.87% and nitrogen metabolism annotation by 26.69%-63.11. Structural equation modeling supported the NAMC-mediated enhancement of NMB and CMB. In conclusion, NAMC inoculation, particularly with Amm-4, enhanced the synergistic interaction between bacteria and fungi. This collaboration promoted enzymatic catabolic and synthetic processes, resultng in positive feedback loops with the endogenous microbial community. Understanding these mechanisms not only unravels how ammonifying microorganisms influence microbial communities but also paves the way for the development of the composting industry and global waste management practices.


Subject(s)
Carbon , Composting , Manure , Nitrogen , Nitrogen/metabolism , Manure/microbiology , Animals , Carbon/metabolism , Fungi/metabolism , Microbiota , Bacteria/metabolism , Soil Microbiology , Cattle
15.
Bioresour Technol ; 403: 130899, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801951

ABSTRACT

Amino acids are essential organic compounds in composting products. However, the mechanism underlying the amino acid metabolism during composting remains unclear. This study aims at exploring the impacts of inoculating cellulose-degrading microbes on amino acid metabolism during composting with mulberry branches and silkworm excrements. Cellulose-degrading microbial inoculation enhanced amino acid degradation by 18%-43% by increasing protease and sucrase activities and stimulating eight amino acid degradation pathways from the initial to thermophilic phases, with Enterococcus, Saccharomonospora, Corynebacterium being the dominant bacterial genera, but stimulated amino acid production by 54% by increasing sucrase and urease activities, decreasing ß-glucosidase activities, and stimulating twenty-two amino acid synthesis pathways at the mature phase, with Thermobifida, Devosia, and Cellulosimicrobium being the dominant bacterial genera. The results suggest that cellulose-degrading microbial inoculation enhances amino acid degradation from the initial to thermophilic phases and biosynthesis at the mature phase, thereby improving the quality of organic fertilizer.


Subject(s)
Amino Acids , Cellulose , Composting , Amino Acids/metabolism , Cellulose/metabolism , Bacteria/metabolism , Animals , Bombyx/metabolism , Bombyx/microbiology , Soil/chemistry
16.
Environ Pollut ; 355: 124255, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38815894

ABSTRACT

Polylactic Acid (PLA) based compostable bioplastic films degrade under thermophilic composting conditions. The purpose of our study was to understand whether sample pre-treatment along with bioaugmentation of the degradation matrix could reduce the biodegradation time under a simulated composting environment. Sepcifically, we also explored whether the commercial composts could be replaced by landfill-mined soil-like fraction (LMSF) for the said application. The effect of pre-treatment on the material was analysed by tests like tensile strength analysis, hydrophobicity analysis, morphological analysis, thermal degradation profiling, etc. Subsequently, the degradation experiment was performed in a simulated composting environment following the ASTM D5338 standard, along with bioaugmentation in selected experimental setups. When the novel approach of material pre-treatment and bioaugmentation were applied in combination, the time necessary for 90% degradation was reduced by 27% using compost and by 23% using LMSF. Beyond the improvement in degradation rate, the water holding capacity increased significantly for the degradation matrices. With pH, C: N ratio and microbial diversity tested to be favourable through 16s metabarcoding studies, material pre-treatment and bioaugmentation allow LMSF to not only replace commercial compost in polymer degradation but also find immense application in the agricultural sector of drought-affected areas (for better water retention) after it has been used for PLA degradation.


Subject(s)
Agriculture , Biodegradation, Environmental , Composting , Soil , Waste Disposal Facilities , Composting/methods , Soil/chemistry , Biopolymers , Agriculture/methods , Soil Microbiology , Soil Pollutants/metabolism , Soil Pollutants/analysis , Polyesters/chemistry , Polyesters/metabolism , Refuse Disposal/methods
17.
Sci Rep ; 14(1): 12575, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822086

ABSTRACT

This study investigated batch-fed vermicomposting of cow manure, with a specific focus on assessing the effects of tylosin on the weight of earthworms and the overall quality of the resulting manure. Five reactors, including three concentrations of tylosin (50, 100, and 150 mg/kg) and two control reactors, were employed. Residual tylosin concentrations were measured using high-performance liquid chromatography (HPLC). Quality parameters such as pH, temperature, volatile solids (VS), organic carbon content (OCC), electrical conductivity (EC), ash content, C/N ratio, total Kjeldahl nitrogen (TKN), and microbial content were evaluated. The toxicity and maturity of vermicompost were assessed by determining the germination index (GI). The study also monitored variations in the earthworm's weight. The results demonstrated a decreasing trend in VS, OCC, C/N, and fecal coliforms, along with increased pH, EC, ash content, and TKN during the vermicomposting process. Furthermore, investigations revealed significant reductions in the reactors with tylosin concentrations of 50, 100, and 150 mg/kg, resulting in the removal of 98%, 90.48%, and 89.38% of the initial tylosin, respectively. This result confirms the faster removal of tylosin in reactors with lower concentrations. Degradation of tylosin also conforms to first-order kinetics. The findings showed a significant influence of tylosin on the weight of Eisenia fetida earthworms and the lowest antibiotic concentration led to the highest weight gain. Finally, the high percentage of germination index (90-100%) showed that the quality and maturity of vermicompost is by national and international standards.


Subject(s)
Composting , Manure , Oligochaeta , Tylosin , Animals , Tylosin/pharmacology , Manure/analysis , Oligochaeta/drug effects , Oligochaeta/metabolism , Cattle , Composting/methods , Soil/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen-Ion Concentration
18.
Environ Res ; 252(Pt 4): 119151, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754608

ABSTRACT

The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.


Subject(s)
Composting , Waste Disposal, Fluid , Composting/methods , Waste Disposal, Fluid/methods , Soil Microbiology , Biodegradation, Environmental , Soil , Actinobacteria , Actinomadura , Streptomyces , Humic Substances
19.
Sci Total Environ ; 935: 173299, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38761954

ABSTRACT

As humanity embarks on the journey to establish permanent colonies on Mars, ensuring a reliable source of sustenance will be crucial. Therefore, detailed studies regarding crop cultivation using Martian simulants are of great importance. This study aimed to grow wheat on substrates based on soil and Martian simulants, with the addition of vermicompost, to investigate the differences in wheat development. Basic physical and chemical properties of substrates were examined, including determination of macro- and microelements as well as their microbiological properties. Plant growth parameters were also determined. The addition of vermicompost positively affected wheat grown on soil, but the effect on plants grown on substrate with Martian simulants was negligible. Comparing the microbiological and chemical components, it was observed that plants can defend themselves against the negative effects of growth on the Martian simulants, but their success depends on having the PGPR (Plant growth-promoting rhizobacteria) present, which can provide the plant with additional nitrogen. The presence of beneficial symbiotic microbiota will allow the wheat to wait out the negative growth time rather than adapt to the regolith environment.


Subject(s)
Soil , Triticum , Triticum/growth & development , Soil/chemistry , Mars , Soil Microbiology , Microbiota/drug effects , Composting/methods
20.
Microb Pathog ; 192: 106690, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759935

ABSTRACT

The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.


Subject(s)
Azadirachta , Fertilizers , Oligochaeta , Pesticides , Plant Leaves , Azadirachta/chemistry , Animals , Oligochaeta/microbiology , Plant Leaves/microbiology , Pesticides/pharmacology , Composting , Soil Microbiology , Soil/chemistry , Plant Diseases/prevention & control , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...