Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Mol Genet Metab ; 142(4): 108530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968673

ABSTRACT

Phosphoglucomutase-1-congenital disorder of glycosylation (PGM1-CDG) is a rare genetic disorder caused by biallelic variants in the PGM1 gene, leading to the deficiency of the PGM1 enzyme. The most common clinical presentations include muscle involvement, failure to thrive, cleft palate, and cardiac involvement. Abnormal serum N-glycosylation, hypoglycemia, and liver function abnormalities including coagulation abnormalities are the most common laboratory abnormalities. While PGM1-CDG has been extensively studied, little is known about the extent of the coagulation abnormalities in individuals with PGM1-CDG. Unlike most CDG, some symptoms of PGM1-CDG are treatable with D-galactose (D-gal) supplementation, though reliable clinical endpoints are necessary to appropriately evaluate the potential improvement with D-gal in PGM1-CDG. Here, we aimed to describe the incidence of coagulation abnormalities in PGM1-CDG and their evolution, their relation to clinical events, and the ability of D-gal treatment to improve them. A retrospective analysis was conducted on 73 reported individuals. All individuals had a molecularly confirmed PGM1-CDG diagnosis. All incidences of antithrombin (AT), aPTT, PT, factor (F) XI, FX, FIX, FVII, protein C and protein S data and major clinical events related to coagulation abnormalities, were collected. Coagulation information was available for only 58.9 % of the reported individuals, out of which 67.4 % of PGM1-CDG individuals were reported to have abnormalities. The most frequently observed abnormality was AT (mean: 30.8% R:80-120 %) deficiency. Four individuals had major thrombotic events. Coagulation status on D-gal treatment, were reported in 19 individuals. Several factors showed improvement including AT (mean: 64.5 %), indicating galactose is beneficial in treating coagulation abnormalities in PGM1-CDG. Due to the scarcity of the reported data on coagulation parameters, we also evaluated data collected in sixteen PGM1-CDG individuals enrolled in the FCDGC Natural History Study. Longitudinal data showed improvements in several coagulant parameters and disease severity improved for almost all patients of whom we had multiple datapoints on D-gal. AT showed significant improvement on D-gal. We conclude that coagulation abnormalities are frequently present in PGM1-CDG and show improvement on D-gal. We recommend coagulation parameters should be routinely checked in individuals with PGM1-CDG or suspected of having PGM1-CDG. Finally, AT may be used as a primary or secondary clinical endpoint for upcoming clinical trials in PGM1-CDG individuals.


Subject(s)
Blood Coagulation Disorders , Congenital Disorders of Glycosylation , Phosphoglucomutase , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/pathology , Phosphoglucomutase/genetics , Phosphoglucomutase/deficiency , Male , Female , Retrospective Studies , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/blood , Infant , Child, Preschool , Child , Adolescent , Galactose , Adult , Young Adult , Glycosylation , Infant, Newborn , Blood Coagulation/genetics
2.
J AAPOS ; 28(4): 103954, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876156

ABSTRACT

Congenital disorders of glycosylation type I (CDG-I) are a group of autosomal recessive genetic multisystem disorders that arise from defective glycoprotein biosynthesis. Although ocular abnormalities have been described in patients with CDG-I, few ocular abnormalities have been associated with ALG12-CDG (CDG-Ig), a rare subtype of CDG-I. We report a case of Duane syndrome, a congenital strabismus syndrome, in a 17-year-old young woman with ALG12-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Duane Retraction Syndrome , Humans , Female , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/complications , Adolescent , Duane Retraction Syndrome/genetics , Duane Retraction Syndrome/diagnosis , Mannosyltransferases/genetics
3.
Mol Genet Metab ; 142(2): 108472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703411

ABSTRACT

ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.


Subject(s)
Congenital Disorders of Glycosylation , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/therapy , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/complications , Glycosylation , Phenotype , Mutation , Muscle Hypotonia/genetics , Muscle Hypotonia/therapy , Muscle Hypotonia/diagnosis , Practice Guidelines as Topic , Developmental Disabilities/genetics , Developmental Disabilities/therapy , Infant , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Seizures/genetics , Seizures/therapy , Seizures/diagnosis , N-Acetylglucosaminyltransferases
4.
Commun Biol ; 7(1): 460, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649481

ABSTRACT

NGLY1 deficiency is a genetic disease caused by biallelic mutations of the Ngly1 gene. Although epileptic seizure is one of the most severe symptoms in patients with NGLY1 deficiency, preclinical studies have not been conducted due to the lack of animal models for epileptic seizures in NGLY1 deficiency. Here, we observed the behaviors of male and female Ngly1-/- mice by video monitoring and found that these mice exhibit spontaneous seizure-like behaviors. Gene expression analyses and enzyme immunoassay revealed significant decreases in oxytocin, a well-known neuropeptide, in the hypothalamus of Ngly1-/- mice. Seizure-like behaviors in Ngly1-/- mice were transiently suppressed by a single intranasal administration of oxytocin. These findings suggest the therapeutic potential of oxytocin for epileptic seizure in patients with NGLY1 deficiency and contribute to the clarification of the disease mechanism.


Subject(s)
Congenital Disorders of Glycosylation , Oxytocin , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Seizures , Animals , Female , Male , Mice , Administration, Intranasal , Behavior, Animal/drug effects , Disease Models, Animal , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice, Inbred C57BL , Mice, Knockout , Oxytocin/administration & dosage , Oxytocin/pharmacology , Seizures/drug therapy , Seizures/etiology , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/drug therapy , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency
5.
Proteomics Clin Appl ; 18(2): e2300040, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37876147

ABSTRACT

PURPOSE: Congenital disorders of glycosylation (CDG) are one of the fastest growing groups of inborn errors of metabolism. Despite the availability of next-generation sequencing techniques and advanced methods for evaluation of glycosylation, CDG screening mainly relies on the analysis of serum transferrin (Tf) by isoelectric focusing, HPLC or capillary electrophoresis. The main pitfall of this screening method is the presence of Tf protein variants within the general population. Although reports describe the role of Tf variants leading to falsely abnormal results, their significance in confounding diagnosis in patients with CDG has not been documented so far. Here, we describe two PMM2-CDG cases, in which Tf variants complicated the diagnostic. EXPERIMENTAL DESIGN: Glycosylation investigations included classical screening techniques (capillary electrophoresis, isoelectric focusing and HPLC of Tf) and various confirmation techniques (two-dimensional electrophoresis, western blot, N-glycome, UPLC-FLR/QTOF MS with Rapifluor). Tf variants were highlighted following neuraminidase treatment. Sequencing of PMM2 was performed. RESULTS: In both patients, Tf screening pointed to CDG-II, while second-line analyses pointed to CDG-I. Tf variants were found in both patients, explaining these discrepancies. PMM2 causative variants were identified in both patients. CONCLUSION AND CLINICAL RELEVANCE: We suggest that a neuraminidase treatment should be performed when a typical CDG Tf pattern is found upon initial screening analysis.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Humans , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/complications , Transferrin/genetics , Transferrin/metabolism , Neuraminidase/metabolism , Glycosylation
6.
Mol Genet Metab ; 139(2): 107606, 2023 06.
Article in English | MEDLINE | ID: mdl-37224763

ABSTRACT

BACKGROUND: Given the lack of reliable data on the prevalence of bleeding abnormalities and thrombotic episodes in PMM2-CDG patients, and whether coagulation abnormalities change over time, we prospectively collected and reviewed natural history data. Patients with PMM2-CDG often have abnormal coagulation studies due to glycosylation abnormalities but the frequency of complications resulting from these has not been prospectively studied. METHODS: We studied fifty individuals enrolled in the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study with molecularly confirmed diagnosis of PMM2-CDG. We collected data on prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), platelets, factor IX activity (FIX), factor XI activity (FXI), protein C activity (PC), protein S activity (PS) and antithrombin activity (AT). RESULTS: Prothrombotic and antithrombotic factor activities were frequently abnormal in PMM2-CDG patients, including AT, PC, PT, INR, and FXI. AT deficiency was the most common abnormality in 83.3% of patients. AT activity was below 50% in 62.5% of all patients (normal range 80-130%). Interestingly, 16% of the cohort experienced symptoms of spontaneous bleeding and 10% had thrombosis. Stroke-like episodes (SLE) were reported in 18% of patients in our cohort. Based on the linear growth models, on average, patients did not show significant change in AT (n = 48; t(23.8) = 1.75, p = 0.09), FIX (n = 36; t(61) = 1.60, p = 0.12), FXI (n = 39; t(22.8) = 1.88, p = 0.07), PS (n = 25; t(28.8) = 1.08, p = 0.29), PC (n = 38; t(68) = 1.61, p = 0.11), INR (n = 44; t(184) = -1.06, p = 0.29), or PT (n = 43; t(192) = -0.69, p = 0.49) over time. AT activity positively correlated with FIX activity. PS activity was significantly lower in males. CONCLUSION: Based on our natural history data and previous literature, we conclude that caution should be exercised when the AT levels are lower than 65%, as most thrombotic events occur in patients with AT below this level. All five, male PMM2-CDG patients in our cohort who developed thrombosis had abnormal AT levels, ranging between 19% and 63%. Thrombosis was associated with infection in all cases. We did not find significant change in AT levels over time. Several PMM2-CDG patients had an increased bleeding tendency. More long-term follow-up is necessary on coagulation abnormalities and the associated clinical symptoms to provide guidelines for therapy, patient management, and appropriate counseling. SYNOPSIS: Most PMM2-CDG patients display chronic coagulation abnormalities without significant improvement, associated with a frequency of 16% clinical bleeding abnormalities, and 10% thrombotic episodes in patients with severe antithrombin deficiency.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Thrombosis , Humans , Male , Glycosylation , Prospective Studies , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/diagnosis , Thrombosis/epidemiology , Thrombosis/genetics , Phosphotransferases (Phosphomutases)/genetics , Antithrombins/therapeutic use
7.
Epilepsy Behav ; 142: 109214, 2023 05.
Article in English | MEDLINE | ID: mdl-37086590

ABSTRACT

Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by defects in various defects of protein or lipid glycosylation pathways. The symptoms and signs of CDG usually develop in infancy. Epilepsy is commonly observed in CDG individuals and is often a presenting symptom. These epilepsies can present across the lifespan, share features of refractoriness to antiseizure medications, and are often associated with comorbid developmental delay, psychomotor regression, intellectual disability, and behavioral problems. In this review, we discuss CDG and infantile epilepsy, focusing on an overview of clinical manifestations and electroencephalographic features. Finally, we propose a tiered approach that will permit a clinician to systematically investigate and identify CDG earlier, and furthermore, to provide genetic counseling for the family.


Subject(s)
Congenital Disorders of Glycosylation , Epilepsy , Intellectual Disability , Humans , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/diagnosis , Epilepsy/diagnosis , Glycosylation , Intellectual Disability/complications , Electroencephalography/adverse effects
8.
Mol Genet Metab ; 138(4): 107562, 2023 04.
Article in English | MEDLINE | ID: mdl-37023501

ABSTRACT

Congenital disorders of glycosylation are a group of rare related disorders causing multisystem dysfunction, including ovarian failure in females that requires early estrogen replacement. Glycosylation defects also disrupt normal synthesis of several coagulation factors, increasing thrombotic risks and complicating hormone replacement. This series describes four females with different types of CDG who developed venous thromboses while on transdermal estrogen replacement. The authors highlight the knowledge gaps around anticoagulation for this population and propose further investigations.


Subject(s)
Congenital Disorders of Glycosylation , Thrombosis , Female , Humans , Glycosylation , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/complications , Puberty , Estrogens
9.
Mol Genet Metab ; 138(4): 107559, 2023 04.
Article in English | MEDLINE | ID: mdl-36965289

ABSTRACT

Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.


Subject(s)
Congenital Disorders of Glycosylation , Liver Transplantation , Phosphotransferases (Phosphomutases) , Female , Humans , Child, Preschool , Glycosylation , Follow-Up Studies , Phosphotransferases (Phosphomutases)/genetics , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Liver/metabolism , Immunoglobulin G
10.
Article in English | MEDLINE | ID: mdl-35674301

ABSTRACT

BACKGROUND: Congenital disorder of glycosylation caused by mutation of the DOLK(DOLK-CDG) is a group of rare autosomal recessive diseases with an early-onset age and poor prognosis. DOLK-CDG can cause the dysfunction of multiple systems and organs such as the heart, skin, nerves, and bones. CASE PRESENTATION: We report a child with DOLK-CDG diagnosed and treated in the Affiliated Hospital of Qingdao University. The child was born with neonatal asphyxia, Ichthyoid rash, and congenital heart disease. His fingers of both the hands looked like lotus roots, and the palm and foot were covered by a white membrane. He was hospitalized with a severe infection at 4 months after birth. Physical examination showed that he was complicated with development delay and hypotonia. He experienced convulsions 1 hour after admission and died of multiple organ failure 2 hours after admission. Blood samples were taken for genetic testing before the child died. The results showed that there was a novel compound heterozygous mutation in DOLK, c.1268C>G (P.P423R) and c.1581_1583del (P.527_528del). CONCLUSION: This mutation is new and not included in the human gene mutation library. The discovery of the novel mutation broadened the mutation spectrum of DOLK. At the same time, we sorted out the DOLK-CDG gene mutation sites and related clinical manifestations reported by August 2021 through a literature review.


Subject(s)
Congenital Disorders of Glycosylation , Male , Infant, Newborn , Child , Humans , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Genetic Testing , Phosphotransferases (Alcohol Group Acceptor)/genetics , Mutation
11.
Am J Med Genet A ; 188(8): 2438-2442, 2022 08.
Article in English | MEDLINE | ID: mdl-35665995

ABSTRACT

Achalasia is rare in the pediatric population and should prompt clinicians to consider genetic disorders associated with this condition. While AAA syndrome (also known as Allgrove or Triple A syndrome) is commonly considered, GMPPA-congenital disorder of glycosylation (CDG) should also be in the differential diagnosis. We report a 9-month-old female born to nonconsanguineous parents with achalasia and alacrima found to have two novel compound heterozygous variants in the GMPPA gene associated with GMPPA-CDG. This rare disorder is commonly associated with developmental delay and intellectual disability. We discuss management of this disorder including the importance of confirming a genetic diagnosis and summarize reported cases.


Subject(s)
Adrenal Insufficiency , Congenital Disorders of Glycosylation , Esophageal Achalasia , Eye Diseases, Hereditary , Adrenal Insufficiency/genetics , Child , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Esophageal Achalasia/diagnosis , Esophageal Achalasia/genetics , Eye Diseases, Hereditary/genetics , Female , Glycosylation , Humans , Infant
12.
Birth Defects Res ; 114(5-6): 165-174, 2022 03.
Article in English | MEDLINE | ID: mdl-35068072

ABSTRACT

BACKGROUND: Deficiency of Conserved Oligomeric Golgi (COG) subunits (COG1-8) is characterized by both N- and O-protein glycosylation defects associated with destabilization and mislocalization of Golgi glycosylation machinery components (COG-CDG). Patients with COG defects present with neurological and multisystem involvement and possible malformation occurrence. Eighteen patients with COG6-CDG (COG6 mutations) were reported to date. We describe a patient with COG6-CDG with novel variants and a novel clinical feature namely a congenital recto-vaginal fistula. METHODS: In-depth serum N- and O-glycosylation structural analyses were conducted by MALDI-TOF mass spectrometry. COG6 variants were identified by a gene panel and confirmed by Sanger sequencing. RESULTS: This female newborn presented with facial dysmorphism, distal arthrogryposis and recurrent stool discharges per vaginam. A double-contrast barium-enema X-ray study revealed a dehiscence (approximately 5 mm) at the anterior wall of the rectal ampoule communicating with the vagina consistent with a recto-vaginal fistula. She had developmental delay, corpus callosum dysgenesis, liver and gastrointestinal involvement, hyperthermia episodes and early demise. Serum N- and O-glycosylation analyses pointed to a profound Golgi disarrangement. We identified two novel variants in COG6: a deletion of 1 bp mutation c.823delA creating a shift in the reading frame and a premature stop codon and a 3 bp deletion (c.1141_1143delCTC) producing an in-frame deletion of 1 amino acid. CONCLUSION: The congenital recto-vaginal fistula is a rare type of anorectal malformation that, to our knowledge, has not been reported in patients with a COG6 defect nor in patients with other COG defects. This study broadens COG6-CDG genetic landscape and spectrum of malformations.


Subject(s)
Congenital Disorders of Glycosylation , Vaginal Fistula , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Female , Glycosylation , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Infant, Newborn , Vaginal Fistula/complications
13.
Brain Dev ; 44(3): 239-243, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34802815

ABSTRACT

INTRODUCTION: Congenital disorders of glycosylation (CDG) is a group of rare, hereditary, multisystem disorders, predominantly affecting nervous system. There are N- and O- types of glycosylation. Fucosylation, a form of N-glycosylation, involves many enzymes. Until today, type 1 and type 2 fucosylation defects were identified, having pathogenic variants in genes encoding α-1,6-fucosyltransferase and fucokinase enzymes, respectively. In this article, a patient with type 2 fucosylation defect will be presented, with hypotonia, developmental delay and blindness and a pathogenic variant that was previously described in two patients. METHOD: Whole exome sequencing (WES) was performed, since the patient had no time to implement diagnostic algorithm for hypotonia etiology. RESULTS: WES revealed a new pathogenic variant of homozygous c.993_1011del (p.Glu335Hisfs*55) frameshift variant of the FUK gene NM_145059 transcript. She had milder clinical manifestation than reported two patients. CONCLUSION: Congenital Defect of Glycosylation should be considered when the clinical findings cannot be explained by other known diseases, particularly in patients with multisystemic, predominantly neurological involvement.


Subject(s)
Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Blindness/etiology , Congenital Disorders of Glycosylation/complications , Developmental Disabilities/etiology , Humans , Muscle Hypotonia/etiology
14.
J Pediatr Endocrinol Metab ; 34(9): 1185-1189, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34161696

ABSTRACT

OBJECTIVES: Congenital disorders of glycosylation (CDGs) are rare inherited metabolic disorders associated with facial dysmorphism and in the majority of the patients, there is an important neurological impairment. Epilepsy was a main concern in rare forms of the disease. There are two groups of the disease: CDG-I results from the defects in glycan addition to the N-terminal and CDG-II occurs due to defects in the processing of protein bound glycans. SLC35A2-CDG is a rare form of CDG caused by mutations in the X-linked gene that encodes a UDP-Galactose transporter. The manifestations of the disease include seizures, failure to thrive, delayed myelination, and cerebral atrophy. CASE PRESENTATION: We describe herein a severe female child with intractable seizures, microcephaly, growth retardation, hypotonia, global developmental delay, facial dysmorphism, skeletal findings, cerebral/cerebellar atrophy, and thin corpus callosum, and a mildly affected male carrying a novel variant with seizures and mild global developmental delay who were found by whole exome sequencing (WES) for SLC35A2 mutations previously not reported. CONCLUSIONS: Our findings expand the number of reported cases and add novel variants to the repertoire of SLC35A2-CDG.


Subject(s)
Abnormalities, Multiple/pathology , Congenital Disorders of Glycosylation/pathology , Epilepsy/pathology , Monosaccharide Transport Proteins/genetics , Mutation , Seizures/pathology , Abnormalities, Multiple/genetics , Child, Preschool , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Epilepsy/complications , Epilepsy/genetics , Female , Humans , Male , Prognosis , Seizures/complications , Seizures/genetics
15.
Am J Med Genet A ; 185(9): 2739-2747, 2021 09.
Article in English | MEDLINE | ID: mdl-33960646

ABSTRACT

The pathophysiology of congenital defects of glycosylation (CDG) is complex and the diagnosis has been a challenge because of the overlapping clinical signs and symptoms as well as a large number of disorders. Isoelectric focusing of transferrin has been used as a screening method but has limitations. Individual enzyme or molecular genetic tests have been difficult to perform. In this study, we aimed to describe CDG patients who were referred to from different departments either without a preliminary diagnosis or suspected to have a genetic disorder other than CDG. The patients were diagnosed mainly with a 450 gene next-generation DNA sequencing panel for inborn errors of metabolism, which also included 25 genes for CDG. A total of 862 patients were investigated with the panel, whereby homozygous (10) or compound heterozygous (4) mutations were found in a total of 14 (1.6%) patients. A total of 13 different mutations were discovered, 10 of them being novel. Interestingly, none of the patients was suspected to have a CDG before referral. This report expands the clinical/laboratory findings in patients with CDG and stresses on the fact that CDG should be in the differential list for pediatric patients presented with nonspecific dysmorphic features and neurological delays/regression. Also, next-generation DNA sequencing with panel approach was noticed to have a significant diagnostic potential in patients presented with nonspecific neurologic and dysmorphic findings.


Subject(s)
Abnormalities, Multiple/diagnosis , Congenital Disorders of Glycosylation/diagnosis , Genetic Markers , High-Throughput Nucleotide Sequencing/methods , Mutation , Nervous System Diseases/diagnosis , Abnormalities, Multiple/genetics , Child , Child, Preschool , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Female , Glycosylation , Humans , Infant , Male , Nervous System Diseases/complications , Nervous System Diseases/genetics
16.
Article in English | MEDLINE | ID: mdl-33858316

ABSTRACT

BACKGROUND: In Congenital Disorder of Glycosylation (CDG) type Ia, homozygous mutations of the PMM2 gene cause phosphomannomutase 2 dysfunction. CASE PRESENTATION: Herein, a 10-month-old girl, is presented with severe hypotonia, along with inappropriately normal mental status and normal facies. High 2-ketoglutaric acid was detected in her urine, therefore, the diagnosis of 2-Ketoglutarate dehydrogenase complex (KDHC) deficiency was made for this patient. A high dose of vitamin B1 was administered because thiamine is considered a co-factor in this inborn error of metabolism. She responded very well to the daily administration of 500 mg/day vitamin B1 and stood up without help 5 months later. She had also experienced a seizure, which responded well to pyridoxine. Then, she grew up into a 3.5-years-old child who could talk and walk normally. Recently, whole-exome sequencing was performed for her, which showed homozygote mutation of PMM2, therefore, the diagnosis was changed from KDHC deficiency to PMM2-CDG. CONCLUSION: Paying attention to the pathophysiology of inborn errors of metabolism is necessary while considering the defective enzyme co-factor, which may help us to find an option for the treatment of such rare diseases.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Child, Preschool , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/drug therapy , Female , Glycosylation , Homozygote , Humans , Infant , Mutation , Phosphotransferases (Phosphomutases)/genetics , Phosphotransferases (Phosphomutases)/metabolism
17.
Am J Med Genet A ; 185(4): 1081-1090, 2021 04.
Article in English | MEDLINE | ID: mdl-33403770

ABSTRACT

Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Abnormalities, Multiple/genetics , Cataract/genetics , Congenital Disorders of Glycosylation/genetics , Membrane Proteins/genetics , Muscular Atrophy/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/ultrastructure , Abnormalities, Multiple/pathology , Adolescent , Cataract/complications , Cataract/pathology , Child , Child, Preschool , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/pathology , Eye/pathology , Facial Recognition , Facies , Female , Humans , Membrane Proteins/ultrastructure , Muscular Atrophy/complications , Muscular Atrophy/pathology , Mutation, Missense/genetics
18.
Am J Med Genet A ; 185(4): 1187-1194, 2021 04.
Article in English | MEDLINE | ID: mdl-33394555

ABSTRACT

Congenital disorders of glycosylation (CDG) are an expanding group of metabolic disorders that result from abnormal protein glycosylation. A special subgroup of CDG type II comprises defects in the Conserved Oligomeric Golgi Complex (COG). In order to further delineate the genotypic and phenotypic spectrum of COG complex defect, we describe a novel variant of COG6 gene found in homozygosity in a Moroccan patient with severe presentation of COG6-CDG (OMIM #614576). We compared the phenotype of our patient with other previously reported COG6-CDG cases. Common features in COG6-CDG are facial dysmorphism, growth retardation, microcephaly, developmental disability, liver or gastrointestinal disease, recurrent infections, hypohidrosis/hyperthermia. In addition to these phenotypic features, our patient exhibited a disorder of sexual differentiation, which has rarely been reported in COG6-CDG. We hypothesize that the severe COG6 gene mutation interferes with glycosylation of a disintegrin and metalloprotease family members, inhibiting the correct gonadal distal tip cells migration, fundamental for the genitalia morphogenesis. This report broadens the genetic and phenotypic spectrum of COG6-CDG and provides further supportive evidence that COG6-CDG can present as a disorder of sexual differentiation.


Subject(s)
Abnormalities, Multiple/genetics , Adaptor Proteins, Vesicular Transport/genetics , Craniofacial Abnormalities/genetics , Disorders of Sex Development/genetics , Muscular Atrophy/genetics , Sexual Development/genetics , Abnormalities, Multiple/physiopathology , Codon, Nonsense/genetics , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/physiopathology , Craniofacial Abnormalities/complications , Craniofacial Abnormalities/physiopathology , Disorders of Sex Development/complications , Disorders of Sex Development/physiopathology , Genetic Predisposition to Disease , Golgi Apparatus/genetics , Homozygote , Humans , Infant , Infant, Newborn , Karyotype , Male , Microcephaly/complications , Microcephaly/genetics , Microcephaly/physiopathology , Muscular Atrophy/complications , Muscular Atrophy/physiopathology , Phenotype
19.
Am J Med Genet A ; 185(1): 219-222, 2021 01.
Article in English | MEDLINE | ID: mdl-33058492

ABSTRACT

Congenital glycosylation disorders (CDG) are inherited metabolic diseases due to defective glycoprotein and glycolipid glycan assembly and attachment. MOGS-CDG is a rare disorder with seven patients from five families reported worldwide. We report on a 19-year-old girl with MOGS-CDG. At birth she presented facial dysmorphism, marked hypotonia, and drug-resistant tonic seizures. In the following months, her motility was strongly limited by dystonia, with forced posture of the head and of both hands. She showed a peculiar hyperkinetic movement disorder with a rhythmic and repetitive pattern repeatedly documented on EEG-polygraphy recordings. Brain MRI showed progressive cortical and subcortical atrophy. Epileptic spasms appeared in first months and ceased by the age of 7 years, while tonic seizures were still present at last assessment (19 years). We report the oldest-known MOGS-CDG patient and broaden the neurological phenotype of this CDG.


Subject(s)
Congenital Disorders of Glycosylation/diagnosis , Epilepsy/diagnosis , Movement Disorders/diagnosis , Seizures/diagnosis , Adolescent , Adult , Brain/diagnostic imaging , Brain/pathology , Child , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/diagnostic imaging , Congenital Disorders of Glycosylation/pathology , Electroencephalography , Epilepsy/complications , Epilepsy/diagnostic imaging , Epilepsy/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Movement Disorders/complications , Movement Disorders/pathology , Muscle Hypotonia/diagnostic imaging , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Mutation/genetics , Phenotype , Seizures/complications , Seizures/diagnostic imaging , Seizures/pathology , Young Adult
20.
Am J Med Genet A ; 185(1): 213-218, 2021 01.
Article in English | MEDLINE | ID: mdl-33044030

ABSTRACT

Glycosylation is a critical post/peri-translational modification required for the appropriate development and function of the immune system. As an example, abnormalities in glycosylation can cause antibody deficiency and reduced lymphocyte signaling, although the phenotype can be complex given the diverse roles of glycosylation. Human MGAT2 encodes N-acetylglucosaminyltransferase II, which is a critical enzyme in the processing of oligomannose to complex N-glycans. Complex N-glycans are essential for immune system functionality, but only one individual with MGAT2-CDG has been described to have an abnormal immunologic evaluation. MGAT2-CDG (CDG-IIa) is a congenital disorder of glycosylation (CDG) associated with profound global developmental disability, hypotonia, early onset epilepsy, and other multisystem manifestations. Here, we report a 4-year old female with MGAT2-CDG due to a novel homozygous pathogenic variant in MGAT2, a 4-base pair deletion, c.1006_1009delGACA. In addition to clinical features previously described in MGAT2-CDG, she experienced episodic asystole, persistent hypogammaglobulinemia, and defective ex vivo mitogen and antigen proliferative responses, but intact specific vaccine antibody titers. Her infection history has been mild despite the testing abnormalities. We compare this patient to the 15 previously reported patients in the literature, thus expanding both the genotypic and phenotypic spectrum for MGAT2-CDG.


Subject(s)
Arrhythmias, Cardiac/genetics , Congenital Disorders of Glycosylation/genetics , Immune System Diseases/genetics , N-Acetylglucosaminyltransferases/genetics , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/pathology , Child, Preschool , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/immunology , Congenital Disorders of Glycosylation/pathology , Female , Glycosylation , Homozygote , Humans , Immune System Diseases/complications , Immune System Diseases/immunology , Immune System Diseases/pathology , Mutation/genetics , N-Acetylglucosaminyltransferases/immunology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL