Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.457
Filter
1.
Sci Rep ; 14(1): 10877, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740862

ABSTRACT

In chronic stages of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalitis (EAE), connexin (Cx)43 gap junction channel proteins are overexpressed because of astrogliosis. To elucidate the role of increased Cx43, the central nervous system (CNS)-permeable Cx blocker INI-0602 was therapeutically administered. C57BL6 mice with chronic EAE initiated by MOG35-55 received INI-0602 (40 mg/kg) or saline intraperitoneally every other day from days post-immunization (dpi) 17-50. Primary astroglia were employed to observe calcein efflux responses. In INI-0602-treated mice, EAE clinical signs improved significantly in the chronic phase, with reduced demyelination and decreased CD3+ T cells, Iba-1+ and F4/80+ microglia/macrophages, and C3+GFAP+ reactive astroglia infiltration in spinal cord lesions. Flow cytometry analysis of CD4+ T cells from CNS tissues revealed significantly reduced Th17 and Th17/Th1 cells (dpi 24) and Th1 cells (dpi 50). Multiplex array of cerebrospinal fluid showed significantly suppressed IL-6 and significantly increased IL-10 on dpi 24 in INI-0602-treated mice, and significantly suppressed IFN-γ and MCP-1 on dpi 50 in the same group. In vitro INI-0602 treatment inhibited ATP-induced calcium propagations of Cx43+/+ astroglial cells to similar levels of those of Cx43-/- cells. Astroglial Cx43 hemichannels represent a novel therapeutic target for chronic EAE and MS.


Subject(s)
Astrocytes , Connexin 43 , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Multiple Sclerosis , Animals , Connexin 43/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Female
2.
Medicina (Kaunas) ; 60(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792963

ABSTRACT

Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Connexin 43 , Kidney Neoplasms , Humans , Connexin 43/analysis , Connexin 43/metabolism , Kidney Neoplasms/genetics , Biomarkers, Tumor/analysis , Prognosis , beta Catenin , Cell Line, Tumor , Male , Female
3.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1774-1784, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812189

ABSTRACT

The study aims to investigate the effects and potential mechanism of raw and processed Aconitum pendulum Busch on rheumatoid arthritis(RA) and analyze their toxicity attenuating and efficacy retaining effects. The bovine type Ⅱ collagen-induced arthritis(CIA) rat model was established. The weight, cardiac index, immune organ index, and arthritis index of the rats were recorded and calculated after administration. ELISA was used to measure the expressions of creatine kinase(CK), cardiac troponin T(cTnT), and multiple factors. The pathological morphological changes in heart tissue and ankle joint tissue were observed by hematoxylin-eosin staining. Connexin 43(Cx43) expression in the hearts of CIA rats was detected via immunohistochemical method. The levels of endogenous metabolites in the serum of CIA rats were detected by UPLC-Q-TOF-MS. Potential biomarkers were screened, and related metabolic pathways were analyzed. The results showed that raw A. pendulum could induce local myocardial fiber degeneration and necrosis, increase the cardiac index, decrease the average positive area of Cx43 expression significantly, and increase the expressions of CK and cTnT in cardiac tissue of rats. Meanwhile, raw A. pendulum could decrease the immune organ index, interleukin-6(IL-6), and other inflammatory cytokine contents in the serum and improve the damaged synovium and joint surface of CIA rats, with toxicity and efficacy coexisting. The Zanba stir-fired A. pendulum could reduce the index of arthritis, immune organ index, and content of IL-6 and inflammatory cytokines in serum and improve damaged synovium and joint surface of CIA rats with no obvious cardiac toxicity, showing significant toxicity attenuating and efficacy retaining effects. A total of 19 potential biomarkers of raw A. pendulum and Zanba stir-fired A. pendulum against RA were screened by serum metabolomics, including glycerophospholipid metabolism, glycine, serine, and threonine metabolism, arginine and proline metabolism, and steroid hormone synthesis. In conclusion, Xizang medicine A. pendulum is preventive and curative for RA. Raw A. pendulum has certain cardiotoxicity, and Zanba stir-fired A. pendulum has significant toxicity attenuating and efficacy retaining effects. The anti-RA mechanism may be related to the regulation of glycerophospholipid and amino acid metabolism.


Subject(s)
Aconitum , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Metabolomics , Animals , Aconitum/chemistry , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Rats , Drugs, Chinese Herbal/administration & dosage , Male , Female , Humans , Rats, Sprague-Dawley , Connexin 43/metabolism , Connexin 43/genetics , Cattle , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Creatine Kinase/blood
4.
Front Biosci (Landmark Ed) ; 29(5): 201, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38812314

ABSTRACT

BACKGROUND: Ibrutinib could increase the risk of atrial fibrillation (AF) in chronic lymphocytic leukemia (CLL) patients. However, the precise mechanism underlying ibrutinib-induced AF remains incompletely elucidated. METHODS: We investigated the proportion of ibrutinib-treated CLL patients with new-onset AF. Optical mapping was conducted to reveal the proarrhythmic effect of ibrutinib on HL-1 cells. Fluorescence staining and western blot were used to compare connexins 43 and 40 expression in ibrutinib-treated and control groups. To identify autophagy phenotypes, we used western blot to detect autophagy-related proteins, transmission electron microscopy to picture autophagosomes, and transfected mCherry-GFP-LC3 virus to label autophagosomes and lysosomes. Hydroxychloroquine as an autophagy inhibitor was administered to rescue ibrutinib-induced Cx43 and Cx40 degradation. RESULTS: About 2.67% of patients developed atrial arrhythmias after ibrutinib administration. HL-1 cells treated with ibrutinib exhibited diminished conduction velocity and a higher incidence of reentry-like arrhythmias compared to controls. Cx43 and Cx40 expression reduced along with autophagy markers increased in HL-1 cells treated with ibrutinib. Inhibiting autophagy upregulated Cx43 and Cx40. CONCLUSIONS: The off-target effect of ibrutinib on the PI3K-AKT-mTOR signaling pathway caused connexin degradation and atrial arrhythmia via promoting autophagy. CLINICAL TRIAL REGISTRATION: ChiCTR2100046062, https://clin.larvol.com/trial-detail/ChiCTR2100046062.


Subject(s)
Adenine , Atrial Fibrillation , Autophagy , Connexin 43 , Connexins , Phosphatidylinositol 3-Kinases , Piperidines , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/adverse effects , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Piperidines/pharmacology , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Female , Atrial Fibrillation/metabolism , Atrial Fibrillation/chemically induced , Connexins/metabolism , Connexins/genetics , Male , Aged , Middle Aged , Gap Junction alpha-5 Protein , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced
5.
Neuroreport ; 35(10): 673-678, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813906

ABSTRACT

Hyperactivation of the Ca2+/calmodulin-dependent phosphatase calcineurin (CN) is observed in reactive astrocytes associated with neuroinflammation and progressive degenerative diseases, like Alzheimer's disease. Apart from key transcription factors (e.g. nuclear factor of activated t cells and nuclear factor-κB) very few other CN-dependent pathways have been studied in astrocytes. The hemichannel protein, connexin 43 (Cx43) is found at high levels in astrocytes and contains a CN-sensitive Ser residue near its carboxy terminus. CN-dependent dephosphorylation of Cx43 has been reported in primary astrocytes treated with injurious stimuli, but much remains unknown about CN/Cx43 interactions in the context of neuroinflammation and disease. Western blots were used to assess total Cx43 and dephosphorylated Cx43 subtypes in rat embryonic primary astrocytes treated with a hyperactive CN fragment (ΔCN, via adenovirus), or with a proinflammatory cytokine cocktail. Under similar treatment conditions, an ethidium bromide (EtBr) uptake assay was used to assess membrane permeability. Effects of ΔCN and cytokines were tested in the presence or absence of the CN inhibitor, cyclosporin A. A connexin inhibitor, carbenoxolone was also used in EtBr assays to assess the involvement of connexins in membrane permeability. Treatment with ΔCN or cytokines increased dephosphorylated Cx43 levels in conjunction with increased membrane permeability (elevated EtBr uptake). Effects of ΔCN or cytokine treatment were blocked by cyclosporine A. Treatment-induced changes in EtBr uptake were also inhibited by carbenoxolone. The results suggest that Cx43 hemichannels could be an important mechanism through which astrocytic CN disrupts neurologic function associated with neurodegenerative disease.


Subject(s)
Astrocytes , Calcineurin , Cell Membrane Permeability , Connexin 43 , Astrocytes/metabolism , Astrocytes/drug effects , Connexin 43/metabolism , Animals , Phosphorylation/drug effects , Calcineurin/metabolism , Rats , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/physiology , Cells, Cultured , Rats, Sprague-Dawley
6.
Biochem J ; 481(12): 741-758, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38752978

ABSTRACT

Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.


Subject(s)
Connexins , Gap Junctions , Patch-Clamp Techniques , Humans , HEK293 Cells , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Gap Junctions/genetics , Connexin 43/genetics , Connexin 43/metabolism , CRISPR-Cas Systems , Genetic Engineering/methods , Gene Knockout Techniques/methods
7.
Int Immunopharmacol ; 134: 112147, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718656

ABSTRACT

The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1ß cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.


Subject(s)
Apigenin , Autophagy , Connexin 43 , Hippocampus , Kidney , Methotrexate , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Triterpenes , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Methotrexate/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , NF-kappa B/metabolism , Male , Rats , Connexin 43/metabolism , Autophagy/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Rats, Wistar , Signal Transduction/drug effects
8.
Neurochem Res ; 49(7): 1851-1862, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733521

ABSTRACT

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.


Subject(s)
Alzheimer Disease , Aquaporin 4 , Astrocytes , Streptozocin , Astrocytes/metabolism , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Male , Aquaporin 4/metabolism , Connexin 43/metabolism , Blood-Brain Barrier/metabolism , Water/metabolism , Hippocampus/metabolism , Rats, Wistar , Rats , Disease Models, Animal
9.
Sci Rep ; 14(1): 10248, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38702372

ABSTRACT

Ambient air temperature is a key factor affecting human health. Female reproductive disorders are representative health risk events under low temperature. However, the mechanism involving in cold-induced female reproductive disorders remains largely unknown. Female mice were intermittently exposed to cold conditions (4 °C) to address the health risk of low temperature on female reproductive system. Primary granulosa cells (GCs) were prepared and cultured under low temperature (35 °C) or exposed to ß3-adrenoreceptor agonist, isoproterenol, to mimic the condition of cold exposure. Western-blot, RT-PCR, co-IP, ELISA, pharmacological inhibition or siRNA-mediated knockdown of target gene were performed to investigate the possible role of hormones, gap conjunction proteins, and ER stress sensor protein in regulating female reproductive disorders under cold exposure. Cold exposure induced estrous cycle disorder and follicular dysplasia in female mice, accompanying with abnormal upregulation of progesterone and its synthetic rate-limiting enzyme, StAR, in the ovarian granulosa cells. Under the same conditions, an increase in connexin 43 (CX43) expressions in the GCs was also observed, which contributed to elevated progesterone levels in the ovary. Moreover, ER stress sensor protein, PERK, was activated in the ovarian GCs after cold exposure, leading to the upregulation of downstream NRF2-dependent CX43 transcription and aberrant increase in progesterone synthesis. Most importantly, blocking PERK expression in vivo significantly inhibited NRF2/CX43/StAR/progesterone pathway activation in the ovary and efficiently rescued the prolongation of estrous cycle and the increase in follicular atresia of the female mice induced by cold stress. We have elucidated the mechanism of ovarian PERK/NRF2/CX43/StAR/progesterone pathway activation in mediating female reproductive disorder under cold exposure. Targeting PERK might be helpful for maintaining female reproductive health under cold conditions.


Subject(s)
Cold Temperature , Connexin 43 , Granulosa Cells , NF-E2-Related Factor 2 , Progesterone , Signal Transduction , eIF-2 Kinase , Animals , Female , eIF-2 Kinase/metabolism , NF-E2-Related Factor 2/metabolism , Mice , Progesterone/metabolism , Granulosa Cells/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Cold Temperature/adverse effects , Ovary/metabolism , Estrous Cycle
10.
PeerJ ; 12: e17299, 2024.
Article in English | MEDLINE | ID: mdl-38799055

ABSTRACT

Background: Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. Aim: This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. Results: The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. Conclusion: Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.


Subject(s)
Dental Pulp , Galactose , Myocytes, Cardiac , Rats, Sprague-Dawley , Animals , Male , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/transplantation , Myocytes, Cardiac/drug effects , Dental Pulp/cytology , Stem Cell Transplantation/methods , Aging/physiology , Sirtuin 1/metabolism , Cell Differentiation/drug effects , Connexin 43/metabolism , Disease Models, Animal , Stem Cells/metabolism , Stem Cells/cytology , Apoptosis/drug effects
11.
Medicine (Baltimore) ; 103(15): e37811, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608055

ABSTRACT

Lipopolysaccharide (LPS) and interleukin-4 (IL-4) play important roles in inducing M1 and M2 macrophage polarization. Studies have shown that LPS can promote the polarization of macrophages to M1-type and produce many pro-inflammatory cytokines, while IL-4 can promote the polarization of macrophages to M2-type and produce many anti-inflammatory cytokines. Moreover, Connexin 43 (Cx43) is widely expressed in macrophages and has various regulatory functions. However, whether Cx43 is involved in the regulation of macrophage M1/M2 polarization has not been fully studied. This study examined the role of Cx43 and M2 polarization markers using Western blot, immunofluorescence, flow cytometry. Cx43 overexpression was induced using Cx43 overexpressing lentivirus. The statistical software SPSS 20.0 (IBM Corp.) and GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA, United States) were used to analyze the results. P values < .05 were considered to indicate statistically significant differences. Our results showed that LPS promotes the polarization of macrophages to M1-type, which is accompanied by an increase in Cx43 expression from 0 to 24 hours. Moreover, the application of the Cx43-specific blockers Gap19 and Gap26 reduces the expression of macrophage M1-type polarization markers. Thus, the expression of Cx43 increases first, and then, due to the initiation of intracellular autophagy during LPS-induced macrophage M1 polarization. Cx43 is degraded and the expression of Cx43 decreases from 24 hours to 48 hours. IL-4 decreases the expression of Cx43 from 24 hours to 48 hours and promotes the transformation of macrophages to M2-type. The application of Cx43 overexpression lentivirus leads to a reduction in the expression of M2 polarization markers. IL-4-induced M2 polarization of macrophages inhibits cell autophagy, reducing Cx43 degradation and leading to an increase in Cx43 from 24 hours to 48 hours. Thus, Cx43 expression in M2-type polarization experiences a reduction at first and then an increase from 24 hours to 48 hours. The direction of macrophage polarization can be controlled by regulating the expression of Cx43, thus providing a theoretical basis for treating atherosclerosis, tumors, and other diseases associated with macrophage polarization.


Subject(s)
Connexin 43 , Interleukin-4 , Animals , Mice , Connexin 43/genetics , Cytokines , Interleukin-4/immunology , Lipopolysaccharides/immunology , Macrophages
12.
J Orthop Surg Res ; 19(1): 244, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622696

ABSTRACT

BACKGROUND: Ossification of ligamentum flavum (OLF) is a prevalent degenerative spinal disease, typically causing severe neurological dysfunction. Kruppel-like factor 5 (KLF5) plays an essential role in the regulation of skeletal development. However, the mechanism KLF5 plays in OLF remains unclear, necessitating further investigative studies. METHODS: qRT-PCR, immunofluorescent staining and western blot were used to measure the expression of KLF5. Alkaline Phosphatase (ALP) staining, Alizarin red staining (ARS), and the expression of Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) were used to evaluate the osteogenic differentiation. Luciferase activity assay and ChIP-PCR were performed to investigate the molecular mechanisms. RESULTS: KLF5 was significantly upregulated in OLF fibroblasts in contrast to normal ligamentum flavum (LF) fibroblasts. Silencing KLF5 diminished osteogenic markers and mineralized nodules, while its overexpression had the opposite effect, confirming KLF5's role in promoting ossification. Moreover, KLF5 promotes the ossification of LF by activating the transcription of Connexin 43 (CX43), and overexpressing CX43 could reverse the suppressive impact of KLF5 knockdown on OLF fibroblasts' osteogenesis. CONCLUSION: KLF5 promotes the OLF by transcriptionally activating CX43. This finding contributes significantly to our understanding of OLF and may provide new therapeutic targets.


Subject(s)
Ligamentum Flavum , Ossification, Heterotopic , Humans , Cells, Cultured , Connexin 43/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Osteogenesis/genetics , Transcription Factors/metabolism
13.
Cell Mol Life Sci ; 81(1): 171, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597989

ABSTRACT

Intercellular communication via gap junctions has a fundamental role in regulating cell growth and tissue homeostasis, and its dysregulation may be involved in cancer development and radio- and chemotherapy resistance. Connexin43 (Cx43) is the most ubiquitously expressed gap junction channel protein in human tissues. Emerging evidence indicates that dysregulation of the sorting of Cx43 to lysosomes is important in mediating the loss of Cx43-based gap junctions in cancer cells. However, the molecular basis underlying this process is currently poorly understood. Here, we identified the E3 ubiquitin ligase ITCH as a novel regulator of intercellular communication via gap junctions. We demonstrate that ITCH promotes loss of gap junctions in cervical cancer cells, which is associated with increased degradation of Cx43 in lysosomes. The data further indicate that ITCH interacts with and regulates Cx43 ubiquitination and that the ITCH-induced loss of Cx43-based gap junctions requires its catalytic HECT (homologous to E6-AP C-terminus) domain. The data also suggest that the ability of ITCH to efficiently promote loss of Cx43-based gap junctions and degradation of Cx43 depends on a functional PY (PPXY) motif in the C-terminal tail of Cx43. Together, these data provide new insights into the molecular basis underlying the degradation of Cx43 and have implications for the understanding of how intercellular communication via gap junctions is lost during cancer development.


Subject(s)
Connexin 43 , Ubiquitin-Protein Ligases , Humans , Cell Communication , Connexin 43/genetics , Connexins , Gap Junctions , Lysosomes , Ubiquitin-Protein Ligases/genetics
14.
Shanghai Kou Qiang Yi Xue ; 33(1): 22-29, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38583020

ABSTRACT

PURPOSE: To investigate the role and mechanism of connexin 43(Cx43)in odontoblast differentiation of human dental pulp cells (hDPCs) induced by lipopolysaccharide (LPS). METHODS: The maxillary first molar injury model of SD rats was established. The expression pattern of Cx43 in dental pulp repair after injury was detected by immunofluorescence(IF) staining. hDPCs was respectively stimulated with 0, 1, 10, 100 and 1 000 ng/mL LPS for 6 h to screen the optimal concentration, and then the expression of Cx43 was inhibited and overexpressed in hDPCs. Quantitative real-time PCR(qRT-PCR) and Western blot(WB) were used to detect the expression of Cx43 and dentin sialophosphoprotein (DSPP), dental matrix protein-1 (DMP-1), osterix (Osx) and extracellular signal-regulated kinase (ERK) activity. Furthermore, hDPCs were treated with specific Cx43 channel inhibitors to investigate the effect of Cx43-mediated channel activity in odontoblast differentiation of hDPCs, and to explore the role and mechanism of Cx43 in regulating odontoblast differentiation of hDPCs induced by LPS. Statistical analysis was performed with SPSS 26.0 software package. RESULTS: IF results showed that Cx43 was mainly expressed in the odontoblast layer in healthy dental pulp tissues. At 3-24 h after tooth injury, the expression of Cx43 decreased and then gradually increased to the normal level; from 3 days to 2 weeks after injury, the expression of Cx43 tended to be down-regulated which was in the odontoblast layer and pulp proper. The expression of DSPP mRNA was significantly up-regulated in the hDPCs stimulated with 10 ng/mL LPS for 6 h(P<0.01). Inhibition of Cx43 significantly up-regulated the expression of DSPP, DMP-1 and Osx mRNA induced by LPS in hDPCs(P<0.05), while overexpression of Cx43 obviously inhibited the expression of factors related to LPS-induced odontoblast differentiation(P<0.01) and the fluorescence intensity of DSPP. 10 ng/mL LPS activated ERK signal in hDPCs, and overexpression of Cx43 significantly attenuated the activity of ERK signal induced by LPS(P<0.01). Inhibition of Cx43-mediated hemichannel (HC) promoted mRNA expression of factors related to odontoblast differentiation in hDPCs and the activity of ERK signal induced by LPS(P<0.05), while blocking Cx43-mediated gap junction channel (GJC) inhibited odontoblast differentiation. CONCLUSIONS: Cx43 participates in the regulation of dental pulp repair after injury, and its expression shows a downward trend as a whole. Inhibition of Cx43 or blocking of HC promotes LPS-induced ERK signal activity and odontoblast differentiation of hDPCs.


Subject(s)
Connexin 43 , Lipopolysaccharides , Animals , Humans , Rats , Cell Differentiation/physiology , Cells, Cultured , Connexin 43/metabolism , Dental Pulp/metabolism , Extracellular Matrix Proteins/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Odontoblasts/metabolism , Rats, Sprague-Dawley , RNA, Messenger/metabolism
15.
Biol Res ; 57(1): 15, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576018

ABSTRACT

BACKGROUND: Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS: Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1ß and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION: Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.


Subject(s)
Alcoholism , Connexin 43 , Mice , Rats , Animals , Connexin 43/metabolism , Astrocytes/metabolism , Ethanol/toxicity , Ethanol/metabolism , Alcoholism/metabolism , Cells, Cultured , Connexins/metabolism , Nerve Tissue Proteins/metabolism
16.
Methods Mol Biol ; 2801: 17-28, 2024.
Article in English | MEDLINE | ID: mdl-38578410

ABSTRACT

Extracellular vesicles (EVs) are recognized as major vehicles for exchange of information across distant cells and tissues, which have been extensively explored for diagnosis and therapeutic purposes. The presence of multiple connexin (Cx) proteins has been described in EVs, where they might facilitate EV-cell communication. However, quantitative changes in Cx levels and functional assessment of Cx channels have only been established for Cx43. In present work, we provide a detailed description of the protocols we have optimized to assess the expression and permeability of Cx43 channels in EVs derived from cultured cells and human peripheral blood. Particularly, we include some modifications to improve quantitative analysis of EV-Cx43 by enzyme-linked immunosorbent assay (ELISA) and assessment of channel functionality by sucrose-density gradient ultracentrifugation, which can be easily adapted to other Cx family members, leveraging the development of diagnostic and therapeutic applications based on Cx-containing EVs.


Subject(s)
Connexins , Extracellular Vesicles , Humans , Connexins/genetics , Connexins/metabolism , Connexin 43/metabolism , Extracellular Vesicles/metabolism
17.
Methods Mol Biol ; 2801: 29-43, 2024.
Article in English | MEDLINE | ID: mdl-38578411

ABSTRACT

Connexins are polytopic domain membrane proteins that form hexameric hemichannels (HCs) which can assemble into gap junction channels (GJCs) at the interface of two neighboring cells. The HCs may be involved in ion and small-molecule transport across the cellular plasma membrane in response to various stimuli. Despite their importance, relatively few structures of connexin HCs are available to date, compared to the structures of the GJCs. Here, we describe a protocol for expression, purification, and nanodisc reconstitution of connexin-43 (Cx43) HCs, which we have recently structurally characterized using cryo-EM analysis. Application of similar protocols to other connexin family members will lead to breakthroughs in the understanding of the structure and function of connexin HCs.


Subject(s)
Connexin 43 , Connexins , Connexin 43/metabolism , Cryoelectron Microscopy , Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism
18.
Methods Mol Biol ; 2801: 75-85, 2024.
Article in English | MEDLINE | ID: mdl-38578414

ABSTRACT

Connexin proteins are the building blocks of gap junctions and connexin hemichannels. Both provide a pathway for cellular communication. Gap junctions support intercellular communication mechanisms and regulate homeostasis. In contrast, open connexin hemichannels connect the intracellular compartment and the extracellular environment, and their activation fuels inflammation and cell death. The development of clinically applicable connexin hemichannel blockers for therapeutic purposes is therefore gaining momentum. This chapter describes a well-established protocol optimized for assessing connexin hemichannel activity by using the reporter dye Yo-Pro1.


Subject(s)
Connexin 43 , Connexins , Humans , Connexin 43/metabolism , Connexins/metabolism , Gap Junctions/metabolism , Cell Communication , Inflammation/metabolism
19.
Methods Mol Biol ; 2801: 97-109, 2024.
Article in English | MEDLINE | ID: mdl-38578416

ABSTRACT

Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.


Subject(s)
Connexin 43 , Connexins , Connexins/genetics , Connexins/metabolism , Connexin 43/metabolism , Biological Transport , Calcium/metabolism
20.
Radiat Res ; 201(4): 294-303, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38588381

ABSTRACT

Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed γ-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.


Subject(s)
Connexin 43 , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Calcium/metabolism , Connexins/metabolism , Connexins/pharmacology , Signal Transduction , Gap Junctions , Cell Communication
SELECTION OF CITATIONS
SEARCH DETAIL
...