Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.636
Filter
1.
Environ Microbiol ; 26(5): e16638, 2024 May.
Article in English | MEDLINE | ID: mdl-38733104

ABSTRACT

Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.


Subject(s)
Gene Transfer, Horizontal , Plasmids , Plasmids/genetics , Bacteria/genetics , Bacteria/classification , Bacterial Proteins/genetics , Conjugation, Genetic , Phylogeny , Planctomycetales/genetics , Evolution, Molecular , Replication Origin/genetics
2.
Microb Biotechnol ; 17(5): e14421, 2024 May.
Article in English | MEDLINE | ID: mdl-38752994

ABSTRACT

The distinct conjugation machineries encoded by plasmids pNP40 and pUC11B represent the most prevalent plasmid transfer systems among lactococcal strains. In the current study, we identified genetic determinants that underpin pNP40- and pUC11B-mediated, high-frequency mobilisation of other, non-conjugative plasmids. The mobilisation frequencies of the smaller, non-conjugative plasmids and the minimal sequences required for their mobilisation were determined, owing to the determination of the oriT sequences of both pNP40 and pUC11B, which allowed the identification of similar sequences in some of the non-conjugative plasmids that were shown to promote their mobilisation. Furthermore, the auxiliary gene mobC, two distinct functional homologues of which are present in several plasmids harboured by the pNP40- and pUC11B-carrying host strains, was observed to confer a high-frequency mobilisation phenotype. These findings provide mechanistic insights into how lactococcal conjugative plasmids achieve conjugation and promote mobilisation of non-conjugative plasmids. Ultimately, these insights would be harnessed to optimise conjugation and mobilisation strategies for the rapid and predictable development of robust and technologically improved strains.


Subject(s)
Conjugation, Genetic , Gene Transfer, Horizontal , Plasmids , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lactococcus lactis/genetics
3.
J Microbiol Methods ; 221: 106943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705209

ABSTRACT

Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.


Subject(s)
Multiplex Polymerase Chain Reaction , Nasopharynx , Recombinases , Animals , Cattle , Nasopharynx/microbiology , Recombinases/genetics , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Interspersed Repetitive Sequences/genetics , Cattle Diseases/microbiology , Cattle Diseases/diagnosis , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Bovine Respiratory Disease Complex/microbiology , Conjugation, Genetic , Sensitivity and Specificity , Mannheimia haemolytica/genetics , Mannheimia haemolytica/isolation & purification , Pasteurellaceae/genetics , Pasteurellaceae/isolation & purification
4.
Front Cell Infect Microbiol ; 14: 1368622, 2024.
Article in English | MEDLINE | ID: mdl-38741889

ABSTRACT

There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Gene Transfer, Horizontal , Plasmids , beta-Lactamases , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Humans , Escherichia coli Infections/microbiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Conjugation, Genetic , Escherichia coli Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Latin America , Drug Resistance, Bacterial/genetics
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731857

ABSTRACT

Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.


Subject(s)
Erysipelothrix , Geese , Prophages , Animals , Geese/microbiology , Poland , Erysipelothrix/genetics , Prophages/genetics , Anti-Bacterial Agents/pharmacology , Erysipelothrix Infections/microbiology , Erysipelothrix Infections/genetics , Poultry Diseases/microbiology , Whole Genome Sequencing , Genome, Bacterial , DNA Transposable Elements/genetics , Drug Resistance, Bacterial/genetics , Conjugation, Genetic , Plasmids/genetics
6.
Virulence ; 15(1): 2359467, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38808732

ABSTRACT

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.


Subject(s)
Gene Transfer, Horizontal , Genome, Bacterial , Pasteurella Infections , Pasteurella multocida , Phylogeny , Pasteurella multocida/genetics , Pasteurella multocida/classification , Animals , Pasteurella Infections/microbiology , Pasteurella Infections/epidemiology , Pasteurella Infections/transmission , DNA Transposable Elements , Conjugation, Genetic , Evolution, Molecular , Poultry/microbiology , Prevalence , High-Throughput Nucleotide Sequencing
7.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
8.
Environ Sci Technol ; 58(21): 9017-9030, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753980

ABSTRACT

A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.


Subject(s)
Conjugation, Genetic , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Gene Transfer, Horizontal
9.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38811160

ABSTRACT

A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.


Subject(s)
Bacterial Proteins , DNA, Single-Stranded , DNA-Binding Proteins , Enterococcus faecalis , Plasmids , Plasmids/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Protein Binding , Conjugation, Genetic/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Models, Molecular , Gene Transfer, Horizontal , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
10.
Environ Pollut ; 355: 124231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38801878

ABSTRACT

Nanocolloids (Nc) are widespread in natural water environment, whereas the potential effects of Nc on dissemination of antibiotic resistance remain largely unknown. In this study, Nc collected from the Yellow River in Henan province was tested for its ability to influence the conjugative transfer of resistant plasmid in aqueous environment. The results revealed that the conjugative transfer of RP4 plasmid between Escherichia coli was down-regulated by 52%-91% upon exposure to 1-10 mg/L Nc and the reduction became constant when the dose became higher (20-200 mg/L). Despite the exposure of Nc activated the anti-oxidation and SOS response in bacteria through up-regulating genes involved in glutathione biosynthesis and DNA recombination, the inhibition on the synthesis and secretion of extracellular polysaccharide induced the prevention of cell-cell contact, leading to the reduction of plasmid transfer. This was evidenced by the decreased bacterial adhesion and lowered levels of genes and metabolites relevant to transmembrane transport and D-glucose phosphorylation, as clarified in phenotypic, transcriptomics and metabolomics analysis of E. coli. The significant down-regulation of glycolysis/gluconeogenesis and TCA cycle was associated with the shortage of ATP induced by Nc. The up-regulation of global regulatory genes (korA and trbA) and the reduction of plasmid genes (trfAp, trbBp, and traG) expression also contributed to the suppressed conjugation of RP4 plasmid. The obtained findings remind that the role of ubiquitous colloidal particles is nonnegligible when practically and comprehensively assessing the risk of antibiotic resistance in the environment.


Subject(s)
Colloids , Escherichia coli , Plasmids , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Conjugation, Genetic , Drug Resistance, Bacterial/genetics
11.
BMC Genomics ; 25(1): 324, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561675

ABSTRACT

Lactococcus lactis is widely applied by the dairy industry for the fermentation of milk into products such as cheese. Adaptation of L. lactis to the dairy environment often depends on functions encoded by mobile genetic elements (MGEs) such as plasmids. Other L. lactis MGEs that contribute to industrially relevant traits like antimicrobial production and carbohydrate utilization capacities belong to the integrative conjugative elements (ICE). Here we investigate the prevalence of ICEs in L. lactis using an automated search engine that detects colocalized, ICE-associated core-functions (involved in conjugation or mobilization) in lactococcal genomes. This approach enabled the detection of 36 candidate-ICEs in 69 L. lactis genomes. By phylogenetic analysis of conserved protein functions encoded in all lactococcal ICEs, these 36 ICEs could be classified in three main ICE-families that encompass 7 distinguishable ICE-integrases and are characterized by apparent modular-exchangeability and plasticity. Finally, we demonstrate that phylogenetic analysis of the conjugation-associated VirB4 ATPase function differentiates ICE- and plasmid-derived conjugation systems, indicating that conjugal transfer of lactococcal ICEs and plasmids involves genetically distinct machineries. Our genomic analysis and sequence-based classification of lactococcal ICEs creates a comprehensive overview of the conserved functional repertoires encoded by this family of MGEs in L. lactis, which can facilitate the future exploitation of the functional traits they encode by ICE mobilization to appropriate starter culture strains.


Subject(s)
Lactococcus lactis , Lactococcus lactis/genetics , Phylogeny , Plasmids/genetics , Proteins/metabolism , Genome , Conjugation, Genetic , DNA Transposable Elements
12.
Commun Biol ; 7(1): 499, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664513

ABSTRACT

Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.


Subject(s)
Conjugation, Genetic , Plasmids , Type IV Secretion Systems , Plasmids/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
13.
J Hazard Mater ; 471: 134257, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38636236

ABSTRACT

The widespread use of disinfectants during the global response to the 2019 coronavirus pandemic has increased the co-occurrence of disinfection byproducts (DBPs) and antibiotic resistance genes (ARGs). Although DBPs pose major threats to public health globally, there is limited knowledge regarding their biological effects on ARGs. This study aimed to investigate the effects of two inorganic DBPs (chlorite and bromate) on the conjugative transfer of RP4 plasmid among Escherichia coli strains at environmentally relevant concentrations. Interestingly, the frequency of conjugative transfer was initially inhibited when the exposure time to chlorite or bromate was less than 24 h. However, this inhibition transformed into promotion when the exposure time was extended to 36 h. Short exposures to chlorite or bromate were shown to impede the electron transport chain, resulting in an ATP shortage and subsequently inhibiting conjugative transfer. Consequently, this stimulates the overproduction of reactive oxygen species (ROS) and activation of the SOS response. Upon prolonged exposure, the resurgent energy supply promoted conjugative transfer. These findings offer novel and valuable insights into the effects of environmentally relevant concentrations of inorganic DBPs on the conjugative transfer of ARGs, thereby providing a theoretical basis for the management of DBPs.


Subject(s)
Bromates , Chlorides , Escherichia coli , Oxidative Stress , Plasmids , Escherichia coli/genetics , Escherichia coli/drug effects , Oxidative Stress/drug effects , Bromates/toxicity , Plasmids/genetics , Chlorides/pharmacology , Disinfectants/pharmacology , Reactive Oxygen Species/metabolism , Conjugation, Genetic/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , SOS Response, Genetics/drug effects
14.
Sci Total Environ ; 931: 172466, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38626826

ABSTRACT

The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.


Subject(s)
Gene Transfer, Horizontal , Plasmids , Plasmids/genetics , Conjugation, Genetic , Drug Resistance, Bacterial/genetics , Pseudomonas/genetics
15.
Bull Math Biol ; 86(6): 63, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664322

ABSTRACT

In this study, we present a mathematical model for plasmid spread in a growing biofilm, formulated as a nonlocal system of partial differential equations in a 1-D free boundary domain. Plasmids are mobile genetic elements able to transfer to different phylotypes, posing a global health problem when they carry antibiotic resistance factors. We model gene transfer regulation influenced by nearby potential receptors to account for recipient-sensing. We also introduce a promotion function to account for trace metal effects on conjugation, based on literature data. The model qualitatively matches experimental results, showing that contaminants like toxic metals and antibiotics promote plasmid persistence by favoring plasmid carriers and stimulating conjugation. Even at higher contaminant concentrations inhibiting conjugation, plasmid spread persists by strongly inhibiting plasmid-free cells. The model also replicates higher plasmid density in biofilm's most active regions.


Subject(s)
Biofilms , Gene Transfer, Horizontal , Mathematical Concepts , Models, Biological , Models, Genetic , Plasmids , Biofilms/growth & development , Plasmids/genetics , Conjugation, Genetic , Anti-Bacterial Agents/pharmacology
16.
J Environ Manage ; 358: 120827, 2024 May.
Article in English | MEDLINE | ID: mdl-38608575

ABSTRACT

The environmental safety of nanoscale molybdenum disulfide (MoS2) has attracted considerable attention, but its influence on the horizontal migration of antibiotic resistance genes and the ecological risks entailed have not been reported. This study addressed the influence of exposure to MoS2 at different concentrations up to 100 mg/L on the conjugative transfer of antibiotic resistance genes carried by RP4 plasmids with two strains of Escherichia coli. As a result, MoS2 facilitated RP4 plasmid-mediated conjugative transfer in a dose-dependent manner. The conjugation of RP4 plasmids was enhanced as much as 7-fold. The promoting effect is mainly attributable to increased membrane permeability, oxidative stress induced by reactive oxygen species, changes in extracellular polymer secretion and differential expression of the genes involved in horizontal gene transfer. The data highlight the distinct dose dependence of the conjugative transfer of antibiotic resistance genes and the need to improve awareness of the ecological and health risks of nanoscale transition metal dichalcogenides.


Subject(s)
Disulfides , Drug Resistance, Microbial , Escherichia coli , Molybdenum , Plasmids , Molybdenum/chemistry , Plasmids/genetics , Disulfides/chemistry , Escherichia coli/genetics , Escherichia coli/drug effects , Drug Resistance, Microbial/genetics , Conjugation, Genetic , Anti-Bacterial Agents/pharmacology , Gene Transfer, Horizontal
17.
Ecotoxicol Environ Saf ; 276: 116288, 2024 May.
Article in English | MEDLINE | ID: mdl-38581909

ABSTRACT

Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100 µg/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10 µg/L of CYN led to maximum fold change of ∼6.5- fold at 16 h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.


Subject(s)
Alkaloids , Bacterial Toxins , Cyanobacteria Toxins , Escherichia coli , Glutathione , Plasmids , Uracil , Plasmids/genetics , Glutathione/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Bacterial Toxins/toxicity , Uracil/analogs & derivatives , Uracil/toxicity , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Conjugation, Genetic , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics
18.
Microbiol Res ; 284: 127729, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663232

ABSTRACT

Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.


Subject(s)
Aquatic Organisms , Bacteria , Electroporation , Plasmids , Transformation, Bacterial , Bacteria/genetics , Bacteria/metabolism , Plasmids/genetics , Aquatic Organisms/genetics , Genetic Engineering/methods , Conjugation, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Seawater/microbiology , Transformation, Genetic , CRISPR-Cas Systems
19.
PLoS Pathog ; 20(4): e1012169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640137

ABSTRACT

Integrative and conjugative elements (ICEs) play a vital role in bacterial evolution by carrying essential genes that confer adaptive functions to the host. Despite their importance, the mechanism underlying the stable inheritance of ICEs, which is necessary for the acquisition of new traits in bacteria, remains poorly understood. Here, we identified SezAT, a type II toxin-antitoxin (TA) system, and AbiE, a type IV TA system encoded within the ICESsuHN105, coordinately promote ICE stabilization and mediate multidrug resistance in Streptococcus suis. Deletion of SezAT or AbiE did not affect the strain's antibiotic susceptibility, but their duple deletion increased susceptibility, mainly mediated by the antitoxins SezA and AbiEi. Further studies have revealed that SezA and AbiEi affect the genetic stability of ICESsuHN105 by moderating the excision and extrachromosomal copy number, consequently affecting the antibiotic resistance conferred by ICE. The DNA-binding proteins AbiEi and SezA, which bind palindromic sequences in the promoter, coordinately modulate ICE excision and extracellular copy number by binding to sequences in the origin-of-transfer (oriT) and the attL sites, respectively. Furthermore, AbiEi negatively regulates the transcription of SezAT by binding directly to its promoter, optimizing the coordinate network of SezAT and AbiE in maintaining ICESsuHN105 stability. Importantly, SezAT and AbiE are widespread and conserved in ICEs harbouring diverse drug-resistance genes, and their coordinated effects in promoting ICE stability and mediating drug resistance may be broadly applicable to other ICEs. Altogether, our study uncovers the TA system's role in maintaining the genetic stability of ICE and offers potential targets for overcoming the dissemination and evolution of drug resistance.


Subject(s)
Bacterial Proteins , Streptococcus suis , Toxin-Antitoxin Systems , Streptococcus suis/genetics , Streptococcus suis/drug effects , Toxin-Antitoxin Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Streptococcal Infections/microbiology , Streptococcal Infections/genetics , Anti-Bacterial Agents/pharmacology , Conjugation, Genetic , Animals , Interspersed Repetitive Sequences
20.
Curr Opin Microbiol ; 78: 102449, 2024 04.
Article in English | MEDLINE | ID: mdl-38432159

ABSTRACT

Horizontal transfer of plasmids by conjugation is a fundamental mechanism driving the widespread dissemination of drug resistance among bacterial populations. The successful colonization of a new host cell necessitates the plasmid to navigate through a series of sequential steps, each dependent on specific plasmid or host factors. This review explores recent advancements in comprehending the cellular and molecular mechanisms that govern plasmid transmission, establishment, and long-term maintenance. Adopting a plasmid-centric perspective, we describe the critical steps and bottlenecks in the plasmid's journey toward a new host cell, encompassing exploration and contact initiation, invasion, establishment and control, and assimilation.


Subject(s)
Bacteria , Conjugation, Genetic , Plasmids/genetics , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...