Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.285
Filter
1.
Harmful Algae ; 135: 102628, 2024 May.
Article in English | MEDLINE | ID: mdl-38830707

ABSTRACT

Diatoms of the genus Pseudo-nitzschia are widespread in marine waters. Some of them can produce the toxin domoic acid (DA) which can be responsible for amnesic shellfish poisoning (ASP) when transferred into the food web. These ASP events are of major concern, due to their ecological and socio-economic repercussions, particularly on the shellfish industry. Many studies have focused on the influence of abiotic factors on DA induction, less on the role of biotic interactions. Recently, the presence of predators has been shown to increase DA production in several Pseudo-nitzschia species, in particular in Arctic areas. In order to investigate the relationship between Pseudo-nitzschia species and grazers from the French coast, exposures between one strain of three species (P. australis, P. pungens, P. fraudulenta) and the copepod Temora longicornis were conducted for 5 days. Cellular and dissolved DA content were enhanced by 1,203 % and 1,556 % respectively after the 5-days exposure of P.australis whereas no DA induction was observed in P. pungens and P. fraudulenta. T. longicornis consumed all three Pseudo-nitzschia species. The copepod survival was not related to DA content. This study is an essential first step to better understanding the interactions between planktonic species from the French coast and highlights the potential key role of copepods in the Pseudo-nitzschia bloom events in the temperate ecosystems.


Subject(s)
Copepoda , Diatoms , Kainic Acid , Kainic Acid/analogs & derivatives , Kainic Acid/metabolism , Copepoda/physiology , Copepoda/metabolism , Diatoms/metabolism , Diatoms/physiology , Animals , France , Marine Toxins/metabolism
2.
Harmful Algae ; 135: 102634, 2024 May.
Article in English | MEDLINE | ID: mdl-38830711

ABSTRACT

Previous research on phytoplankton blooms has often focused on the initiation of blooms, while studies on the mechanisms underlying bloom decline and termination have been more limited. This study aimed to explore the extent of which Acartia tonsa (copepod) grazing does or does not contribute to Margalefidinium polykrikoides (dinoflagellate) bloom decline. M. polykrikoides is a prominent harmful algal bloom (HAB) species that forms dense blooms in coastal and estuarine systems around the world with known ichthyotoxic effects. Sampling occurred in the lower York River Estuary, Virginia, USA in 2021 and 2022 during two M. polykrikoides blooms. Prey removal experiments were conducted using organisms collected from the field to estimate A. tonsa ingestion rates on M. polykrikoides. While A. tonsa was capable of ingesting M. polykrikoides at low abundance, when M. polykrikoides abundance exceeded 2000 cells mL-1, A. tonsa experienced nearly 100% mortality in the 24-hour prey removal experiments. This suggests that A. tonsa likely cannot exert any top-down control on M. polykrikoides blooms, rather, at high concentrations, M. polykrikoides may act as its own grazing deterrent. Extensive M. polykrikoides blooms could therefore continue to persist due to a reduction in grazing pressure, rather than an increase. This would suggest that the decline of M. polykrikoides blooms is likely caused by another factor. As the frequency, duration, and magnitude of HABs are expected to increase in the future, these findings provide key insights to the trophic interactions that may be influencing the duration of M. polykrikoides blooms.


Subject(s)
Copepoda , Dinoflagellida , Harmful Algal Bloom , Dinoflagellida/physiology , Dinoflagellida/growth & development , Animals , Harmful Algal Bloom/physiology , Copepoda/physiology , Virginia , Food Chain , Estuaries
3.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705547

ABSTRACT

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Subject(s)
Alternative Splicing , Copepoda , Fish Diseases , Moritella , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Copepoda/physiology , Fish Diseases/immunology , Moritella/immunology , Moritella/genetics , Transcriptome , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/immunology , Ectoparasitic Infestations/genetics
4.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717860

ABSTRACT

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Subject(s)
Oxygen , Oxygen/metabolism , Oxygen Consumption , Animals , Plankton/metabolism , Copepoda/metabolism
5.
Sci Rep ; 14(1): 12366, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811606

ABSTRACT

The loss of biodiversity in marine populations is one of the consequences of the increased events of extreme environmental conditions in the oceans, which can condition the persistence of populations to future scenarios of climate change. Therefore, it is extremely necessary to explore and monitor the genetic diversity of natural populations. In the Southeast Pacific Ocean (SEPO), specifically on the coast of Chile, the presence of the copepod Acartia tonsa has been indicated solely using morphological evidence, due to the absence of genetic information. In the present work, the genetic diversity, population structure and phylogenetic position within the genus Acartia, of populations identified morphologically as A. tonsa, was evaluated by amplification of the mitochondrial cytochrome c oxidase subunit I and nuclear marker 18 s. Our results showed that the populations identified as A. tonsa correspond to a new monophyletic group endemic to SEPO (GMYC = 1.00; PTP = 0.95). The populations showed moderate to high genetic diversity with an incipient structuring between populations and biogeographic zones. Our results suggest that despite the homogenizing effect of the Humboldt Current, isolation by distance and contrasting environmental conditions at different geographic scales have an important influence on the genetic diversity of zooplankton in the SEPO region.


Subject(s)
Copepoda , Genetic Variation , Phylogeny , Animals , Copepoda/genetics , Copepoda/classification , Pacific Ocean , Electron Transport Complex IV/genetics , Chile , Biodiversity , Zooplankton/genetics , Zooplankton/classification
6.
Environ Pollut ; 351: 124092, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701964

ABSTRACT

Plastic pollution has spread through all parts of the marine environment, representing a significant threat to species and ecosystems. This study investigates the role of copepods as widespread microplastic reservoirs in the marine environment, by performing, a systematic review, meta-analysis, and semiquantitative analysis of scientific articles focusing on the interaction between copepods and microplastics under field conditions. Our findings indicate that despite uniformly low ingestion of microplastics across different marine layers and geographical areas, with a slight uptake in neustonic copepods, copepods might constitute one of the largest marine microplastic reservoirs. This phenomenon is attributed more to their vast abundance than to average microplastic ingestion values. In this article, a framework for data analysis and reporting is proposed to facilitate future large-scale evaluations and modelling of their extent and impact on plastic and carbon cycles. These insights place copepods at the forefront of the marine plastic cycle, possibly affecting plastic distribution, and bioavailability, thereby opening new pathways for understanding the complex dynamics of microplastics in marine ecosystems.


Subject(s)
Copepoda , Ecosystem , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Environmental Monitoring/methods , Plastics/analysis
7.
Parasitol Int ; 101: 102900, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38701942

ABSTRACT

This study reports the metazoan ectoparasite fauna of juvenile Critically Endangered green sawfish, Pristis zijsron, and sympatric elasmobranchs in Western Australia. Five parasite taxa were found on 76 screened P. zijsron: Caligus furcisetifer (Copepoda: Caligidae), Dermopristis pterophila (Monogenea: Microbothriidae), Branchellion plicobranchus and Stibarobdella macrothela (Hirudinea: Piscicolidae), and praniza larvae of an unidentified gnathiid isopod. Only C. furcisetifer and D. pterophila were common, exhibiting discrepant site-specificity, with C. furcisetifer occurring mostly on the head and rostrum, and D. pterophila around the pectoral and pelvic fins. Intensity of infection for C. furcisetifer and D. pterophila increased with host total length and was influenced by host sex, but in opposite directions; intensity of C. furcisetifer was greater on female P. zijsron, whereas intensity of D. pterophila was greater on males. In the Ashburton River, likelihood of infection for C. furcisetifer and D. pterophila on P. zijsron increased with time since substantial freshwater discharge events, suggesting decreased salinity impacts both taxa. In addition to P. zijsron, five other sympatric elasmobranch species were opportunistically screened for ectoparasites in the study area: the giant shovelnose ray, Glaucostegus typus, the eyebrow wedgefish, Rhynchobatus palpebratus, the nervous shark, Carcharhinus cautus, the lemon shark, Negaprion acutidens, and the graceful shark, Carcharhinus amblyrhynchoides. Caligus furcisetifer was found on R. palpebratus; no other parasites of P. zijsron were found on other sympatric elasmobranch species. Conversely, Perissopus dentatus (Copepoda: Pandaridae) was found on all three carcharhinids but not on batoid rays (P. zijsron, G. typus or R. palpebratus).


Subject(s)
Ectoparasitic Infestations , Endangered Species , Fish Diseases , Animals , Western Australia , Fish Diseases/parasitology , Fish Diseases/epidemiology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/epidemiology , Male , Female , Elasmobranchii/parasitology , Copepoda/classification , Isopoda/classification , Sympatry
8.
Mar Pollut Bull ; 203: 116402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701601

ABSTRACT

The progressive establishment of gas platforms and increasing petroleum accidents pose a threat to zooplankton communities and thus to pelagic ecosystems. This study is the first to compare the impacts of gas-condensate and crude oil on copepod assemblages. We conducted microcosm experiments simulating slick scenarios at five different concentrations of gas-condensate and crude oil to determine and compare their lethal effects and the bioconcentration of low molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs) in eastern Mediterranean coastal copepod assemblages. We found that gas-condensate had a two-times higher toxic effect than crude oil, significantly reducing copepod survival with increased exposure levels. The LMW-PAHs bioconcentration factor was 1-2 orders of magnitude higher in copepods exposed to gas-condensate than in those exposed to crude oil. The median lethal concentration (LC50) was significantly lower in calanoids vs. cyclopoid copepods, suggesting that calanoids are more susceptible to gas-condensate and crude oil pollution, with potential trophic implications.


Subject(s)
Copepoda , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Copepoda/drug effects , Copepoda/physiology , Animals , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Petroleum Pollution , Environmental Monitoring , Ecosystem
9.
J Proteome Res ; 23(6): 2112-2123, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38690632

ABSTRACT

Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways.


Subject(s)
Animal Migration , Circadian Rhythm , Copepoda , Proteomics , Copepoda/physiology , Animals , Circadian Rhythm/physiology , Animal Migration/physiology , Proteomics/methods , Proteome/metabolism , Proteome/analysis , Darkness
10.
Zoolog Sci ; 41(2): 192-200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587914

ABSTRACT

Assessing the impacts of parasites on wild fish populations is a fundamental and challenging aspect of the study of host-parasite relationships. Salmincola, a genus of ectoparasitic copepods, mainly infects salmonid species. This genus, which is notorious in aquaculture, damages host fishes, but its impacts under natural conditions remain largely unknown or are often considered negligible. In this study, we investigated the potential impacts of mouth-attaching Salmincola markewitschi on white-spotted charr (Salvelinus leucomaenis) through intensive field surveys across four seasons using host body condition as an indicator of harmful effects. The prevalence and parasite abundance were highest in winter and gradually decreased in summer and autumn, which might be due to host breeding and/or wintering aggregations that help parasite transmissions. Despite seasonal differences in prevalence and parasite abundance, consistent negative correlations between parasite abundance and host body condition were observed across all seasons, indicating that the mouth-attaching copepods could reduce the body condition of the host fish. This provides field evidence suggesting that S. markewitschi has a potential negative impact on wild white-spotted charr.


Subject(s)
Copepoda , Fish Diseases , Parasitic Diseases , Animals , Trout , Seasons , Aquaculture , Fish Diseases/parasitology
11.
Sci Rep ; 14(1): 8956, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637569

ABSTRACT

As known "ecosystem engineers", beavers influence river hydrology, geomorphology, biochemistry, and biological assemblages. However, there is a lack of research regarding the effects of beaver activities on freshwater meiofauna. In this study, we investigated the taxonomic and functional composition of the benthic copepod assemblage of a segment of the Tiber River (Italy) where a beaver dam, created about 7 weeks before our survey, had formed a semi-lentic habitat upstream and a lotic habitat downstream of the dam. We also analyzed the copepod assemblage before and after a flood event that destroyed the beaver dam, providing a unique opportunity to observe changes in a naturally reversing scenario. Our analyses revealed that, while the taxonomic composition and functional traits of the copepod assemblage remained largely unchanged across the recently formed semi-lentic and lotic habitats, substantial differences were evident between the dammed and undammed states. The dammed state showed lower copepod abundances, biomass, and functionality than the undammed one. These results highlight the role of beaver dams in changing the composition and functionality of meiofaunal assemblages offering insights into the dynamic interactions within aquatic ecosystems.


Subject(s)
Copepoda , Ecosystem , Animals , Rodentia , Rivers , Biomass
12.
Sci Total Environ ; 927: 172378, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604362

ABSTRACT

The neonicotinoid pesticide imidacloprid has been used worldwide since 1992. As one of the most important chemicals used in pest control, there have been concerns that its run-off into rivers and lakes could adversely affect aquatic ecosystems, where zooplankton play a central role in the energy flow from primary to higher trophic levels. However, studies assessing the effects of pesticides at the species level have relied on a Daphnia-centric approach, and no studies have been conducted using species-level assessments on a broad range of zooplankton taxa. In the present study, we therefore investigated the acute toxicity of imidacloprid on 27 freshwater crustacean zooplankton (18 cladocerans, 3 calanoid copepods and 6 cyclopoid copepods). The experiment showed that a majority of calanoid copepods and cladocerans were not affected at all by imidacloprid, with the exception of one species each of Ceriodaphnia and Diaphasoma, while all six cyclopoid copepods showed high mortality rates, even at concentrations of imidacloprid typically found in nature. In addition, we found a remarkable intra-taxonomic variation in susceptibility to this chemical. As many cyclopoid copepods are omnivorous, they act as predators as well as competitors with other zooplankton. Accordingly, their susceptibility to imidacloprid is likely to cause different responses at the community level through changes in predation pressure as well as changes in competitive interactions. The present results demonstrate the need for species-level assessments of various zooplankton taxa to understand the complex responses of aquatic communities to pesticide disturbance.


Subject(s)
Insecticides , Neonicotinoids , Nitro Compounds , Water Pollutants, Chemical , Zooplankton , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Zooplankton/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Copepoda/drug effects , Fresh Water , Cladocera/drug effects
13.
Mol Ecol ; 33(9): e17340, 2024 May.
Article in English | MEDLINE | ID: mdl-38605683

ABSTRACT

Copepoda is the most abundant taxon in deep-sea hydrothermal vents, where hard substrate is available. Despite the increasing interest in seafloor massive sulphides exploitation, there have been no population genomic studies conducted on vent meiofauna, which are known to contribute over 50% to metazoan biodiversity at vents. To bridge this knowledge gap, restriction-site-associated DNA sequencing, specifically 2b-RADseq, was used to retrieve thousands of genome-wide single-nucleotide polymorphisms (SNPs) from abundant populations of the vent-obligate copepod Stygiopontius lauensis from the Lau Basin. SNPs were used to investigate population structure, demographic histories and genotype-environment associations at a basin scale. Genetic analyses also helped to evaluate the suitability of tailored larval dispersal models and the parameterization of life-history traits that better fit the population patterns observed in the genomic dataset for the target organism. Highly structured populations were observed on both spatial and temporal scales, with divergence of populations between the north, mid, and south of the basin estimated to have occurred after the creation of the major transform fault dividing the Australian and the Niuafo'ou tectonic plate (350 kya), with relatively recent secondary contact events (<20 kya). Larval dispersal models were able to predict the high levels of structure and the highly asymmetric northward low-level gene flow observed in the genomic data. These results differ from most studies conducted on megafauna in the region, elucidating the need to incorporate smaller size when considering site prospecting for deep-sea exploitation of seafloor massive sulphides, and the creation of area-based management tools to protect areas at risk of local extinction, should mining occur.


Subject(s)
Copepoda , Genetics, Population , Polymorphism, Single Nucleotide , Copepoda/genetics , Animals , Polymorphism, Single Nucleotide/genetics , Hydrothermal Vents , Genomics , Australia , Sequence Analysis, DNA , Mining , Genotype , Biodiversity
14.
Sci Rep ; 14(1): 7660, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561430

ABSTRACT

Thermal tolerance is a critical factor influencing the survival of living organisms. This study focuses on the thermal resistance of copepod species, Thermocyclops crassus (Fischer, 1853) and T. oithonoides (Sars G.O., 1863), with overlapping distribution ranges in Europe. Short-term heat shock experiments were conducted to assess the thermal resistance of these copepods, considering various temperature increments and exposure durations. Additionally, the study explored the influence of heat shock on egg sac shedding, a vital indicator of population dynamics. Results indicate that widely distributed T. crassus exhibits higher thermal tolerance compared to narrowly distributed T. oithonoides, with survival rates varying under different heat shock conditions. Furthermore, T. crassus demonstrated a quicker response in dropping egg sacs in response to thermal stress, suggesting a potential adaptive mechanism for the survival of adults. However, rapid egg sac droppings pose high risks for eggs facing unfavorable conditions. T. crassus, inhabiting environments with greater temperature fluctuations such as the littoral and pelagial zones, exhibited better survival mechanisms compared to T. oithonoides, which predominantly resides in the pelagic zone. The findings have implications for understanding copepod responses to global warming and thermal pollution. This research contributes insights into the adaptive strategies of thermophilic copepod species and their ecological consequences.


Subject(s)
Copepoda , Animals , Copepoda/physiology , Heat-Shock Response , Global Warming , Europe
15.
Sci Total Environ ; 928: 172489, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38621539

ABSTRACT

There is a growing interest in the impact of acoustic pollution on aquatic ecosystems. Currently, research has primarily focused on hearing species, particularly fishes and mammals. However, species from lower trophic levels, including many invertebrates, are less studied despite their ecological significance. Among these taxa, studies examining the effects of sound on holozooplankton are extremely rare. This literature review examines the effects of sound on both marine and freshwater zooplankton. It highlights two differences: the few used organisms and the types of sound source. Marine studies focus on the effects of very intense acute sound on copepods, while freshwater studies focus on less intense chronic sound on cladocerans. But, in both, various negative effects are reported. The effects of sound remain largely unknown, although previous studies have shown that zooplankton can detect vibrations using mechanoreceptors. The perception of their environment can be affected by sounds, potentially causing stress. Limited research suggests that sound may affect the physiology, behaviour, and fitness of zooplankton. Following this review, I highlight the potential to use methods from ecology, ecotoxicology, and parasitology to study the effects of sound at the individual level, including changes in physiology, development, survival, and behaviour. Responses to sound, which could alter species interactions and population dynamics, are expected to have larger-scale implications with bottom-up effects, such as changes in food web dynamics and ecosystem functioning. To improve the study of the effect of sound, to better use zooplankton as biological models and as bioindicators, researchers need to better understand how they perceive their acoustic environment. Consequently, an important challenge is the measurement of particle motion to establish useable dose-response relationships and particle motion soundscapes.


Subject(s)
Ecosystem , Zooplankton , Zooplankton/physiology , Animals , Sound , Environmental Monitoring/methods , Copepoda/physiology
16.
Mar Pollut Bull ; 202: 116343, 2024 May.
Article in English | MEDLINE | ID: mdl-38626636

ABSTRACT

The Deepwater Horizon (DWH) blowout and oil spill began on April 20, 2010 in the northern Gulf of Mexico (NGOM) deep sea (1525 m). Previous studies documented an impacted area of deep-sea floor totaling 321 km2 and were based on taxonomy at the macrofauna family level and the meiofauna major taxonomic level. In the present study, finer taxonomic resolution of the meiofauna community was employed, specifically harpacticoid copepod family biodiversity. Severe or moderate impacts to harpacticoid family biodiversity were observed at 35 of 95 sampling stations, covering an estimated area of 2864 km2, 8.9 times greater impacted area than previously reported. Sensitive and tolerant harpacticoid families were observed in the impact zone. The present study greatly expands the understanding of DWH deep-sea impacts in 2010 and demonstrates that the harpacticoid family-level response is the most sensitive indicator (reported to date) of this oil spill pollution event.


Subject(s)
Biodiversity , Copepoda , Environmental Monitoring , Petroleum Pollution , Animals , Gulf of Mexico , Water Pollutants, Chemical/analysis
17.
Syst Parasitol ; 101(3): 32, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647716

ABSTRACT

Seven species belonging to Pennellidae are reported from marine teleosts caught off southern Africa. Additionally, complete re-descriptions are provided for Propeniculus stromatei and Sarcotretes scopeli. Examination of Lernaeenicus gonostomae, deposited in the Iziko South African Museum, indicated that it has the morphological features of Sarcotretes rather than Lernaeenicus and thus should be moved to Sarcotretes i.e. S. gonostomae n. comb. for which a re-description is also provided. Reports of new host records include those of Pennella instructa from Seriola lalandi; Propeniculus stromatei from Rhabdosargus holubi and Pomadasys commersonnii; Sarcotretes scopeli from Nansenia tenera, and Sarcotretes longirostris from Centrolophus niger. New geographical records include those of P. instructa, P. stromatei, S. scopeli, S. longirostris, and L. longiventris off southern Africa. Additionally, an attempt to estimate the evolutionary relationships amongst some genera is done from partial COI sequences deposited in Genbank.


Subject(s)
Copepoda , Species Specificity , Animals , Copepoda/classification , Copepoda/anatomy & histology , Female , Africa, Southern , South Africa , Fishes/parasitology
18.
Syst Parasitol ; 101(3): 27, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568382

ABSTRACT

The original description of Hatschekia exigua Pearse, 1951 neglected innumerous features of taxonomic value as well as morphometric data and illustrations. Posteriorly, other author tried to access the type material, but their poor state of preservation compromised a detailed redescription. Since then, this species is in need for new morphological data, mainly from fresh material. In the present work, three specimens of Holocentrus adscensionis from Mucuripe Bay, Fortaleza, State of Ceará, Northeastern Brazil, were parasitized by copepods on their gills. Parasites were fixed and preserved in 80% ethanol and cleared in 85% lactic acid for morphological observations using light microscopy. The females were identified as Hatschekia exigua by the cephalothorax representing about one-fourth of total body length, with lateral margins expanded into lateral lobes, first exopod with basal segment armed with one outer setae and terminal segment with three setae, first endopod with basal segment unarmed and terminal segment with five setae, leg 3 reduced to two setae and leg 4 reduced to single seta. Comparison with the type series revealed morphological differences in trunk and small appendages, which may be related to alterations in the specimens, caused by the mounting methodology and poor preservation. A detailed morphological analysis of the male revealed for the first time that they differ from their closest congeners by having five setae on the last endopodal segment of leg 1, by smooth intercoxal sclerites on legs 1 and 2 and by a proximolateral process on the third segment of antenna. Moreover, this work represents the first report of H. exigua in Brazil and the first hatschekiid copepod found off the coast of Ceará, highlighting that the diversity of Hatschekiidae in this oceanographic region still needs further investigation.


Subject(s)
Copepoda , Parasites , Animals , Female , Male , Brazil , Species Specificity , Fishes
19.
Syst Parasitol ; 101(3): 33, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647718

ABSTRACT

The mitochondrial (mt) genome can provide data for phylogenetic analyses and evolutionary biology. Herein, we sequenced and annotated the complete mt genome of Ergasilus anchoratus. This mt genome was 13852 bp long and comprised 13 protein-coding genes (PCGs), 22 tRNAs and 2 rRNAs. All PCGs used the standard ATN start codons and complete TAA/TAG termination codons. A majority of tRNA genes exhibited standard cloverleaf secondary structures, with the exception of one tRNA that lacked the TψC arm (trnC), and three tRNAs that lacked the DHU arm (trnR, trnS1 and trnS2). Phylogenetic analyses conducted using Bayesian inference (BI) and maximum likelihood (ML) methods both supported Ergasilidae as a monophyletic family forming a sister group to Lernaea cyprinacea and Paracyclopina nana. It also supported the monophyly of orders Calanoida, Cyclopoida, and Siphonostomatoida; and the monophyly of families Harpacticidae, Ergasilidae, Diaptomidae, and Calanidae. The gene orders of E. anchoratus and Sinergasilus undulatus were identical, which represents the first instance of two identical gene orders in copepods. More mt genomes are needed to better understand the phylogenetic relationships within Copepoda in the future.


Subject(s)
Copepoda , Genome, Mitochondrial , Phylogeny , Animals , Genome, Mitochondrial/genetics , Copepoda/genetics , Copepoda/classification
20.
Sci Total Environ ; 930: 172837, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38688360

ABSTRACT

Microplastics could be ingested by many organisms, including zooplankton, involving bioaccumulation and biomagnification mechanisms a cross food webs. The information about microplastic ingestion by zooplankton keeps increasing worldwide. However, it is still limited for particle sizes under 300 µm (small microplastics, SMPs) and in areas such as Southeast Asia, which is considered one of the hotspots for plastic debris. This study aimed to characterize the size, shape, and polymer types of the SMPs ingested by the copepod Centropages furcatus in Si Chang Island (upper Gulf of Thailand). The study spans offshore and coastal waters, with data collected across wet, intermediate, and dry seasons. Using a semi-automated technique for micro-FTIR (Fourier-transform infrared) scanning spectroscopy for particle analysis, we found ingested SMPs in all samples. A total of 750 individuals of the calanoid Centropages furcatus were analyzed, finding 309 plastic particles and an average ingestion value of 0.41 ± 0.13 particles ind-1, one of the highest recorded values. All the particles were fragments, with a predominant size under 50 µm, and polymer types as Polypropylene (PP, 71 %), followed by Ethylene-Propylene-Diene-Monomer (EPDM, 16 %) and Polyethylene (PE, 7 %). Up to 470.2 particles m-3 were estimated to be retained by this calanoid species and potentially available for trophic transfer. The effect of rainfall on SMPs ingestion was inconclusive, with a non-significant observed tendency to higher ingestion values near the coastal area than offshore area, suggesting a decrease in particle exposure due to the runoff effect. Nevertheless, future studies should increase the frequency of surveys to arrive at better conclusions.


Subject(s)
Copepoda , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Thailand , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Food Chain , Particle Size , Eating , Plastics/analysis , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...