Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
mSphere ; 9(3): e0009224, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38411121

ABSTRACT

Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma. The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that T. gondii CPDH (TgCPDH) potentially functions as an alternative enzyme to perform the same reaction as CPOX under low-oxygen conditions. In this study, we demonstrated that TgCPDH exhibits CPDH activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wild-type and heme-deficient parasites did not alter their intracellular growth under both ambient and low-oxygen conditions. This research marks the first report of a CPDH-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings revealed that it does not directly affect acute Toxoplasma infections in vitro and in vivo. IMPORTANCE: Toxoplasma gondii is a ubiquitous parasite capable of infecting a wide range of warm-blooded hosts, including humans. During its life cycle, these parasites must adapt to varying environmental conditions, including situations with low-oxygen levels, such as intestine and spleen tissues. Our research, in conjunction with studies conducted by other laboratories, has revealed that Toxoplasma primarily relies on its own heme production during acute infections. Intriguingly, in addition to this classical heme biosynthetic pathway, the parasites encode a putative oxygen-independent coproporphyrinogen dehydrogenase (CPDH), suggesting its potential contribution to heme production under varying oxygen conditions, a feature typically observed in simpler organisms like bacteria. Notably, so far, CPDH has only been identified in some bacteria for heme biosynthesis. Our study discovered that Toxoplasma harbors a functional enzyme displaying CPDH activity, which alters its expression in the parasites when they face fluctuating oxygen levels in their surroundings.


Subject(s)
Toxoplasma , Humans , Toxoplasma/metabolism , Coproporphyrinogens/metabolism , Heme , Coproporphyrinogen Oxidase/genetics , Hypoxia , Oxygen/metabolism
2.
Biomed Res Int ; 2022: 9096999, 2022.
Article in English | MEDLINE | ID: mdl-35669728

ABSTRACT

Background: Hereditary coproporphyria (HCP) is a rare autosomal dominant disorder caused by a partial deficiency of coproporphyrinogen III oxidase (CPOX), and systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic predisposition. SLC7A7 (solute carrier family 7 member 7) may be associated with monogenic lupus disease; however, only 2 cases of concomitant HCP and SLE have been reported. Methods: We report a 30-year-old woman with a six-year history of SLE presenting with abdominal pain, vomiting, dysuria, tachycardia, and hyponatremia. Whole exome sequencing (WES) and Sanger sequencing were carried out for the proband and members of her pedigree to detect the genetic background. The Gene Expression Omnibus (GEO) database was used to search the related gene expression profiles. Differentially expressed genes (DEGs) were identified using GEO2R. Result: A novel heterozygous splicing mutation of CPOX (NM_000097): c.700+2 T > C (intron 2) was detected by WES in the proband, and it was considered likely pathogenic (PSV1+PM2). Sanger sequencing verified the heterozygous mutation of CPOX in the proband, although it was not detected in her father. WES also identified 62 other gene variants, especially two heterozygous variants in SLC7A7 (NM_001126106): c.250G > A (p. V84I) and c.625+1G > A (splicing). DEGs were detected from GSE51997, and the expression of CPOX was downregulated in SLE patients compared with normal controls (adj. P = 0.0071, logFC = -1.0975). Conclusion: This study presents the first reported case of SLE coexisting with HCP in China; moreover, a novel splicing mutation of CPOX, i.e., c.700+2 T > C (intron 2), and two heterozygous mutations of SLC7A7 were reported. The simultaneous mutations of CPOX and SLC7A7 may explain the etiopathogenetic connections of HCP and SLE.


Subject(s)
Coproporphyria, Hereditary , Lupus Erythematosus, Systemic , Adult , Amino Acid Transport System y+L/genetics , Coproporphyria, Hereditary/genetics , Coproporphyrinogen Oxidase/genetics , Female , Humans , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/genetics , Mutation/genetics , Pedigree , Exome Sequencing
3.
Exp Anim ; 71(4): 433-441, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35527013

ABSTRACT

Mouse models of red blood cell abnormalities are important for understanding the underlying molecular mechanisms of human erythrocytic diseases. DBA.B6-Mha (Microcytic hypochromic anemia) congenic mice were generated from the cross between N-ethyl-N-nitrosourea (ENU)-mutagenized male C57BL/6J and female DBA/2J mice as part of the RIKEN large-scale ENU mutagenesis project. The mice were established by backcrossing with DBA/2J mice for more than 20 generations. These mice showed autosomal-dominant microcytic hypochromic anemia with decreased mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) levels and increased red blood cell distribution width (RDW) and plasma ferritin levels. Linkage analysis indicated that the Mha locus was located within an interval of approximately 1.95-Mb between D16Nut1 (58.35 Mb) and D16Mit185 (60.30 Mb) on mouse chromosome 16. Mutation analysis revealed that DBA.B6-Mha mice had a point mutation (c.921-2A>G) at the acceptor site of intron 4 in the coproporphyrinogen oxidase (Cpox) gene, a heme-synthesizing gene. RT-PCR revealed that the Cpox mRNA in DBA.B6-Mha mice caused splicing errors. Our results suggest that microcytic hypochromic anemia in DBA.B6-Mha mice is owing to impaired heme synthesis caused by splice mutations in Cpox. Therefore, the DBA.B6-Mha mice may be used to elucidate the molecular mechanisms underlying microcytic hypochromic anemia caused by mutations in Cpox. Although low MCV levels are known to confer malarial resistance to the host, there were no marked changes in the susceptibility of DBA.B6-Mha mice to rodent malarial (Plasmodium yoelii 17XL) infection.


Subject(s)
Anemia, Hypochromic , Coproporphyrinogen Oxidase , Animals , Female , Male , Mice , Anemia, Hypochromic/chemically induced , Anemia, Hypochromic/genetics , Coproporphyrinogen Oxidase/genetics , Heme , Mice, Inbred C57BL , Mice, Inbred DBA , Mutation
4.
Genes (Basel) ; 13(2)2022 01 29.
Article in English | MEDLINE | ID: mdl-35205317

ABSTRACT

Lesion mimic mutants provide ideal genetic materials for elucidating the molecular mechanism of cell death and disease resistance. The maize necrotic leaf mutant (nec-t) is a recessive mutant with necrotic spots and yellow-green leaves. In this study, we found that nec-t was a light and temperature-dependent mutant. Map-based cloning and the allelic test revealed that nec-t was a novel allelic mutant of the Necrotic4 gene. Necrotic4 encodes the coproporphyrinogen III oxidase (CPX1), a key enzyme in the tetrapyrrole pathway, catalyzing coproporphyrinogen III oxidate to protoporphyrinogen IX. Subcellular localization showed that the necrotic4 protein was localized in the chloroplast. Furthermore, RNA-seq analysis showed that the Necrotic4 mutation caused the enhanced chlorophyll degradation and reactive oxygen species (ROS) response. The mechanism of plant lesion formation induced by light and temperature is not clear. Our research provides a basis for understanding the molecular mechanism of necrosis initiation in maize.


Subject(s)
Coproporphyrinogen Oxidase , Porphyrins , Coproporphyrinogen Oxidase/genetics , Coproporphyrinogen Oxidase/metabolism , Coproporphyrinogens , Necrosis/genetics , Oxidoreductases , Plant Leaves/genetics , Plant Leaves/metabolism
5.
Microb Drug Resist ; 27(8): 1018-1028, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33325795

ABSTRACT

Aims: The fluid of Nepenthes gracilis harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant Klebsiella pneumoniae. The aim of this study was to explore the presence of antibacterial genes in the fluids of N. gracilis growing in the wild. Methods: Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of K. pneumoniae. A clone that exhibited the most potent antibacterial activity was sent for sequencing to identify the genes responsible for the observed activity. The secondary metabolites secreted by the selected clone was sequentially extracted using hexane, chloroform, and ethyl acetate. The chemical profiles of a clone (C6) hexane extract were determined by gas chromatography/mass spectrometry (GC-MS). Results: Fosmid clone C6 from the fluid of pitcher plant that exhibited antibacterial activity against three strains of K. pneumoniae was isolated using functional metagenome approach. A majority of the open reading frames detected from C6 were affiliated with the largely understudied Acidocella genus. Among them, the gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway could be involved in the observed antibacterial activity. Based on the GC-MS analysis, the identities of the putative bioactive compounds were 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane. Conclusions: The gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway as well as the secondary metabolites, namely 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane could be the potential antibacterial molecules responsible for the antibacterial activity of C6.


Subject(s)
Anti-Bacterial Agents/pharmacology , Caryophyllaceae , Klebsiella pneumoniae/drug effects , Plant Extracts/pharmacology , Coproporphyrinogen Oxidase/genetics , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
7.
Biochem Pharmacol ; 169: 113604, 2019 11.
Article in English | MEDLINE | ID: mdl-31421132

ABSTRACT

BACKGROUND: Hydrogen sulfide (H2S) is an endogenous gasotransmitter produced by mammalian cells. The current study investigated the potential role of H2S in the regulation of heme biosynthesis using mice deficient in cystathionine gamma-lyase (CSE), one of the three major mammalian H2S-producing enzymes. METHODS: Wild-type and global CSE-/- mice, as well as mitochondria prepared from their liver were used. In vivo, arterial and venous blood gases were measured, and survival of the mice to severe global hypoxia was monitored. Ex vivo, expression of various heme biosynthetic enzymes including coproporphyrinogen oxidase (CPOX) was measured, and mitochondrial function was evaluated using Extracellular Flux Analysis. Urine samples were collected to measure the oxidized porphyrinogen intermediates. The in vivo/ex vivo studies were complemented with mitochondrial bioenergetic studies in hepatocytes in vitro. Moreover, the potential effect of H2S on the CPOX promoter was studied in cells expressing a CPOX promoter construct system. RESULTS: The main findings are as follows: (1) CSE-/- mice exhibit elevated red blood cell counts and red blood cell mean corpuscular volumes compared to wild-type mice; (2) these changes are associated with elevated plasma and liver heme levels and (3) these alterations are likely due to an induction of CPOX (the sixth enzyme involved in heme biosynthesis) in CSE-/- mice. (4) Based on in vitro promoter data the promoter activation of CPOX is directly influenced by H2S, the product of CSE. With respect to the potential functional relevance of these findings, (5) the increased circulating red blood cell numbers do not correspond to any detectable alterations in blood gas parameters under resting conditions, (6) nor do they affect the hypoxia tolerance of the animals in an acute severe hypoxia model. However, there may be a functional interaction between the CSE system and the CPOX system in terms of mitochondrial bioenergetics: (7) CSE-/- hepatocytes and mitochondria isolated from them exhibit increased oxidative phosphorylation parameters, and (8) this increase is partially blunted after CPOX silencing. Although heme is essential for the biosynthesis of mitochondrial electron chain complexes, and CPOX is required for heme biosynthesis, (9) the observed functional mitochondrial alterations are not associated with detectable changes in mitochondrial electron transport chain protein expression. CONCLUSIONS: The CSE system regulates the expression of CPOX and consequent heme synthesis. These effects in turn, do not influence global oxygen transport parameters, but may regulate mitochondrial electron transport.


Subject(s)
Coproporphyrinogen Oxidase/metabolism , Cystathionine gamma-Lyase/deficiency , Electron Transport/genetics , Erythropoiesis/genetics , Heme/biosynthesis , Mitochondria/metabolism , Up-Regulation/genetics , Animals , Coproporphyrinogen Oxidase/genetics , Cystathionine gamma-Lyase/genetics , Erythrocyte Count , Hep G2 Cells , Humans , Hydrogen Sulfide/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Phosphorylation , Transfection
8.
mSphere ; 4(4)2019 07 10.
Article in English | MEDLINE | ID: mdl-31292227

ABSTRACT

The virulence of the human pathogen Staphylococcus aureus is supported by many heme-dependent proteins, including key enzymes of cellular respiration. Therefore, synthesis of heme is a critical component of staphylococcal physiology. S. aureus generates heme via the coproporphyrin-dependent pathway, conserved across members of the Firmicutes and Actinobacteria In this work, we genetically investigate the oxidation of coproporphyrinogen to coproporphyrin in this heme synthesis pathway. The coproporphyrinogen III oxidase CgoX has previously been identified as the oxygen-dependent enzyme responsible for this conversion under aerobic conditions. However, because S. aureus uses heme during anaerobic nitrate respiration, we hypothesized that coproporphyrin production is able to proceed in the absence of oxygen. Therefore, we tested the contribution to anaerobic heme synthesis of CgoX and two other proteins previously identified as potential oxygen-independent coproporphyrinogen dehydrogenases, NWMN_1486 and NWMN_1636. We have found that CgoX alone is responsible for aerobic and anaerobic coproporphyrin synthesis from coproporphyrinogen and is required for aerobic and anaerobic heme-dependent growth. This work provides an explanation for how S. aureus heme synthesis proceeds under both aerobic and anaerobic conditions.IMPORTANCE Heme is a critical molecule required for aerobic and anaerobic respiration by organisms across kingdoms. The human pathogen Staphylococcus aureus has served as a model organism for the study of heme synthesis and heme-dependent physiology and, like many species of the phyla Firmicutes and Actinobacteria, generates heme through a coproporphyrin intermediate. A critical step in terminal heme synthesis is the production of coproporphyrin by the CgoX enzyme, which was presumed to be oxygen dependent. However, S. aureus also requires heme during anaerobic growth; therefore, the synthesis of coproporphyrin by an oxygen-independent mechanism is required. Here, we identify CgoX as the enzyme performing the oxygen-dependent and -independent synthesis of coproporphyrin from coproporphyrinogen, resolving a key outstanding question in the coproporphyrin-dependent heme synthesis pathway.


Subject(s)
Coproporphyrinogen Oxidase/metabolism , Heme/biosynthesis , Staphylococcus aureus/enzymology , Aerobiosis , Anaerobiosis , Coproporphyrinogen Oxidase/genetics , Coproporphyrinogens/metabolism , Oxidation-Reduction , Staphylococcus aureus/genetics , Virulence
9.
Mol Genet Metab ; 128(3): 352-357, 2019 11.
Article in English | MEDLINE | ID: mdl-30385147

ABSTRACT

The acute hepatic porphyrias (AHPs) are inborn errors of heme biosynthesis, which include three autosomal dominant porphyrias, Acute Intermittent Porphyria (AIP), Hereditary Coproporphyria (HCP), and Variegate Porphyria (VP), and the ultra-rare autosomal recessive porphyria, δ-Aminolevulinic Acid Dehydratase Deficiency Porphyria (ADP). AIP, HCP, VP, and ADP each results from loss-of-function (LOF) mutations in their disease-causing genes: hydroxymethylbilane synthase (HMBS); coproporphyrinogen oxidase (CPOX); protoporphyrinogen oxidase (PPOX), and δ-aminolevulinic acid dehydratase (ALAD), respectively. During the 11-year period from January 1, 2007 through December 31, 2017, the Mount Sinai Porphyrias Diagnostic Laboratory diagnosed 315 unrelated AIP individuals with HMBS mutations, including 46 previously unreported mutations, 29 unrelated HCP individuals with CPOX mutations, including 11 previously unreported mutations, and 54 unrelated VP individuals with PPOX mutations, including 20 previously unreported mutations. Overall, of the 1692 unrelated individuals referred for AHP molecular diagnostic testing, 398 (23.5%) had an AHP mutation. Of the 650 family members of mutation-positive individuals tested for an autosomal dominant AHP, 304 (46.8%) had their respective family mutation. These data expand the molecular genetic heterogeneity of the AHPs and document the usefulness of molecular testing to confirm the positive biochemical findings in symptomatic patients and identify at-risk asymptomatic family members.


Subject(s)
Coproporphyrinogen Oxidase/genetics , Hydroxymethylbilane Synthase/genetics , Mutation , Porphyria, Acute Intermittent/genetics , Protoporphyrinogen Oxidase/genetics , Asymptomatic Diseases , Family , Genetic Heterogeneity , Heme/biosynthesis , Humans , Molecular Diagnostic Techniques , Porphyria, Acute Intermittent/diagnosis
10.
Eur J Med Genet ; 62(12): 103589, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30476629

ABSTRACT

Porphyrias are rare diseases caused by alterations in the heme biosynthetic pathway. Depending on the afected enzyme, porphyrin precursors or porphyrins are overproduced, causing acute neurovisceral attacks or dermal photosensitivity, respectively. Hereditary Coproporphyria (HCP) and Variegate Porphyria (VP) are mixed porphyrias since they can present acute and/or cutaneous symptoms. These diseases are caused by a deficiency of coproporphyrinogen oxidase (CPOX) in HCP, and protoporphyrinogen oxidase (PPOX) in VP. Herein, we studied nineteen unrelated Spanish patients with mixed porphyrias. The diagnosis of either, HCP or VP was made on the basis of clinical symptoms, biochemical findings and the identification of the mutation responsible in the CPOX or PPOX genes. Two patients presented both acute and cutaneous symptoms. In most patients, the biochemical data allowed the diagnosis. Among eleven patients with HCP, ten CPOX mutations were identified, including six novel ones: two frameshift (c.32delG and c.1102delC), two nonsense (p.Cys239Ter and p.Tyr365Ter), one missense (p.Trp275Arg) and one amino acid deletion (p.Gly336del). Moreover, seven previously described PPOX mutations were identified in eight patients with VP. The impacts of CPOX mutations p.Trp275Arg and p.Gly336del, were evaluated using prediction softwares and their functional consequences were studied in a prokaryotic expression system. Both alterations were predicted as deleterious by in silico analysis. Aditionally, when these alleles were expressed in E. coli, only p.Trp275Arg retained some residual activity. These results emphasize the usefulness of integrated the biochemical tests and molecular studies in the diagnosis. Furthermore, they extend knowledge on the molecular heterogeneity of mixed porphyrias in Spain.


Subject(s)
Porphyrias/genetics , Adult , Aged , Coproporphyrinogen Oxidase/genetics , Coproporphyrinogen Oxidase/metabolism , Female , Flavoproteins/genetics , Flavoproteins/metabolism , Genetic Testing/statistics & numerical data , Humans , Loss of Function Mutation , Male , Middle Aged , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation, Missense , Porphyrias/epidemiology , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism , Spain
11.
Ann Clin Biochem ; 55(5): 616-619, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29660996

ABSTRACT

A 21-year-old female had recurrent presentations to the emergency department with myalgia, vomiting, abdominal pain and subsequently developed generalized seizures. She was volume depleted with a plasma sodium of 125 mmol/L (reference interval: 135-145) and she had fluctuating hypertension. Acute porphyria was suspected and confirmed with raised urine porphobilinogen/creatinine ratio of 12:4 µmol/mmoL (reference interval < 1:5) and she was treated with intravenous haem arginate. Urinary porphyrin/creatinine ratio was 673 nmol/mmoL (reference interval <35) and faecal porphyrins 2430 µmol/kg dry weight (reference interval: <200) were markedly elevated, with raised faecal CIII:CI ratio, consistent with acute coproporphyria. Diagnosis was confirmed by the demonstration of a novel missense variant in the coproporphyrinogen oxidase gene c.863T > G (p.Leu288Trp) predicted to be deleterious and which segregated with three other affected family members. Although CT head was normal, magnetic resonance imaging scan revealed symmetrical signal abnormalities and swelling in the parietal and occipital lobes consistent with posterior reversible encephalopathy. Over several days, her seizures ceased and sodium and blood pressure normalized. The aetiology of the acute porphyric attack was likely multifactorial with contributions from a recent viral illness and caloric deprivation. No drug precipitant was identified. We postulate that untreated hypertension played a key role in the development of posterior reversible encephalopathy. Early clinical suspicion and urine porphobilinogen testing are the key components in preventing morbidity and mortality in acute porphyrias.


Subject(s)
Brain Diseases/complications , Coproporphyria, Hereditary , Coproporphyrinogen Oxidase/genetics , Posterior Leukoencephalopathy Syndrome/complications , Coproporphyria, Hereditary/complications , Coproporphyria, Hereditary/genetics , Early Diagnosis , Female , Humans , Mutation , Young Adult
12.
Environ Microbiol ; 19(12): 4926-4938, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28967174

ABSTRACT

Receiving nodulation and nitrogen fixation genes does not guarantee rhizobia an effective symbiosis with legumes. Here, variations in gene content were determined for three Sinorhizobium species showing contrasting symbiotic efficiency on soybeans. A nitrate-reduction gene cluster absent in S. sojae was found to be essential for symbiotic adaptations of S. fredii and S. sp. III. In S. fredii, the deletion mutation of the nap (nitrate reductase), instead of nir (nitrite reductase) and nor (nitric oxide reductase), led to defects in nitrogen-fixation (Fix- ). By contrast, none of these core nitrate-reduction genes were required for the symbiosis of S. sp. III. However, within the same gene cluster, the deletion of hemN1 (encoding oxygen-independent coproporphyrinogen III oxidase) in both S. fredii and S. sp. III led to the formation of nitrogen-fixing (Fix+ ) but ineffective (Eff- ) nodules. These Fix+ /Eff- nodules were characterized by significantly lower enzyme activity of glutamine synthetase indicating rhizobial modulation of nitrogen-assimilation by plants. A distant homologue of HemN1 from S. sojae can complement this defect in S. fredii and S. sp. III, but exhibited a more pleotropic role in symbiosis establishment. These findings highlighted the lineage-dependent optimization of symbiotic functions in different rhizobial species associated with the same host.


Subject(s)
Glycine max/microbiology , Nitrite Reductases/genetics , Nitrogen Fixation/genetics , Sinorhizobium fredii/genetics , Sinorhizobium fredii/metabolism , Symbiosis/genetics , Coproporphyrinogen Oxidase/genetics , Glutamate-Ammonia Ligase/metabolism , Multigene Family/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Rhizobium/genetics
13.
Article in English | MEDLINE | ID: mdl-28893786

ABSTRACT

We have previously reported that an erg11 mutation affecting ergosterol synthesis and a hem13 mutation in the heme synthesis pathway significantly sensitize the fission yeast Schizosaccharomyces pombe to hydroxyurea (HU) (1, 2). Here we show that treatment with inhibitors of Erg11 and heme biosynthesis phenocopies the two mutations in sensitizing wild-type cells to HU. Importantly, HU synergistically interacts with the heme biosynthesis inhibitor sampangine and several Erg11 inhibitors, the antifungal azoles, in causing cell lethality. Since the synergistic drug interactions are also observed in the phylogenetically divergent Saccharomyces cerevisiae and the opportunistic fungal pathogen Candida albicans, the synergism is likely conserved in eukaryotes. Interestingly, our genetic data for S. pombe has also led to the discovery of a robust synergism between sampangine and the azoles in C. albicans Thus, combinations of HU, sampangine, and the azoles can be further studied as a new method for the treatment of fungal infections.


Subject(s)
Alkaloids/pharmacology , Antifungal Agents/pharmacology , Azoles/pharmacology , Enzyme Inhibitors/pharmacology , Hydroxyurea/pharmacology , Schizosaccharomyces/drug effects , Candida albicans/drug effects , Candidiasis/drug therapy , Coproporphyrinogen Oxidase/genetics , Cytochrome P-450 Enzyme System/genetics , Cytokinesis/drug effects , Drug Synergism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Microbial Sensitivity Tests , Naphthyridines , Ribonucleotide Reductases/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics
14.
Proc Natl Acad Sci U S A ; 114(32): E6652-E6659, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28739897

ABSTRACT

Gram-positive bacteria cause the majority of skin and soft tissue infections (SSTIs), resulting in the most common reason for clinic visits in the United States. Recently, it was discovered that Gram-positive pathogens use a unique heme biosynthesis pathway, which implicates this pathway as a target for development of antibacterial therapies. We report here the identification of a small-molecule activator of coproporphyrinogen oxidase (CgoX) from Gram-positive bacteria, an enzyme essential for heme biosynthesis. Activation of CgoX induces accumulation of coproporphyrin III and leads to photosensitization of Gram-positive pathogens. In combination with light, CgoX activation reduces bacterial burden in murine models of SSTI. Thus, small-molecule activation of CgoX represents an effective strategy for the development of light-based antimicrobial therapies.


Subject(s)
Bacterial Proteins/metabolism , Coproporphyrinogen Oxidase/metabolism , Coproporphyrins/biosynthesis , Photosensitizing Agents/metabolism , Phototherapy , Staphylococcal Skin Infections/enzymology , Staphylococcal Skin Infections/therapy , Staphylococcus aureus/metabolism , Animals , Bacterial Proteins/genetics , Coproporphyrinogen Oxidase/genetics , Coproporphyrins/genetics , Disease Models, Animal , Mice , Staphylococcus aureus/genetics
15.
Dis Model Mech ; 10(8): 1005-1013, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28600349

ABSTRACT

A genome-wide ethyl-N-nitrosourea (ENU) mutagenesis screen in mice was performed to identify novel regulators of erythropoiesis. Here, we describe a mouse line, RBC16, which harbours a dominantly inherited mutation in the Cpox gene, responsible for production of the haem biosynthesis enzyme, coproporphyrinogen III oxidase (CPOX). A premature stop codon in place of a tryptophan at amino acid 373 results in reduced mRNA expression and diminished protein levels, yielding a microcytic red blood cell phenotype in heterozygous mice. Urinary and faecal porphyrins in female RBC16 heterozygotes were significantly elevated compared with that of wild-type littermates, particularly coproporphyrinogen III, whereas males were biochemically normal. Attempts to induce acute porphyric crises were made using fasting and phenobarbital treatment on females. While fasting had no biochemical effect on RBC16 mice, phenobarbital caused significant elevation of faecal coproporphyrinogen III in heterozygous mice. This is the first known investigation of a mutagenesis mouse model with genetic and biochemical parallels to hereditary coproporphyria.


Subject(s)
Coproporphyria, Hereditary/genetics , Ethylnitrosourea/chemistry , Mutagenesis/genetics , Anemia, Hypochromic/blood , Anemia, Hypochromic/genetics , Animals , Base Sequence , Biosynthetic Pathways/genetics , Coproporphyria, Hereditary/blood , Coproporphyrinogen Oxidase/genetics , Disease Models, Animal , Fasting/blood , Feces/chemistry , Female , Heme/biosynthesis , Male , Mice, Mutant Strains , Mutation/genetics , Phenobarbital/pharmacology , Phenotype , Pregnancy
16.
Plant Physiol ; 174(1): 258-275, 2017 May.
Article in English | MEDLINE | ID: mdl-28270625

ABSTRACT

Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Coproporphyrinogen Oxidase/metabolism , Germ Cells, Plant/metabolism , Mitochondria/enzymology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Coproporphyrinogen Oxidase/genetics , Coproporphyrinogens/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Germ Cells, Plant/growth & development , Mitochondria/metabolism , Mutation , Ovule/genetics , Ovule/growth & development , Ovule/metabolism , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Reactive Oxygen Species/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
17.
Mol Neurobiol ; 54(7): 5699-5708, 2017 09.
Article in English | MEDLINE | ID: mdl-27644131

ABSTRACT

Protoporphyrin IX (PpIX) is widely used in photodynamic diagnosis. To date, the details of molecular mechanisms underlying PpIX accumulation in malignant cells after 5-ALA administration remain unclear. The fluorescence of PpIX was studied in human glioma cells. Several cell cultures were established from glioma tumor tissue to study the differences between fluorescence-positive and fluorescence-negative human glioma tumors. The cell cultures demonstrated fluorescence profiles similar to those of source tumor tissues, which allows us to use these cultures in experimental research. Dynamics of the rates of synthesis and degradation of fluorescent protoporphyrin IX was studied in the cultures obtained. In addition, the expression of CPOX, an enzyme involved in PpIX synthesis, was evaluated. mRNA levels of heme biosynthesis enzymes were analyzed, and PpIX fluorescence proved to correlate with the CPOX protein level, whereas no such correlation was observed at the mRNA level. Fluorescence intensity decreased at low levels of the enzyme, which indicates its critical role in PpIX fluorescence. Finally, the fluorescence intensity proved to correlate with the proliferative activity.


Subject(s)
Brain Neoplasms/pathology , Coproporphyrinogen Oxidase/metabolism , Glioma/metabolism , Photosensitizing Agents/pharmacology , Protoporphyrins/pharmacology , Aminolevulinic Acid/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Coproporphyrinogen Oxidase/genetics , Fluorescence , Glioma/pathology , Humans , Photochemotherapy
18.
J BUON ; 21(5): 1068-1075, 2016.
Article in English | MEDLINE | ID: mdl-27837606

ABSTRACT

PURPOSE: To investigate the killing effect of photodynamic therapy (PDT) mediated by hematoporphyrin derivative (HPD) on human breast cancer MCF7 and MDA-MB-231 cells in vitro. METHODS: MCF7 and MDA-MB-231 breast cancer cells cultured in vitro were incubated with calcitriol (concentration of 10-8M, 10-10 M, 10-12 M, 10-14 M, 10-16 M, 0 M) to determine a proper concentration. The cells were divided into experimental group (calcitriol, HPD group and laser), HPD group (HPD and laser), calcitriol group (calcitriol and laser), blank laser group (laser alone) and blank group (no drugs and laser). Then the cells were preconditioned with calcitriol for 48 hrs and incubated with HPD for 6 hrs. After light exposure with 630 nm laser, the cells' viability and the reactive oxygen species (ROS) were assessed. After 8 hrs, flow cytometry was applied to detect the rate of cell apoptosis. The fluorescence intensity in cells was detected. Furthermore, the expression of porphyrin synthetic enzymes in pretreated breast cancer cells was analyzed. RESULTS: MTT assay showed that the viability of cells in the experimental group was lowest (p<0.05). The ROS intensity of the experimental group was higher (p<0.01). The rate of cell apoptosis was higher in the experimental group (p<0.05), and the fluorescence of the experimental group was higher (p<0.01). Furthermore, mechanistic studies documented that the expression of the porphyrin synthesis enzyme coproporphyrinogen oxidase (CPOX) was increased by calcitriol at the mRNA level. CONCLUSION: This research revealed a simple, non-toxic and highly effective preconditioning regimen to selectively enhance protoporphyrin IX (PpIX) fluorescence and the response of HPD-PDT in breast cancer search. This finding suggests that the combined treatment of breast cancer cells with calcitriol plus HPD may provide an effective and selective therapeutic modality to enhance HPD-induced PpIX fluorescent quality for improving discrimination of tumor tissue and PDT efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Calcitriol/pharmacology , Hematoporphyrins/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Survival/drug effects , Coproporphyrinogen Oxidase/genetics , Coproporphyrinogen Oxidase/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation
19.
Plant Physiol Biochem ; 97: 44-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26410574

ABSTRACT

Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1.


Subject(s)
Coproporphyrinogen Oxidase/genetics , Oryza/enzymology , Plant Diseases/immunology , Plant Proteins/genetics , Chloroplasts/ultrastructure , Chromosome Mapping , Coproporphyrinogen Oxidase/metabolism , Disease Resistance , Genetic Loci/genetics , Light , Mutation , Oryza/genetics , Oryza/immunology , Oryza/radiation effects , Phenotype , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/radiation effects , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/immunology , Seeds/radiation effects
20.
Mol Microbiol ; 96(4): 744-63, 2015 May.
Article in English | MEDLINE | ID: mdl-25664592

ABSTRACT

Hydrogen peroxide pervades many natural environments, including the phagosomes that mediate cell-based immunity. Transcriptomic analysis showed that during protracted low-grade H(2)O(2) stress, Escherichia coli responds by activating both the OxyR defensive regulon and the Fur iron-starvation response. OxyR induced synthesis of two members of the nine-step heme biosynthetic pathway: ferrochelatase (HemH) and an isozyme of coproporphyrinogen III oxidase (HemF). Mutations that blocked either adaptation caused the accumulation of porphyrin intermediates, inadequate activation of heme enzymes, low catalase activity, defective clearance of H(2)O(2) and a failure to grow. Genetic analysis indicated that HemH induction is needed to compensate for iron sequestration by the mini-ferritin Dps. Dps activity protects DNA and proteins by limiting Fenton chemistry, but it interferes with the ability of HemH to acquire the iron that it needs to complete heme synthesis. HemF is a manganoprotein that displaces HemN, an iron-sulfur enzyme whose synthesis and/or stability is apparently problematic during H(2)O(2) stress. Thus, the primary responses to H(2)O(2), including the sequestration of iron, require compensatory adjustments in the mechanisms of iron-cofactor synthesis. The results support the growing evidence that oxidative stress is primarily an iron pathology.


Subject(s)
Catalase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Heme/biosynthesis , Hydrogen Peroxide/metabolism , Oxidative Stress , Biosynthetic Pathways/genetics , Coproporphyrinogen Oxidase/biosynthesis , Coproporphyrinogen Oxidase/genetics , Enzyme Activation , Enzyme Induction , Escherichia coli/enzymology , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ferrochelatase/biosynthesis , Ferrochelatase/genetics , Gene Expression Profiling , Mutation , Porphyrins/metabolism , Regulon , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...