Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cancer Med ; 13(7): e7021, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562019

ABSTRACT

OBJECTIVE: Non-small-cell lung cancer (NSCLC) is a deadly form of cancer that exhibits extensive intercellular communication which contributed to chemoradiotherapy resistance. Recent evidence suggests that arrange of key proteins are involved in lung cancer progression, including gap junction proteins (GJPs). METHODS AND RESULTS: In this study, we examined the expression patterns of GJPs in NSCLC, uncovering that both gap junction protein, beta 2 (GJB2) and gap junction protein, beta 2 (GJB3) are increased in LUAD and LUSC. We observed a correlation between the upregulation of GJB2, GJB3 in clinical samples and a worse prognosis in patients with NSCLC. By examining the mechanics, we additionally discovered that nuclear factor erythroid-2-related factor 1 (NFE2L1) had the capability to enhance the expression of connexin26 and connexin 31 in the NSCLC cell line A549. In addition, the use of metformin was discovered to cause significant downregulation of gap junction protein, betas (GJBs) by limiting the presence of NFE2L1 in the cytoplasm. CONCLUSION: This emphasizes the potential of targeting GJBs as a viable treatment approach for NSCLC patients receiving metformin.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Connexins/genetics , Connexins/metabolism , Connexins/therapeutic use , Gap Junctions/metabolism , NF-E2-Related Factor 1/metabolism
2.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38538230

ABSTRACT

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Subject(s)
Hyperalgesia , Neuralgia , Rats , Mice , Animals , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Capsaicin/pharmacology , Capsaicin/therapeutic use , Paclitaxel/adverse effects , Carrageenan/adverse effects , Calcium , Neuralgia/chemically induced , Neuralgia/drug therapy , Formaldehyde/adverse effects , Ganglia, Spinal , Nerve Tissue Proteins , Connexins/genetics , Connexins/therapeutic use
3.
Mol Oncol ; 18(4): 969-987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327091

ABSTRACT

Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Connexins/genetics , Connexins/therapeutic use , Lymphocytes, Tumor-Infiltrating , Melanoma/pathology , Nerve Tissue Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/pathology , Tumor Microenvironment
4.
Hum Gene Ther ; 34(21-22): 1107-1117, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37624738

ABSTRACT

Asthma is a chronic inflammatory disease around the world. Extracellular adenosine triphosphate works as a dangerous signal in responding to cellular stress, irritation, or inflammation. It has also been reported its association with the pathogenicity in asthma, with increased level in lungs of asthmatics. Pannexin-1 is one of the routes that contributes to the release of adenosine triphosphate form intracellular to extracellular. The aim of this study was to apply pannexin-1 peptide antagonist 10Panx1 into adeno-associated viral (AAV) vectors on ovalbumin (OVA)-induced asthmatic mouse model. The results demonstrated that this treatment was able to reduce the adenosine triphosphate level in bronchoalveolar lavage fluid and downregulate the major relevant to the symptom of asthma attack, airway hyperresponsiveness to methacholine. The histological data also gave a positive support with decreased tissue remodeling and mucus deposition. Other asthmatic related features, including eosinophilic inflammation and OVA-specific T helper type 2 responses, were also decreased by the treatment. Beyond the index of inflammation, the proportion of effector and regulatory T cells was examined to survey the potential mechanism behind. The data provided a slightly downregulated pattern in lung GATA3+ CD4 T cells. However, an upregulated population of CD25+FoxP3+ CD4 T cells was seen in spleens. These data suggested that exogeneous expression of 10Panx1 peptide was potential to alleviated asthmatic airway inflammation, and this therapeutic effect might be from 10Panx1-mediated disruption of T cell activation or differentiation. Collectively, AAV vector-mediated 10Panx1 expression could be a naval therapy option to develop.


Subject(s)
Allergens , Asthma , Animals , Mice , Adenosine Triphosphate , Allergens/pharmacology , Asthma/therapy , Asthma/drug therapy , Bronchoalveolar Lavage Fluid , Connexins/genetics , Connexins/therapeutic use , Cytokines/metabolism , Disease Models, Animal , Inflammation/therapy , Inflammation/pathology , Lung/metabolism , Mice, Inbred BALB C , Nerve Tissue Proteins , Ovalbumin/toxicity
5.
Clin Neuropathol ; 42(4): 140-149, 2023.
Article in English | MEDLINE | ID: mdl-37073958

ABSTRACT

Brain metastases are the most common central nervous system malignancy, and the leading cause of cancer-related deaths. Non-small cell lung carcinomas (NSCLC) comprise the most common cell of origin. Immunotherapy, particularly checkpoint inhibitors, has emerged as the standard of care for many patients with advanced lung cancer. Pannexin1 (PANX1) is a transmembrane glycoprotein that forms large-pore channels and has been reported to promote cancer metastasis. However, the roles of PANX1 in lung cancer brain metastases and tumor immune microenvironment have not been characterized. 42 patient-matched formalin-fixed paraffin-embedded tissue samples from lung carcinomas and the subsequent brain metastases were constructed into three tissue microarrays (TMAs). PANX1 and markers of tumor-infiltrating immune cells (CD3, CD4, CD8, CD68, and TMEM119) were assessed using immunohistochemistry and digital image analysis. The expression of PANX1 was significantly higher in brain metastases than in their paired primary lung carcinoma. The high levels of PANX1 in lung carcinoma cells in the brain inversely correlated with infiltration of peripheral blood-derived macrophages. Our findings highlight the role of PANX1 in the progression of metastatic NSCLC, and the potential therapeutic approach of targeting PANX1 enhances the efficacy of immune checkpoint inhibitors in brain metastasis.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Immunohistochemistry , Brain Neoplasms/secondary , Tumor Microenvironment , Nerve Tissue Proteins/therapeutic use , Connexins/therapeutic use
6.
Med Oncol ; 40(6): 162, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100898

ABSTRACT

This study investigated the effect of frequently used analgesics in cancer pain management (flurbiprofen (FLU), tramadol (TRA), and morphine (MOR)) and a novel α2-adrenergic agonist (dexmedetomidine, DEX) on temozolomide (TMZ) sensitivity in glioma cells. Cell counting kit-8 and colony-formation assays were performed to analyze the viability of U87 and SHG-44 cell lines. A high and low cell density of colony method, pharmacological methods, and connexin43 mimetic peptide GAP27 were used to manipulate the function of gap junctions; "Parachute" dye coupling and western blot were employed to determine junctional channel transfer ability and connexin expression. The results showed that DEX (in the concentration range of 0.1 to 5.0 ng/ml) and TRA (in the concentration range of 1.0 to 10.0 µg/ml) reduced the TMZ cytotoxicity in a concentration-dependent manner but was only observed with high cell density (having formed gap junction). The cell viability percentage was 71.3 to 86.8% when DEX was applied at 5.0 ng/ml, while tramadol showed 69.6 to 83.7% viability at 5.0 µg/ml in U87 cells. Similarly, 5.0 ng/ml of DEX resulted in 62.6 to 80.5%, and 5.0 µg/ml TRA showed 63.5 to 77.3% viability in SHG-44 cells. Further investigating the impact of analgesics on gap junctions, only DEX and TRA were found to decrease channel dye transfer through connexin phosphorylation and ERK pathway, while no such effect was observed for FLU and MOR. Analgesics that can affect junctional communication may compromise the effectiveness of TMZ when used simultaneously.


Subject(s)
Glioma , Tramadol , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tramadol/pharmacology , Tramadol/metabolism , Tramadol/therapeutic use , Glioma/drug therapy , Glioma/metabolism , Analgesics/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Gap Junctions/metabolism , Connexins/metabolism , Connexins/pharmacology , Connexins/therapeutic use , Cell Line, Tumor
7.
Am J Transplant ; 22(11): 2502-2508, 2022 11.
Article in English | MEDLINE | ID: mdl-35612993

ABSTRACT

Connexins are a class of membrane proteins widely distributed throughout the body and have various functions based on their location and levels of expression. More specifically, connexin proteins expressed in endothelial cells (ECs) have unique roles in maintaining EC barrier integrity and function-a highly regulated process that is critical for pro-inflammatory and pro-coagulant reactions. In this minireview, we discuss the regulatory influence connexin proteins have in maintaining EC barrier integrity and their role in ischemia-reperfusion injury as it relates to organ transplantation. It is evident that certain isoforms of the connexin protein family are uniquely positioned to have far-reaching effects on preserving organ function; however, there is still much to be learned of their roles in transplant immunology and the application of this knowledge to the development of targeted therapeutics.


Subject(s)
Organ Transplantation , Reperfusion Injury , Humans , Endothelial Cells/metabolism , Connexins/therapeutic use , Reperfusion Injury/metabolism , Organ Preservation
8.
Neurosci Lett ; 771: 136471, 2022 02 06.
Article in English | MEDLINE | ID: mdl-35065246

ABSTRACT

Studies using in vitro Parkinson's disease (PD) models have found that lipopolysaccharide (LPS) induced reduction of connexin 43 (Cx43) gap junction communication and elevation of hemichannel function, which could cause neurotoxicity directly and indirectly via excessive ATP and glutamate release. However, in vivo study about Cx43 expression and function, as well as the efficacy of Cx43 inhibition for neuronal survival in PD is lacking. This study aimed to unravel the role of Cx43 in PD and understand the underlying mechanisms using an in vivo PD model. Male C57BL/6 mice received intranigral injection of LPS (5 µg) and 43Gap27 (4 µg), a Cx43 inhibitor, simultaneously. Results showed that following LPS treatment, total Cx43 expression decreased by about 60%, but the relative level of phosphorylated Cx43 increased to about double that controls (all p < 0.05). The administration of 43Gap27 significantly attenuated the loss of dopaminergic neurons and restored dopamine and its metabolites levels. Moreover, 43Gap27 treatment inhibited intense microgliosis and astrogliosis in nigrostriatal system induced by LPS and also ameliorated elevated levels of inflammatory mediators. Interestingly, Cx43 inhibition also increased nerve growth factors. In conclusion, Cx43 inhibition was able to prevent LPS-mediated dopaminergic neuronal death, possibly via neuroinflammation reaction reduction and neurotrophic factors elevation. Therefore, Cx43 may be a promising therapeutic target for degenerative neurological disorders such as PD.


Subject(s)
Connexin 43/antagonists & inhibitors , Connexins/therapeutic use , Dopaminergic Neurons/metabolism , Oligopeptides/therapeutic use , Parkinson Disease/drug therapy , Animals , Cell Death , Connexin 43/metabolism , Connexins/pharmacology , Dopaminergic Neurons/drug effects , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Nerve Growth Factors/metabolism , Oligopeptides/pharmacology , Parkinson Disease/etiology , Parkinson Disease/metabolism
9.
Sci Rep ; 10(1): 6878, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327677

ABSTRACT

Alterations in connexins and specifically in 43 isoform (Cx43) in the heart have been associated with a high incidence of arrhythmogenesis and sudden death in several cardiac diseases. We propose to determine salutary effect of Cx43 mimetic peptide Gap27 in the progression of heart failure. High-output heart failure was induced by volume overload using the arterio-venous fistula model (AV-Shunt) in adult male rats. Four weeks after AV-Shunt surgery, the Cx43 mimetic peptide Gap27 or scrambled peptide, were administered via osmotic minipumps (AV-ShuntGap27 or AV-ShuntScr) for 4 weeks. Cardiac volumes, arrhythmias, function and remodeling were determined at 8 weeks after AV-Shunt surgeries. At 8th week, AV-ShuntGap27 showed a marked decrease in the progression of cardiac deterioration and showed a significant improvement in cardiac functions measured by intraventricular pressure-volume loops. Furthermore, AV-ShuntGap27 showed less cardiac arrhythmogenesis and cardiac hypertrophy index compared to AV-ShuntScr. Gap27 treatment results in no change Cx43 expression in the heart of AV-Shunt rats. Our results strongly suggest that Cx43 play a pivotal role in the progression of cardiac dysfunction and arrhythmogenesis in high-output heart failure; furthermore, support the use of Cx43 mimetic peptide Gap27 as an effective therapeutic tool to reduce the progression of cardiac dysfunction in high-output heart failure.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/physiopathology , Connexin 43/chemistry , Connexins/therapeutic use , Heart Failure/drug therapy , Heart Failure/physiopathology , Oligopeptides/therapeutic use , Peptides/therapeutic use , Ventricular Remodeling/drug effects , Animals , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/diagnostic imaging , Arteriovenous Shunt, Surgical , Cardiomegaly/complications , Cardiomegaly/diagnostic imaging , Cardiomegaly/physiopathology , Connexins/administration & dosage , Fibrosis , Heart Failure/complications , Heart Failure/diagnostic imaging , Heart Ventricles/drug effects , Hemodynamics/drug effects , Male , Oligopeptides/administration & dosage , Peptides/administration & dosage , Rats, Sprague-Dawley , Vasodilation/drug effects
10.
Nat Rev Rheumatol ; 14(1): 42-51, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29255213

ABSTRACT

Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.


Subject(s)
Connexin 43/metabolism , Connexins/metabolism , Gap Junctions/metabolism , Joint Diseases/metabolism , Animals , Arthritis, Rheumatoid/metabolism , Bone and Bones/metabolism , Cartilage/metabolism , Cell Communication/physiology , Cell Differentiation/physiology , Connexins/physiology , Connexins/therapeutic use , Gap Junctions/physiology , Humans , Ion Channel Gating/physiology , Ion Channels/physiology , Mice , Mice, Knockout , Musculoskeletal System/metabolism , Musculoskeletal System/pathology , Osteoarthritis/metabolism , Osteoporosis/metabolism , Synovial Membrane/metabolism
11.
Article in English | MEDLINE | ID: mdl-27038371

ABSTRACT

Neurodegenerative, cardiovascular, and metabolic disorders, once triggered, share a number of common features, including sustained inflammatory cell activation and vascular disruption. These shared pathways are induced independently of any genetic predisposition to the disease or the precise external stimulus. Glial cells respond to injury with an innate immune response that includes release of proinflammatory cytokines and chemokines. Vascular endothelial cells may also be affected, leading to opening of the blood-brain barrier that facilitates invasion by circulating inflammatory cells. Inflammation can trigger acute neural injury followed by chronic inflammation that plays a key role in neurodegenerative conditions. Gap junction channels normally allow direct cell-to-cell communication. They are formed by the docking of two hemichannels, one contributed by each of the neighboring cells. While the opening probability of these channels is tightly controlled under resting conditions, hemichannels can open in response to injury or inflammatory factors, forming a large, relatively nonselective membrane pore. In this review, we consider the CNS immune system from the perspective that modulating connexin hemichannel opening can prevent tissue damage arising from excessive and uncontrolled inflammation. We discuss connexin channel roles in microglia, astrocytes, and endothelial cells in both acute and chronic inflammatory conditions, and in particular describe the role of connexin hemichannels in the inflammasome pathway where they contribute to both its activation and its spread to neighboring cells. Finally, we describe the benefits of hemichannel block in animal models of brain injury.


Subject(s)
Central Nervous System Diseases/metabolism , Connexins/metabolism , Inflammation/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/pathology , Connexins/therapeutic use , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Inflammasomes/metabolism , Inflammation/drug therapy , Inflammation/pathology , Microglia/metabolism , Microglia/pathology
12.
PLoS One ; 6(8): e23279, 2011.
Article in English | MEDLINE | ID: mdl-21876744

ABSTRACT

The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26(Sox10Cre) mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10-Cre line. Cx26(Sox10Cre) mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26(Sox10Cre) mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans.


Subject(s)
Cochlea/pathology , Connexins/genetics , Connexins/therapeutic use , Deafness/therapy , Dependovirus/metabolism , Gap Junctions/metabolism , Genetic Therapy , Animals , Cattle , Cochlea/physiopathology , Connexin 26 , Deafness/pathology , Deafness/physiopathology , Electrophysiological Phenomena , Fluorescence Recovery After Photobleaching , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Integrases/metabolism , Mice , Organ Culture Techniques , Organ of Corti/pathology , Permeability , Recombinant Fusion Proteins , SOXE Transcription Factors/metabolism , Time Factors , Transduction, Genetic
13.
Trends Biotechnol ; 26(4): 173-80, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18295916

ABSTRACT

Fibrotic scars deposited during skin wound healing can cause disfiguration and loss of dermal function. Scar differentiation involves inputs from multiple cell types in a predictable and overlapping sequence of cellular events that includes inflammation, migration/proliferation and extracellular matrix deposition. Research into the molecular mechanisms underpinning these processes in embryonic and adult wounds has contributed to the development of a growing number of novel therapeutic approaches for improving scar appearance. This review discusses some of these emerging strategies for shifting the balance of healing from scarring to regeneration in the context of non-pathological wounds. Particular focus is given to potential therapies based on transforming growth factor (TGF)-beta signaling and recent unexpected findings involving targeting of gap junctional connexins. Lessons learned in promoting scarless healing of cutaneous injuries might provide a basis for regenerative healing in other scenarios, such as spinal cord rupture or myocardial infarction.


Subject(s)
Cicatrix/physiopathology , Cicatrix/therapy , Skin/pathology , Wound Healing/physiology , Adult , Cicatrix/pathology , Collagen/immunology , Collagen/metabolism , Connexins/genetics , Connexins/metabolism , Connexins/therapeutic use , Embryo, Mammalian/immunology , Embryo, Mammalian/physiopathology , Extracellular Matrix/immunology , Extracellular Matrix/pathology , Fetus/immunology , Fetus/physiopathology , Humans , Inflammation/complications , Inflammation/embryology , Inflammation/immunology , Inflammation/physiopathology , Protein Engineering , Skin/metabolism , Skin/physiopathology , Transforming Growth Factor beta/agonists , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/therapeutic use , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...