Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.093
Filter
1.
PLoS One ; 19(5): e0301173, 2024.
Article in English | MEDLINE | ID: mdl-38771859

ABSTRACT

The following paper describes a steady-state model of concurrent choice, termed the active time model (ATM). ATM is derived from maximization principles and is characterized by a semi-Markov process. The model proposes that the controlling stimulus in concurrent variable-interval (VI) VI schedules of reinforcement is the time interval since the most recent response, termed here "the active interresponse time" or simply "active time." In the model after a response is generated, it is categorized by a function that relates active times to switch/stay probabilities. In the paper the output of ATM is compared with predictions made by three other models of operant conditioning: melioration, a version of scalar expectancy theory (SET), and momentary maximization. Data sets considered include preferences in multiple-concurrent VI VI schedules, molecular choice patterns, correlations between switching and perseveration, and molar choice proportions. It is shown that ATM can account for all of these data sets, while the other models produce more limited fits. However, rather than argue that ATM is the singular model for concurrent VI VI choice, a consideration of its concept space leads to the conclusion that operant choice is multiply-determined, and that an adaptive viewpoint-one that considers experimental procedures both as selecting mechanisms for animal choice as well as tests of the controlling variables of that choice-is warranted.


Subject(s)
Choice Behavior , Conditioning, Operant , Choice Behavior/physiology , Animals , Conditioning, Operant/physiology , Reinforcement Schedule , Time Factors , Models, Psychological , Reinforcement, Psychology , Markov Chains
2.
F1000Res ; 13: 116, 2024.
Article in English | MEDLINE | ID: mdl-38779314

ABSTRACT

Background: Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. Methods: We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. Results: We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Conclusions: Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Motor Neurons , Protein Kinase C , Animals , Protein Kinase C/metabolism , Motor Neurons/physiology , Motor Neurons/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Learning/physiology , Forkhead Transcription Factors/metabolism , Wings, Animal/physiology , Animals, Genetically Modified , Neuronal Plasticity/physiology , Conditioning, Operant/physiology , CRISPR-Cas Systems , Drosophila/physiology
3.
Sci Rep ; 14(1): 10187, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702381

ABSTRACT

Neurexins (Nrxns) are critical for synapse organization and their mutations have been documented in autism spectrum disorder, schizophrenia, and epilepsy. We recently reported that conditional deletion of Nrxn2, under the control of Emx1Cre promoter, predominately expressed in the neocortex and hippocampus (Emx1-Nrxn2 cKO mice) induced stereotyped patterns of behavior in mice, suggesting behavioral inflexibility. In this study, we investigated the effects of Nrxn2 deletion through two different conditional approaches targeting presynaptic cortical neurons projecting to dorsomedial striatum on the flexibility between goal-directed and habitual actions in response to devaluation of action-outcome (A-O) contingencies in an instrumental learning paradigm or upon reversal of A-O contingencies in a water T-maze paradigm. Nrxn2 deletion through both the conditional approaches induced an inability of mice to discriminate between goal-directed and habitual action strategies in their response to devaluation of A-O contingency. Emx1-Nrxn2 cKO mice exhibited reversal learning deficits, indicating their inability to adopt new action strategies. Overall, our studies showed that Nrxn2 deletion through two distinct conditional deletion approaches impaired flexibility in response to alterations in A-O contingencies. These investigations can lay the foundation for identification of novel genetic factors underlying behavioral inflexibility.


Subject(s)
Behavior, Animal , Mice, Knockout , Nerve Tissue Proteins , Transcription Factors , Animals , Mice , Nerve Tissue Proteins/genetics , Male , Neural Cell Adhesion Molecules/genetics , Gene Deletion , Maze Learning/physiology , Reversal Learning/physiology , Homeodomain Proteins/genetics , Hippocampus/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Conditioning, Operant
4.
Addict Biol ; 29(5): e13393, 2024 May.
Article in English | MEDLINE | ID: mdl-38706098

ABSTRACT

Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational and cognitive processes involved in regulating the pursuit and consumption of food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal disrupted their ability to exert flexible goal-directed control over reward seeking. Specifically, morphine-withdrawn rats were impaired in using current reward value to select actions both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case, rats were only impaired in using reward value to select actions in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.


Subject(s)
Goals , Morphine , Motivation , Reward , Substance Withdrawal Syndrome , Animals , Substance Withdrawal Syndrome/psychology , Motivation/drug effects , Male , Morphine/pharmacology , Rats , Morphine Dependence/psychology , Narcotics/pharmacology , Conditioning, Operant/drug effects
5.
Sci Rep ; 14(1): 10029, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693322

ABSTRACT

Recent research suggests that insufficient sleep elevates the risk of obesity. Although the mechanisms underlying the relationship between insufficient sleep and obesity are not fully understood, preliminary evidence suggests that insufficient sleep may intensify habitual control of behavior, leading to greater cue-elicited food-seeking behavior that is insensitive to satiation. The present study tested this hypothesis using a within-individual, randomized, crossover experiment. Ninety-six adults underwent a one-night normal sleep duration (NSD) condition and a one-night total sleep deprivation (TSD) condition. They also completed the Pavlovian-instrumental transfer paradigm in which their instrumental responses for food in the presence and absence of conditioned cues were recorded. The sleep × cue × satiation interaction was significant, indicating that the enhancing effect of conditioned cues on food-seeking responses significantly differed across sleep × satiation conditions. However, this effect was observed in NSD but not TSD, and it disappeared after satiation. This finding contradicted the hypothesis but aligned with previous literature on the effect of sleep disruption on appetitive conditioning in animals-sleep disruption following learning impaired the expression of appetitive behavior. The present finding is the first evidence for the role of sleep in Pavlovian-instrumental transfer effects. Future research is needed to further disentangle how sleep influences motivational mechanisms underlying eating.


Subject(s)
Conditioning, Classical , Cross-Over Studies , Sleep Deprivation , Sleep Deprivation/physiopathology , Humans , Male , Female , Adult , Young Adult , Cues , Food , Feeding Behavior/physiology , Satiation/physiology , Conditioning, Operant , Appetitive Behavior/physiology
6.
Behav Pharmacol ; 35(4): 147-155, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38651979

ABSTRACT

Previous exposure to drugs of abuse produces impairments in studies of reversal learning, delay discounting and response inhibition tasks. While these studies contribute to the understanding of normal decision-making and how it is impaired by drugs of abuse, they do not fully capture how decision-making impacts the ability to delay gratification for greater long-term benefit. To address this issue, we used a diminishing returns task to study decision-making in rats that had previously self-administered cocaine. This task was designed to test the ability of the rat to choose to delay gratification in the short-term to obtain more reward over the course of the entire behavioral session. Rats were presented with two choices. One choice had a fixed amount of time delay needed to obtain reward [i.e. fixed delay (FD)], while the other choice had a progressive delay (PD) that started at 0 s and progressively increased by 1 s each time the PD option was selected. During the 'reset' variation of the task, rats could choose the FD option to reset the time delay associated with the PD option. Consistent with previous results, we found that prior cocaine exposure reduced rats' overall preference for the PD option in post-task reversal testing during 'no-reset' sessions, suggesting that cocaine exposure made rats more sensitive to the increasing delay of the PD option. Surprisingly, however, we found that rats that had self-administered cocaine 1-month prior, adapted behavior during 'reset' sessions by delaying gratification to obtain more reward in the long run similar to control rats.


Subject(s)
Cocaine , Delay Discounting , Reward , Self Administration , Animals , Cocaine/pharmacology , Cocaine/administration & dosage , Male , Delay Discounting/drug effects , Rats , Choice Behavior/drug effects , Conditioning, Operant/drug effects , Dopamine Uptake Inhibitors/pharmacology , Dopamine Uptake Inhibitors/administration & dosage , Decision Making/drug effects , Cocaine-Related Disorders/psychology , Rats, Long-Evans , Time Factors
7.
Drug Alcohol Depend ; 258: 111280, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614019

ABSTRACT

The most prevalent psychoactive chemical in tobacco smoke is nicotine, which has been shown to maintain tobacco consumption as well as cause acute adverse effects at high doses, like nausea and emesis. Recent studies in laboratory animals have suggested that many non-nicotine constituents of tobacco smoke (e.g., minor tobacco alkaloids) may also contribute to tobacco's overall reinforcing and adverse effects. Here, we used intravenous (IV) self-administration (n = 3) and observation (n = 4) procedures in squirrel monkeys to, respectively, compare the reinforcing and adverse observable effects of nicotine and three prominent minor tobacco alkaloids, nornicotine, anatabine, and myosmine. In self-administration studies, male squirrel monkeys were trained to respond under a second-order fixed-interval schedule of reinforcement and dose-effects functions for nicotine and each of the minor tobacco alkaloids nornicotine, anatabine, and mysomine were determined. Observation studies were conducted in a different group of male squirrel monkeys to quantify the ability of nicotine, nornicotine, anatabine, and mysomine to produce adverse overt effects, including hypersalivation, emesis, and tremors. Results show that nicotine and to a lesser extent nornicotine were readily self-administered, whereas anatabine and myosmine were not. In observation studies, all minor tobacco alkaloids produced adverse observable effects that were either comparable or more pronounced than nicotine. Collectively, the present results showing that nicotine and the minor tobacco alkaloids nornicotine, anatabine, and myosmine produce differential reinforcing and acute adverse observable effects in monkeys provides further evidence that these constituents may differently contribute to the psychopharmacological and adverse effects of tobacco consumption.


Subject(s)
Alkaloids , Nicotiana , Nicotine , Reinforcement, Psychology , Saimiri , Self Administration , Animals , Male , Dose-Response Relationship, Drug , Conditioning, Operant/drug effects
8.
Behav Processes ; 218: 105044, 2024 May.
Article in English | MEDLINE | ID: mdl-38679343

ABSTRACT

The goal is to understand consequences of anabolic-androgenic steroid (AAS) abuse on cognitive function, using rats as a model. Economic decision making was evaluated in an operant test of effort value discounting, where subjects choose between 2 levers that deliver large and small rewards differing in maximum value and reward contrast. The hypothesis is that chronic high-dose testosterone increases preference for large rewards. Male rats were treated chronically with testosterone (7.5 mg/kg) or vehicle. Initially, all rats preferred the large reward lever when large and small rewards remained fixed at 3 and 1 sugar pellets, respectively. When different reward values were introduced, and with increasing response requirements, testosterone-treated rats made fewer responses for the large reward, and increased omissions. They earned fewer rewards overall. To determine if testosterone impairs memory, rats were tested for recognition memory with the novel object recognition and social transmission of food preference tasks, and for spatial memory with the radial arm maze and Morris water maze. There was not effect of chronic high-dose testosterone on any memory task. These results suggest that testosterone shifts economic decision making towards larger rewards even when they are disadvantageous, but does not alter memory in rats.


Subject(s)
Decision Making , Reward , Testosterone , Animals , Male , Testosterone/pharmacology , Rats , Decision Making/drug effects , Decision Making/physiology , Memory/drug effects , Conditioning, Operant/drug effects , Rats, Long-Evans
9.
J Physiol ; 602(9): 2107-2126, 2024 May.
Article in English | MEDLINE | ID: mdl-38568869

ABSTRACT

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Subject(s)
Axon Initial Segment , H-Reflex , Motor Neurons , Rats, Sprague-Dawley , Animals , Motor Neurons/physiology , Rats , Male , H-Reflex/physiology , Axon Initial Segment/physiology , Learning/physiology , Spinal Cord/physiology , Spinal Cord/cytology , Axons/physiology , Neuronal Plasticity/physiology , Conditioning, Operant/physiology , Ankyrins/metabolism
10.
J Exp Anal Behav ; 121(3): 346-357, 2024 May.
Article in English | MEDLINE | ID: mdl-38604980

ABSTRACT

Efficient methods for assessing the relative aversiveness of stimuli are sparse and underresearched. Having access to efficient procedures that can identify aversive stimuli would benefit researchers and practitioners alike. Across three experiments, 13 participants helped to pilot, refine, and test two approaches to identifying negative reinforcers. The first experiment presented two conditions, one in which computerized button pressing started or stopped one of two recorded infant cries (or silence, when the control button was selected). Choices were presented either in a modified observing-response procedure (i.e., simultaneous observing) or in a modified progressive-ratio procedure (i.e., committed concurrent progressive ratio; CCPR). Results were favorable though not conclusive on their own. A second experiment, using more distinct stimuli (i.e., one likely aversive, one likely not aversive), replicated the first, and clearer results emerged. Finally, the third experiment tested the stimuli from the second experiment in a CCPR arrangement where sound was terminated contingent on responding and idiosyncratic negative reinforcement hierarchies emerged. The utility of these two procedures is discussed, and future work that addresses the limitations is outlined.


Subject(s)
Reinforcement, Psychology , Humans , Male , Female , Reinforcement Schedule , Adult , Conditioning, Operant , Choice Behavior , Young Adult
11.
J Exp Anal Behav ; 121(3): 327-345, 2024 May.
Article in English | MEDLINE | ID: mdl-38629655

ABSTRACT

Can simple choice conditional-discrimination choice be accounted for by recent quantitative models of combined stimulus and reinforcer control? In Experiment 1, two sets of five blackout durations, one using shorter intervals and one using longer intervals, conditionally signaled which subsequent choice response might provide food. In seven conditions, the distribution of blackout durations across the sets was varied. An updated version of the generalization-across-dimensions model nicely described the way that choice changed across durations. In Experiment 2, just two blackout durations acted as the conditional stimuli and the durations were varied over 10 conditions. The parameters of the model obtained in Experiment 1 failed adequately to predict choice in Experiment 2, but the model again fitted the data nicely. The failure to predict the Experiment 2 data from the Experiment 1 parameters occurred because in Experiment 1 differential control by reinforcer locations progressively decreased with blackout durations, whereas in Experiment 2 this control remained constant. These experiments extend the ability of the model to describe data from procedures based on concurrent schedules in which reinforcer ratios reverse at fixed times to those from conditional-discrimination procedures. Further research is needed to understand why control by reinforcer location differed between the two experiments.


Subject(s)
Choice Behavior , Discrimination Learning , Generalization, Psychological , Models, Psychological , Reinforcement Schedule , Animals , Reinforcement, Psychology , Conditioning, Operant , Discrimination, Psychological , Columbidae , Time Factors
12.
Neurobiol Learn Mem ; 211: 107926, 2024 May.
Article in English | MEDLINE | ID: mdl-38579897

ABSTRACT

Learning to stop responding is a fundamental process in instrumental learning. Animals may learn to stop responding under a variety of conditions that include punishment-where the response earns an aversive stimulus in addition to a reinforcer-and extinction-where a reinforced response now earns nothing at all. Recent research suggests that punishment and extinction may be related manifestations of a common retroactive interference process. In both paradigms, animals learn to stop performing a specific response in a specific context, suggesting direct inhibition of the response by the context. This process may depend on the infralimbic cortex (IL), which has been implicated in a variety of interference-based learning paradigms including extinction and habit learning. Despite the behavioral parallels between extinction and punishment, a corresponding role for IL in punishment has not been identified. Here we report that, in a simple arrangement where either punishment or extinction was conducted in a context that differed from the context in which the behavior was first acquired, IL inactivation reduced response suppression in the inhibitory context, but not responding when it "renewed" in the original context. In a more complex arrangement in which two responses were first trained in different contexts and then extinguished or punished in the opposite one, IL inactivation had no effect. The results advance our understanding of the effects of IL in retroactive interference and the behavioral mechanisms that can produce suppression of a response.


Subject(s)
Conditioning, Operant , Extinction, Psychological , Punishment , Extinction, Psychological/physiology , Animals , Conditioning, Operant/physiology , Male , Rats , Rats, Long-Evans , Prefrontal Cortex/physiology , Muscimol/pharmacology
13.
Drug Alcohol Depend ; 258: 111282, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38593731

ABSTRACT

The adulteration of illicit fentanyl with the alpha-2 agonist xylazine has been designated an emerging public health threat. The clinical rationale for combining fentanyl with xylazine is currently unclear, and the inability to study fentanyl/xylazine interactions in humans warrants the need for preclinical research. We studied fentanyl and xylazine pharmacodynamic and pharmacokinetic interactions in male and female rats using drug self-administration behavioral economic methods. Fentanyl, but not xylazine, functioned as a reinforcer under both fixed-ratio and progressive-ratio drug self-administration procedures. Xylazine combined with fentanyl at three fixed dose-proportion mixtures did not significantly alter fentanyl reinforcement as measured using behavioral economic analyses. Xylazine produced a proportion-dependent decrease in the behavioral economic Q0 endpoint compared to fentanyl alone. However, xylazine did not significantly alter fentanyl self-administration at FR1. Fentanyl and xylazine co-administration did not result in changes to pharmacokinetic endpoints. The present results demonstrate that xylazine does not enhance the addictive effects of fentanyl or alter fentanyl plasma concentrations. The premise for why illicitly manufacture fentanyl has been adulterated with xylazine remains to be determined.


Subject(s)
Fentanyl , Reinforcement, Psychology , Self Administration , Xylazine , Fentanyl/pharmacology , Animals , Xylazine/pharmacology , Rats , Male , Female , Economics, Behavioral , Rats, Sprague-Dawley , Reinforcement Schedule , Adrenergic alpha-2 Receptor Agonists/pharmacology , Analgesics, Opioid , Conditioning, Operant/drug effects
14.
Behav Brain Res ; 468: 115015, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38670533

ABSTRACT

This study examined the effect of knockout of KCNMA1 gene, coding for the BK channel, on cognitive and attentional functions in mice, with an aim to better understand its implications for human neurodevelopmental disorders. The study used the 3-choice serial reaction time task (3-CSRTT) to assess the learning performance, attentional abilities, and repetitive behaviors in mice lacking the KCNMA1 gene (KCNMA1-/-) compared to wild-type (WT) controls. Results showed no significant differences in learning accuracy between the two groups. However, KCNMA1-/- mice were more prone to omitting responses to stimuli. In addition, when the timing of cue presentation was randomized, the KCNMA1-/- showed premature responses. Notably, these mice also demonstrated a marked reduction in perseverative responses, which include repeated nose-poke behaviors following decisions. These findings highlight the involvement of the KCNMA1 gene in managing attention, impulsivity, and potentially moderating repetitive actions.


Subject(s)
Attention , Conditioning, Operant , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits , Mice, Knockout , Animals , Attention/physiology , Male , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Conditioning, Operant/physiology , Mice, Inbred C57BL , Mice , Reaction Time/physiology , Impulsive Behavior/physiology
15.
Nat Commun ; 15(1): 3419, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658545

ABSTRACT

Songs constitute a complex system of vocal signals for inter-individual communication in songbirds. Here, we elucidate the flexibility which songbirds exhibit in the organizing and sequencing of syllables within their songs. Utilizing a newly devised song decoder for quasi-real-time annotation, we execute an operant conditioning paradigm, with rewards contingent upon specific syllable syntax. Our analysis reveals that birds possess the capacity to modify the contents of their songs, adjust the repetition length of particular syllables and employing specific motifs. Notably, birds altered their syllable sequence in a goal-directed manner to obtain rewards. We demonstrate that such modulation occurs within a distinct song segment, with adjustments made within 10 minutes after cue presentation. Additionally, we identify the involvement of the parietal-basal ganglia pathway in orchestrating these flexible modulations of syllable sequences. Our findings unveil an unappreciated aspect of songbird communication, drawing parallels with human speech.


Subject(s)
Vocalization, Animal , Animals , Vocalization, Animal/physiology , Male , Conditioning, Operant/physiology , Finches/physiology , Goals , Basal Ganglia/physiology , Songbirds/physiology
16.
J Integr Neurosci ; 23(4): 83, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38682231

ABSTRACT

BACKGROUND: Much of the existing animal literature on the devaluation task suggests that prior repeated exposure to drugs of abuse during adulthood can impair goal-directed action, but the literature on human drug users is mixed. Also, the initiation of drug use often occurs during adolescence, but examinations of the effects of drug exposure during adolescence on behavior in the devaluation task are lacking. METHODS: We examined whether repeated exposure during adolescence to amphetamine (3 mg/kg injections every-other day from post-natal day 27-45) or ketamine (twice daily 30 mg/kg injections from post-natal day 35-44) would impair behavior in a devaluation test when tested drug-free in adulthood. Rats were trained to press a left lever with a steady cue-light above it for one reinforcer and a right lever with a flashing cue-light above it for a different reinforcer. We tested whether any impairments in goal-directed action could be overcome by compensation between strategies by giving rats information based on lever-location and cue-lights during the test that was either congruent (allowing compensation) or incongruent (preventing compensation between strategies) with the configurations during training. RESULTS: Our results provided no evidence for impairment of goal-directed action during adulthood after adolescent amphetamine or ketamine exposure. CONCLUSIONS: We discuss possible reasons for this discrepancy with the prior literature, including (1) the age of exposure and (2) the pattern in the previous literature that most previous demonstrations of drug exposure impairing devaluation in laboratory animals may be attributed to either drug-associated cues present in the testing environment and/or accelerated habit learning in tasks that predispose laboratory animals towards habit formation with extended training (with training procedures that should resist the formation of habits in the current experiment). However, additional research is needed to examine the effects of these factors, as well a potential role for the particular doses and washout periods to determine the cause of our finding of no devaluation impairment after drug exposure.


Subject(s)
Amphetamine , Ketamine , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Amphetamine/pharmacology , Amphetamine/administration & dosage , Male , Rats , Conditioning, Operant/drug effects , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Rats, Long-Evans , Behavior, Animal/drug effects , Age Factors , Cues
17.
Neuropharmacology ; 252: 109947, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631564

ABSTRACT

A growing body of research indicates that ß-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.


Subject(s)
Heroin , Polycyclic Sesquiterpenes , Self Administration , Animals , Male , Heroin/administration & dosage , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/administration & dosage , Female , Mice , Rats , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Sesquiterpenes/pharmacology , Sesquiterpenes/administration & dosage , Rats, Sprague-Dawley , Dose-Response Relationship, Drug , Conditioning, Operant/drug effects , Extinction, Psychological/drug effects , Reinforcement, Psychology , Reward , Mice, Transgenic , Nociception/drug effects , Mice, Inbred C57BL
18.
J Exp Psychol Anim Learn Cogn ; 50(2): 99-117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587940

ABSTRACT

According to the cycle/trial (C/T) rule, the rate of associative learning is a function of the ratio between the overall rate of U.S. presentation (C) and its rate in the presence of the conditioned stimulus (CS; [T]). This rule is well supported in studies with nonhumans. The present study was conducted to test whether it also applies to human contingency learning. In Experiment 1, participants were exposed to rapid streams of trials. Sensitivity to the cue-outcome contingency varied with both intertrial interval (ITI, which captures C) and cue duration, but the C/T rule was not respected, notably because the effect of ITI was much larger than the effect of cue duration. Experiment 2 showed that mere suppression of verbal strategies did not alter the magnitude of the ITI effect. Experiment 3 replicated Experiment 1 but with cue duration and ITI varied between 1,000 and 3,000 ms instead of between 100 and 1,000 ms. Performance was insensitive to both cue duration and ITI. This was not the consequence of Experiment 3 only varying the cue duration to ITI ratio by a factor of 3; in Experiment 4 where the cue duration was 100 ms, a 300-ms ITI was sufficient to observe an ITI effect. The lack of an ITI effect with a 1,000-ms cue and an ITI varying between 1,000 and 3,000 ms was replicated in Experiment 5. These results are discussed in light of how processes underlying associative learning might break down when events occur very rapidly. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Conditioning, Operant , Cues , Humans , Conditioning, Classical
19.
J Exp Psychol Anim Learn Cogn ; 50(2): 144-160, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587941

ABSTRACT

Taste aversion learning has sometimes been considered a specialized form of learning. In several other conditioning preparations, after a conditioned stimulus (CS) is conditioned and extinguished, reexposure to the unconditioned stimulus (US) by itself can reinstate the extinguished conditioned response. Reinstatement has been widely studied in fear and appetitive Pavlovian conditioning, as well as operant conditioning, but its status in taste aversion learning is more controversial. Six taste-aversion experiments with rats therefore sought to discover conditions that might encourage it there. The results often yielded little to no evidence of reinstatement, and we also found no evidence of concurrent recovery, a related phenomenon in which responding to a CS that has been conditioned and extinguished is restored if a second CS is separately conditioned. However, a key result was that reinstatement occurred when the conditioning procedure involved multiple closely spaced conditioning trials that could have allowed the animal to learn that a US presentation signaled or set the occasion for another trial with a US. Such a mechanism is precluded in many taste aversion experiments because they often use very few conditioning trials. Overall, the results suggest that taste aversion learning is experimentally unique, though not necessarily biologically or evolutionarily unique. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Extinction, Psychological , Taste , Rats , Animals , Taste/physiology , Extinction, Psychological/physiology , Conditioning, Classical/physiology , Conditioning, Operant , Learning , Avoidance Learning/physiology
20.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38615238

ABSTRACT

Intolerance of uncertainty (IU) is associated with several anxiety disorders. In this study, we employed rewards and losses as unconditioned positive and negative stimuli, respectively, to explore the effects of an individual's IU level on positive and negative generalizations using magnetic resonance imaging technology. Following instrumental learning, 48 participants (24 high IU; 24 low IU) were invited to complete positive and negative generalization tasks; their behavioral responses and neural activities were recorded by functional magnetic resonance imaging. The behavior results demonstrated that participants with high IUs exhibited higher generalizations to both positive and negative cues as compared with participants having low IUs. Neuroimaging results demonstrated that they exhibited higher activation levels in the right anterior insula and the default mode network (i.e. precuneus and posterior cingulate gyrus), as well as related reward circuits (i.e. caudate and right putamen). Therefore, higher generalization scores and the related abnormal brain activation may be key markers of IU as a vulnerability factor for anxiety disorders.


Subject(s)
Anxiety , Brain , Humans , Uncertainty , Brain/diagnostic imaging , Conditioning, Operant , Cues
SELECTION OF CITATIONS
SEARCH DETAIL
...