Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.670
Filter
1.
Curr Biol ; 34(10): 2247-2255.e5, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38714199

ABSTRACT

Rapid eye movement (REM) sleep is known to facilitate fear extinction and play a protective role against fearful memories.1,2 Consequently, disruption of REM sleep after a traumatic event may increase the risk for developing PTSD.3,4 However, the underlying mechanisms by which REM sleep promotes extinction of aversive memories remain largely unknown. The infralimbic cortex (IL) is a key brain structure for the consolidation of extinction memory.5 Using calcium imaging, we found in mice that most IL pyramidal neurons are intensively activated during REM sleep. Optogenetically suppressing the IL specifically during REM sleep within a 4-h window after auditory-cued fear conditioning impaired extinction memory consolidation. In contrast, REM-specific IL inhibition after extinction learning did not affect the extinction memory. Whole-cell patch-clamp recordings demonstrated that inactivating IL neurons during REM sleep depresses their excitability. Together, our findings suggest that REM sleep after fear conditioning facilitates fear extinction by enhancing IL excitability and highlight the importance of REM sleep in the aftermath of traumatic events for protecting against traumatic memories.


Subject(s)
Extinction, Psychological , Fear , Sleep, REM , Animals , Fear/physiology , Sleep, REM/physiology , Mice , Extinction, Psychological/physiology , Male , Mice, Inbred C57BL , Memory/physiology , Memory Consolidation/physiology , Conditioning, Classical/physiology , Pyramidal Cells/physiology
2.
Biochem Biophys Res Commun ; 718: 150071, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735136

ABSTRACT

Inducing fear memory extinction by re-presenting a conditioned stimulus (CS) is the foundation of exposure therapy for post-traumatic stress disorder (PTSD). Investigating differences in the ability of different CS presentation patterns to induce extinction learning is crucial for improving this type of therapy. Using a trace fear conditioning paradigm in mice, we demonstrate that spaced presentation of the CS facilitated the extinction of a strong fear memory to a greater extent than continuous CS presentation. These results lay the groundwork for developing more effective exposure therapy techniques for PTSD.


Subject(s)
Conditioning, Classical , Extinction, Psychological , Fear , Memory , Mice, Inbred C57BL , Animals , Fear/physiology , Fear/psychology , Extinction, Psychological/physiology , Memory/physiology , Male , Mice , Conditioning, Classical/physiology , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/physiopathology , Conditioning, Psychological/physiology
3.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747563

ABSTRACT

Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.


Subject(s)
Axons , Conditioning, Classical , Dopaminergic Neurons , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Mice , Axons/physiology , Conditioning, Classical/physiology , Dopaminergic Neurons/physiology , Male , Reward , Dopamine/metabolism , Mice, Inbred C57BL , Cues
4.
Nat Commun ; 15(1): 4013, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740778

ABSTRACT

Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.


Subject(s)
Basal Forebrain , Fear , Habenula , Neurons , Animals , Habenula/physiology , Male , Fear/physiology , Basal Forebrain/physiology , Basal Forebrain/metabolism , Mice , Neurons/physiology , Neurons/metabolism , Optogenetics , Mice, Inbred C57BL , Social Behavior , Behavior, Animal/physiology , Neural Pathways/physiology , Glutamic Acid/metabolism , Conditioning, Classical/physiology
5.
Hum Brain Mapp ; 45(8): e26711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38798103

ABSTRACT

Appetitive conditioning plays an important role in the development and maintenance of pornography-use and gaming disorders. It is assumed that primary and secondary reinforcers are involved in these processes. Despite the common use of pornography and gaming in the general population appetitive conditioning processes in this context are still not well studied. This study aims to compare appetitive conditioning processes using primary (pornographic) and secondary (monetary and gaming-related) rewards as unconditioned stimuli (UCS) in the general population. Additionally, it investigates the conditioning processes with gaming-related stimuli as this type of UCS was not used in previous studies. Thirty-one subjects participated in a differential conditioning procedure in which four geometric symbols were paired with either pornographic, monetary, or gaming-related rewards or with nothing to become conditioned stimuli (CS + porn, CS + game, CS + money, and CS-) in an functional magnetic resonance imaging study. We observed elevated arousal and valence ratings as well as skin conductance responses for each CS+ condition compared to the CS-. On the neural level, we found activations during the presentation of the CS + porn in the bilateral nucleus accumbens, right medial orbitofrontal cortex, and the right ventral anterior cingulate cortex compared to the CS-, but no significant activations during CS + money and CS + game compared to the CS-. These results indicate that different processes emerge depending on whether primary and secondary rewards are presented separately or together in the same experimental paradigm. Additionally, monetary and gaming-related stimuli seem to have a lower appetitive value than pornographic rewards.


Subject(s)
Brain Mapping , Erotica , Galvanic Skin Response , Magnetic Resonance Imaging , Reward , Humans , Male , Young Adult , Adult , Female , Galvanic Skin Response/physiology , Video Games , Brain/physiology , Brain/diagnostic imaging , Conditioning, Classical/physiology , Arousal/physiology
6.
Article in English | MEDLINE | ID: mdl-38692472

ABSTRACT

Stress exposure can lead to post-traumatic stress disorder (PTSD) in male and female rats. Social-Single Prolonged Stress (SPS) protocol has been considered a potential PTSD model. This study aimed to pharmacologically validate the Social-SPS as a PTSD model in male and female rats. Male and female Wistar rats (60-day-old) were exposed to Social-SPS protocol and treated with fluoxetine (10 mg/Kg) or saline solution intraperitoneally 24 h before euthanasia. Two cohorts of animals were used; for cohort 1, male and female rats were still undisturbed until day 7 post-Social-SPS exposure, underwent locomotor and conditioned fear behaviors, and were euthanized on day 9. Animals of cohort 2 were subjected to the same protocol but were re-exposed to contextual fear behavior on day 14. Results showed that fluoxetine-treated rats gained less body weight than control and Social-SPS in both sexes. Social-SPS effectively increased the freezing time in male and female rats on day eight but not on day fourteen. Fluoxetine blocked the increase of freezing in male and female rats on day 8. Different mechanisms for fear behavior were observed in males, such as Social-SPS increased levels of glucocorticoid receptors and Beclin-1 in the amygdala. Social-SPS was shown to increase the levels of NMDA2A, GluR-1, PSD-95, and CAMKII in the amygdala of female rats. No alterations were observed in the amygdala of rats on day fourteen. The study revealed that Social-SPS is a potential PTSD protocol applicable to both male and female rats.


Subject(s)
Amygdala , Fear , Fluoxetine , Rats, Wistar , Stress, Psychological , Animals , Male , Female , Fear/drug effects , Fear/physiology , Fluoxetine/pharmacology , Amygdala/drug effects , Amygdala/metabolism , Stress, Psychological/metabolism , Rats , Disease Models, Animal , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/psychology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Selective Serotonin Reuptake Inhibitors/pharmacology , Disks Large Homolog 4 Protein , Receptors, AMPA
7.
Neuroimage ; 294: 120645, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734156

ABSTRACT

Aggressive adolescents tend to exhibit abnormal fear acquisition and extinction, and reactive aggressive adolescents are often more anxious. However, the relationship between fear generalization and reactive aggression (RA) remains unknown. According to Reactive-Proactive Aggression Questionnaire (RPQ) scores, 61 adolescents were divided into two groups, namely, a high RA group (N = 30) and a low aggression (LA) group (N = 31). All participants underwent three consecutive phases of the Pavlovian conditioning paradigm (i.e., habituation, acquisition, and generalization), and neural activation of the medial prefrontal cortex (mPFC) was assessed by functional near-infrared spectroscopy (fNIRS). The stimuli were ten circles with varying sizes, including two conditioned stimuli (CSs) and eight generalization stimuli (GSs). A scream at 85 dB served as the auditory unconditioned stimulus (US). The US expectancy ratings of both CSs and GSs were higher in the RA group than in the LA group. The fNIRS results showed that CSs and GSs evoked lower mPFC activation in the RA group compared to the LA group during fear generalization. These findings suggest that abnormalities in fear acquisition and generalization are prototypical dysregulations in adolescents with RA. They provide neurocognitive evidence for dysregulated fear learning in the mechanisms underlying adolescents with RA, highlighting the need to develop emotional regulation interventions for these individuals.


Subject(s)
Aggression , Conditioning, Classical , Fear , Generalization, Psychological , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Adolescent , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Fear/physiology , Male , Female , Conditioning, Classical/physiology , Generalization, Psychological/physiology , Aggression/physiology
8.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38572735

ABSTRACT

Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.


Subject(s)
Neocortex , Mice , Animals , Neocortex/metabolism , Interneurons/physiology , Learning/physiology , Conditioning, Classical/physiology , Parvalbumins/metabolism
9.
Sci Rep ; 14(1): 8173, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589562

ABSTRACT

The persecutory delusion is the most common symptom of psychosis, yet its underlying neurobiological mechanisms are poorly understood. Prior studies have suggested that abnormalities in medial temporal lobe-dependent associative learning may contribute to this symptom. In the current study, this hypothesis was tested in a non-clinical sample of young adults without histories of psychiatric treatment (n = 64), who underwent classical Pavlovian fear conditioning while fMRI data were collected. During the fear conditioning procedure, participants viewed images of faces which were paired (the CS+) or not paired (the CS-) with an aversive stimulus (a mild electrical shock). Fear conditioning-related neural responses were measured in two medial temporal lobe regions, the amygdala and hippocampus, and in other closely connected brain regions of the salience and default networks. The participants without persecutory beliefs (n = 43) showed greater responses to the CS- compared to the CS+ in the right amygdala and hippocampus, while the participants with persecutory beliefs (n = 21) failed to exhibit this response. These between-group differences were not accounted for by symptoms of depression, anxiety or a psychosis risk syndrome. However, the severity of subclinical psychotic symptoms overall was correlated with the level of this aberrant response in the amygdala (p = .013) and hippocampus (p = .033). Thus, these findings provide evidence for a disruption of medial temporal lobe-dependent associative learning in young people with subclinical psychotic symptoms, specifically persecutory thinking.


Subject(s)
Amygdala , Fear , Young Adult , Humans , Adolescent , Fear/physiology , Amygdala/diagnostic imaging , Amygdala/physiology , Conditioning, Classical/physiology , Brain , Hippocampus/diagnostic imaging , Hippocampus/physiology , Magnetic Resonance Imaging
10.
Neurobiol Learn Mem ; 211: 107925, 2024 May.
Article in English | MEDLINE | ID: mdl-38579895

ABSTRACT

Our previous studies found that the central amygdala (CeA) modulates cerebellum-dependent eyeblink conditioning (EBC) using muscimol inactivation. We also found that CeA inactivation decreases cerebellar neuronal activity during the conditional stimulus (CS) from the start of training. Based on these findings, we hypothesized that the CeA facilitates CS input to the cerebellum. The current study tested the CS facilitation hypothesis using optogenetic inhibition with archaerhodopsin (Arch) and excitation with channelrhodopsin (ChR2) of the CeA during EBC in male rats. Optogenetic manipulations were administered during the 400 ms tone CS or during a 400 ms pre-CS period. As predicted by the CS facilitation hypothesis CeA inhibition during the CS impaired EBC and CeA excitation during the CS facilitated EBC. Unexpectedly, CeA inhibition just prior to the CS also impaired EBC, while CeA excitation during the pre-CS pathway did not facilitate EBC. The results suggest that the CeA contributes to CS facilitation and vigilance during the pre-CS period. These putative functions of the CeA may be mediated through separate output pathways from the CeA to the cerebellum.


Subject(s)
Central Amygdaloid Nucleus , Cerebellum , Conditioning, Eyelid , Optogenetics , Animals , Male , Cerebellum/physiology , Cerebellum/drug effects , Central Amygdaloid Nucleus/physiology , Central Amygdaloid Nucleus/drug effects , Conditioning, Eyelid/physiology , Conditioning, Eyelid/drug effects , Rats , Rats, Long-Evans , Conditioning, Classical/physiology , Conditioning, Classical/drug effects
11.
eNeuro ; 11(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38627063

ABSTRACT

Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.


Subject(s)
Conditioning, Eyelid , Hippocampus , Memory Consolidation , Mental Recall , Rats, Long-Evans , Hippocampus/physiology , Male , Conditioning, Eyelid/physiology , Animals , Memory Consolidation/physiology , Mental Recall/physiology , Association Learning/physiology , Rats , Conditioning, Classical/physiology , Blinking/physiology
12.
PLoS Comput Biol ; 20(4): e1011277, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574161

ABSTRACT

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.


Subject(s)
Cerebellum , Computer Simulation , Conditioning, Eyelid , Models, Neurological , Neuronal Plasticity , Neuronal Plasticity/physiology , Animals , Cerebellum/physiology , Conditioning, Eyelid/physiology , Purkinje Cells/physiology , Blinking/physiology , Conditioning, Classical/physiology , Synapses/physiology , Computational Biology , Mice , Cerebellar Cortex/physiology
13.
Behav Brain Res ; 468: 115017, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38679145

ABSTRACT

Growing evidence indicates a critical role of astrocytes in learning and memory. However, little is known about the role of basolateral amygdala complex (BLA-C) astrocytes in contextual fear conditioning (CFC), a paradigm relevant to understand and generate treatments for fear- and anxiety-related disorders. To get insights on the involvement of BLA-C astrocytes in fear memory, fluorocitrate (FLC), a reversible astroglial metabolic inhibitor, was applied at critical moments of the memory processing in order to target the acquisition, consolidation, retrieval and reconsolidation process of the fear memory. Adult Wistar male rats were bilaterally cannulated in BLA-C. Ten days later they were infused with different doses of FLC (0.5 or 1 nmol/0.5 µl) or saline before or after CFC and before or after retrieval. FLC impaired fear memory expression when administered before and shortly after CFC, but not one hour later. Infusion of FLC prior and after retrieval did not affect the memory. Our findings suggest that BLA-C astrocytes are critically involved in the acquisition/early consolidation of fear memory but not in the retrieval and reconsolidation. Furthermore, the extinction process was presumably not affected (considering that peri-retrieval administration could also affect this process).


Subject(s)
Astrocytes , Basolateral Nuclear Complex , Fear , Memory , Rats, Wistar , Animals , Fear/physiology , Fear/drug effects , Astrocytes/drug effects , Astrocytes/physiology , Male , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Rats , Memory/physiology , Memory/drug effects , Citrates/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Memory Consolidation/physiology , Memory Consolidation/drug effects , Amygdala/drug effects , Amygdala/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology
14.
Behav Processes ; 218: 105040, 2024 May.
Article in English | MEDLINE | ID: mdl-38679341

ABSTRACT

This study evaluated the effect of delay and magnitude of reinforcement in Pavlovian contingencies, extending the understanding of the phenomenon of autoshaped impulsivity as described in Alcalá's thesis (2017) and Burgos and García-Leal (2015). The effects of adding a trace interval were analyzed on the maintained responses of impulsive choice, seen as the preference of a small and immediate reinforcer over a larger and delayed one, and the role of the contextual unit, as well as the inhibitory units according to the Diffuse Discrepancy Model. In the Simulation, the model with inhibitory units was used, trained in two signals with different delays and reinforcement magnitudes, and subsequently presented concurrently in choice tasks without reinforcement nor learning, using an ABA within-subject design. In general, the DD model successfully simulated the phenomenon of autoshaped impulsivity, consistent with studies from Alcalá's thesis (2017), Burgos and García-Leal (2015), and Picker and Poling (1982). It also predicted the elimination of this effect (autoshaped impulsivity) after introducing a trace interval. The observed results and their implications are discussed, as well as possible future studies with animals and humans.


Subject(s)
Impulsive Behavior , Neural Networks, Computer , Reinforcement, Psychology , Impulsive Behavior/physiology , Choice Behavior/physiology , Conditioning, Classical/physiology , Animals , Humans
15.
J Neurosci ; 44(22)2024 May 29.
Article in English | MEDLINE | ID: mdl-38684363

ABSTRACT

A dynamic environment, such as the one we inhabit, requires organisms to continuously update their knowledge of the setting. While the prefrontal cortex is recognized for its pivotal role in regulating such adaptive behavior, the specific contribution of each prefrontal area remains elusive. In the current work, we investigated the direct involvement of two major prefrontal subregions, the medial prefrontal cortex (mPFC, A32D + A32V) and the orbitofrontal cortex (OFC, VO + LO), in updating pavlovian stimulus-outcome (S-O) associations following contingency degradation in male rats. Specifically, animals had to learn that a particular cue, previously fully predicting the delivery of a specific reward, was no longer a reliable predictor. First, we found that chemogenetic inhibition of mPFC, but not of OFC, neurons altered the rats' ability to adaptively respond to degraded and non-degraded cues. Next, given the growing evidence pointing at noradrenaline (NA) as a main neuromodulator of adaptive behavior, we decided to investigate the possible involvement of NA projections to the two subregions in this higher-order cognitive process. Employing a pair of novel retrograde vectors, we traced NA projections from the locus ceruleus (LC) to both structures and observed an equivalent yet relatively segregated amount of inputs. Then, we showed that chemogenetic inhibition of NA projections to the mPFC, but not to the OFC, also impaired the rats' ability to adaptively respond to the degradation procedure. Altogether, our findings provide important evidence of functional parcellation within the prefrontal cortex and point at mPFC NA as key for updating pavlovian S-O associations.


Subject(s)
Norepinephrine , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Male , Rats , Norepinephrine/metabolism , Conditioning, Classical/physiology , Reward , Cues , Adaptation, Psychological/physiology , Synaptic Transmission/physiology , Rats, Long-Evans
16.
Article in English | MEDLINE | ID: mdl-38653363

ABSTRACT

A functional lateralization has been reported in control of emotional responses by the medial prefrontal cortex (mPFC). However, a hemisphere asymmetry in involvement of the mPFC in expression of fear conditioning responses has never been reported. Therefore, we investigated whether control by mPFC of freezing and cardiovascular responses during re-exposure to an aversively conditioned context is lateralized. For this, rats had guide cannulas directed to the mPFC implanted bilaterally or unilaterally in the right or left hemispheres. Vehicle or the non-selective synaptic inhibitor CoCl2 was microinjected into the mPFC 10 min before re-exposure to a chamber where the animals had previously received footshocks. A catheter was implanted into the femoral artery before the fear retrieval test for cardiovascular recordings. We observed that bilateral microinjection of CoCl2 into the mPFC reduced both the freezing behavior (enhancing locomotion and rearing) and arterial pressure and heart rate increases during re-exposure to the aversively conditioned context. Unilateral microinjection of CoCl2 into the right hemisphere of the mPFC also decreased the freezing behavior (enhancing locomotion and rearing), but without affecting the cardiovascular changes. Conversely, unilateral synaptic inhibition in the left mPFC did not affect either behavioral or cardiovascular responses during fear retrieval test. Taken together, these results suggest that the right hemisphere of the mPFC is necessary and sufficient for expression of freezing behavior to contextual fear conditioning. However, the control of cardiovascular responses and freezing behavior during fear retrieval test is somehow dissociated in the mPFC, being the former bilaterally processed.


Subject(s)
Cobalt , Fear , Functional Laterality , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/drug effects , Male , Cobalt/pharmacology , Fear/physiology , Fear/drug effects , Rats , Functional Laterality/physiology , Functional Laterality/drug effects , Emotions/physiology , Emotions/drug effects , Rats, Wistar , Heart Rate/physiology , Heart Rate/drug effects , Microinjections , Conditioning, Classical/physiology , Conditioning, Classical/drug effects
17.
Eur J Neurosci ; 59(11): 3093-3116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38616566

ABSTRACT

The amygdala (AMY) is widely implicated in fear learning and fear behaviour, but it remains unclear how the many biological components present within AMY interact to achieve these abilities. Building on previous work, we hypothesize that individual AMY nuclei represent different quantities and that fear conditioning arises from error-driven learning on the synapses between AMY nuclei. We present a computational model of AMY that (a) recreates the divisions and connections between AMY nuclei and their constituent pyramidal and inhibitory neurons; (b) accommodates scalable high-dimensional representations of external stimuli; (c) learns to associate complex stimuli with the presence (or absence) of an aversive stimulus; (d) preserves feature information when mapping inputs to salience estimates, such that these estimates generalize to similar stimuli; and (e) induces a diverse profile of neural responses within each nucleus. Our model predicts (1) defensive responses and neural activities in several experimental conditions, (2) the consequence of artificially ablating particular nuclei and (3) the tendency to generalize defensive responses to novel stimuli. We test these predictions by comparing model outputs to neural and behavioural data from animals and humans. Despite the relative simplicity of our model, we find significant overlap between simulated and empirical data, which supports our claim that the model captures many of the neural mechanisms that support fear conditioning. We conclude by comparing our model to other computational models and by characterizing the theoretical relationship between pattern separation and fear generalization in healthy versus anxious individuals.


Subject(s)
Amygdala , Extinction, Psychological , Fear , Generalization, Psychological , Models, Neurological , Fear/physiology , Amygdala/physiology , Extinction, Psychological/physiology , Humans , Animals , Generalization, Psychological/physiology , Conditioning, Classical/physiology , Neurons/physiology , Action Potentials/physiology
18.
Horm Behav ; 162: 105541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583235

ABSTRACT

INTRODUCTION: Interoceptive stimuli elicited by drug administration acquire conditioned modulatory properties of the induction of conditioned appetitive behaviours by exteroceptive cues. This effect may be modeled using a drug discrimination task in which the drug stimulus is trained as a positive-feature (FP) occasion setter (OS) that disambiguates the relation between an exteroceptive light conditioned stimulus (CS) and a sucrose unconditioned stimulus (US). We previously reported that females are less sensitive to generalization of a FP morphine OS than males, so we investigated the role of endogenous ovarian hormones in this difference. METHODS: Male and female rats received intermixed injections of 3.2 mg/kg morphine or saline before each daily training session. Training consisted of 8 presentations of the CS, each followed by access to sucrose on morphine, but not saline sessions. Following acquisiton, rats were tested for generalization of the morphine stimulus to 0, 1.0, 3.2, and 5.4 mg/kg morphine. Female rats were monitored for estrous cyclicity using vaginal cytology throughout the study. RESULTS: Both sexes acquired stable drug discrimination. A gradient of generalization was measured across morphine doses and this behaviour did not differ by sex, nor did it differ across the estrous cycle in females. CONCLUSIONS: Morphine generalization is independent of fluctuations in levels of sex and endogenous gonadal hormones in females under these experimental conditions.


Subject(s)
Estrous Cycle , Morphine , Animals , Female , Male , Estrous Cycle/physiology , Estrous Cycle/drug effects , Morphine/pharmacology , Rats , Generalization, Psychological/drug effects , Generalization, Psychological/physiology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Rats, Sprague-Dawley , Interoception/physiology , Interoception/drug effects , Discrimination Learning/drug effects , Discrimination Learning/physiology
19.
J Exp Psychol Anim Learn Cogn ; 50(2): 144-160, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587941

ABSTRACT

Taste aversion learning has sometimes been considered a specialized form of learning. In several other conditioning preparations, after a conditioned stimulus (CS) is conditioned and extinguished, reexposure to the unconditioned stimulus (US) by itself can reinstate the extinguished conditioned response. Reinstatement has been widely studied in fear and appetitive Pavlovian conditioning, as well as operant conditioning, but its status in taste aversion learning is more controversial. Six taste-aversion experiments with rats therefore sought to discover conditions that might encourage it there. The results often yielded little to no evidence of reinstatement, and we also found no evidence of concurrent recovery, a related phenomenon in which responding to a CS that has been conditioned and extinguished is restored if a second CS is separately conditioned. However, a key result was that reinstatement occurred when the conditioning procedure involved multiple closely spaced conditioning trials that could have allowed the animal to learn that a US presentation signaled or set the occasion for another trial with a US. Such a mechanism is precluded in many taste aversion experiments because they often use very few conditioning trials. Overall, the results suggest that taste aversion learning is experimentally unique, though not necessarily biologically or evolutionarily unique. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Extinction, Psychological , Taste , Rats , Animals , Taste/physiology , Extinction, Psychological/physiology , Conditioning, Classical/physiology , Conditioning, Operant , Learning , Avoidance Learning/physiology
20.
Neurobiol Learn Mem ; 211: 107924, 2024 May.
Article in English | MEDLINE | ID: mdl-38579896

ABSTRACT

We and other animals learn because there is some aspect of the world about which we are uncertain. This uncertainty arises from initial ignorance, and from changes in the world that we do not perfectly know; the uncertainty often becomes evident when our predictions about the world are found to be erroneous. The Rescorla-Wagner learning rule, which specifies one way that prediction errors can occasion learning, has been hugely influential as a characterization of Pavlovian conditioning and, through its equivalence to the delta rule in engineering, in a much wider class of learning problems. Here, we review the embedding of the Rescorla-Wagner rule in a Bayesian context that is precise about the link between uncertainty and learning, and thereby discuss extensions to such suggestions as the Kalman filter, structure learning, and beyond, that collectively encompass a wider range of uncertainties and accommodate a wider assortment of phenomena in conditioning.


Subject(s)
Bayes Theorem , Conditioning, Classical , Reinforcement, Psychology , Animals , Conditioning, Classical/physiology , Uncertainty , Humans , Learning/physiology , Models, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...