Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
Nat Commun ; 15(1): 4959, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862465

ABSTRACT

Intrastromal cell therapy utilizing quiescent corneal stromal keratocytes (qCSKs) from human donor corneas emerges as a promising treatment for corneal opacities, aiming to overcome limitations of traditional surgeries by reducing procedural complexity and donor dependency. This investigation demonstrates the therapeutic efficacy of qCSKs in a male rat model of corneal stromal opacity, underscoring the significance of cell-delivery quality and keratocyte differentiation in mediating corneal opacity resolution and visual function recovery. Quiescent CSKs-treated rats display improvements in escape latency and efficiency compared to wounded, non-treated rats in a Morris water maze, demonstrating improved visual acuity, while stromal fibroblasts-treated rats do not. Advanced imaging, including multiphoton microscopy, small-angle X-ray scattering, and transmission electron microscopy, revealed that qCSK therapy replicates the native cornea's collagen fibril morphometry, matrix order, and ultrastructural architecture. These findings, supported by the expression of keratan sulfate proteoglycans, validate qCSKs as a potential therapeutic solution for corneal opacities.


Subject(s)
Cell Differentiation , Corneal Keratocytes , Corneal Opacity , Animals , Male , Corneal Opacity/pathology , Rats , Corneal Keratocytes/metabolism , Humans , Disease Models, Animal , Corneal Stroma/metabolism , Corneal Stroma/ultrastructure , Corneal Stroma/drug effects , Visual Acuity , Recovery of Function , Cornea/pathology , Cornea/metabolism , Rats, Sprague-Dawley
2.
Curr Eye Res ; 49(8): 803-814, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38646925

ABSTRACT

PURPOSE: To investigate the effect of rose bengal photodynamic therapy on lipopolysaccharide-induced inflammation in human corneal fibroblasts. Furthermore, to analyze potential involvement of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways in this process. METHODS: Human corneal fibroblast cultures underwent 0-2.0 µg/mL lipopolysaccharide treatment, and 24 h later rose bengal photodynamic therapy (0.001% RB, 565 nm wavelength illumination, 0.17 J/cm2 fluence). Interleukin-6, interleukin-8, intercellular adhesion molecule-1, interferon regulatory factor-3, interferon α2, and interferon ß1 gene expressions were determined by quantitative PCR. Interleukin-6, interleukin-8, and C-C motif chemokine ligand-4 concentrations in the cell culture supernatant were measured by enzyme-linked immunosorbent assays and intercellular adhesion molecule-1 protein level in human corneal fibroblasts by western blot. In addition, the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways were investigated by quantitative PCR and phosphorylation of nuclear factor kappa B p65 and p38 mitogen-activated protein kinase by western blot. RESULTS: Rose bengal photodynamic therapy in 2.0 µg/mL lipopolysaccharide-stimulated human corneal fibroblasts triggered interleukin-6 and interleukin-8 mRNA (p < .0001) and interleukin-6 protein increase (p < .0001), and downregulated intercellular adhesion molecule-1 expression (p < .001). C-C motif chemokine ligand-4, interferon regulatory factor-3, interferon α2, and interferon ß1 expressions remained unchanged (p ≥ .2). Rose bengal photodynamic therapy increased IκB kinase subunit beta, nuclear factor kappa B p65, extracellular signal-regulated kinases-2, c-Jun amino terminal kinase, and p38 transcription (p ≤ .01), and triggered nuclear factor kappa B p65 and p38 mitogen-activated protein kinase phosphorylation (p ≤ .04) in lipopolysaccharide treated human corneal fibroblasts. CONCLUSION: Rose bengal photodynamic therapy of lipopolysaccharide-stimulated human corneal fibroblasts can modify the inflammatory response by inducing interleukin-6 and interleukin-8 expression, and decreasing intercellular adhesion molecule-1 production. C-C motif chemokine ligand-4, interferon regulatory factor-3, and interferon α and ß expressions are not affected by rose bengal photodynamic therapy in these cells. The underlying mechanisms may be associated with nuclear factor kappa B and p38 mitogen-activated protein kinase pathway activation.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Lipopolysaccharides , NF-kappa B , Photochemotherapy , Rose Bengal , Signal Transduction , p38 Mitogen-Activated Protein Kinases , Humans , Rose Bengal/pharmacology , Photochemotherapy/methods , Lipopolysaccharides/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Cells, Cultured , NF-kappa B/metabolism , Blotting, Western , Photosensitizing Agents/pharmacology , Corneal Keratocytes/metabolism , Corneal Keratocytes/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Gene Expression Regulation , Real-Time Polymerase Chain Reaction , Inflammation/metabolism , Inflammation/drug therapy , Interferon Regulatory Factor-3/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics
3.
Am J Physiol Cell Physiol ; 326(5): C1482-C1493, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38525537

ABSTRACT

Corneal fibroblasts maintain homeostasis of the corneal stroma by mediating the synthesis and degradation of extracellular collagen, and these actions are promoted by transforming growth factor-ß (TGF-ß) and interleukin-1ß (IL-1ß), respectively. The cornea is densely innervated with sensory nerve fibers that are not only responsible for sensation but also required for physiological processes such as tear secretion and wound healing. Loss or dysfunction of corneal nerves thus impairs corneal epithelial wound healing and can lead to neurotrophic keratopathy. The sensory neurotransmitter substance P (SP) promotes corneal epithelial wound healing by enhancing the stimulatory effects of growth factors and fibronectin. We have now investigated the role of SP in collagen metabolism mediated by human corneal fibroblasts in culture. Although SP alone had no effect on collagen synthesis or degradation by these cells, it promoted the stimulatory effect of TGF-ß on collagen type I synthesis without affecting that of IL-1ß on the expression of matrix metalloproteinase-1. This effect of SP on TGF-ß-induced collagen synthesis was accompanied by activation of p38 mitogen-activated protein kinase (MAPK) signaling and was attenuated by pharmacological inhibition of p38 or of the neurokinin-1 receptor. Our results thus implicate SP as a modulator of TGF-ß-induced collagen type I synthesis by human corneal fibroblasts, and they suggest that loss of this function may contribute to the development of neurotrophic keratopathy.NEW & NOTEWORTHY This study investigates the role of substance P (SP) in collagen metabolism mediated by human corneal fibroblasts in culture. We found that, although SP alone had no effect on collagen synthesis or degradation by corneal fibroblasts, it promoted the stimulatory effect of transforming growth factor-ß on collagen type I synthesis without affecting that of interleukin-1ß on the expression of matrix metalloproteinase-1.


Subject(s)
Fibroblasts , Interleukin-1beta , Substance P , Transforming Growth Factor beta , p38 Mitogen-Activated Protein Kinases , Humans , Substance P/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Transforming Growth Factor beta/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Cells, Cultured , Interleukin-1beta/metabolism , Collagen Type I/metabolism , Collagen Type I/biosynthesis , Receptors, Neurokinin-1/metabolism , Cornea/metabolism , Cornea/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Collagen/metabolism , Collagen/biosynthesis , Signal Transduction/drug effects , Corneal Stroma/metabolism , Corneal Stroma/drug effects , Corneal Keratocytes/metabolism , Corneal Keratocytes/drug effects
4.
Cells ; 13(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38391973

ABSTRACT

Conjunctival fibrosis is a serious clinical concern implicated in a wide spectrum of eye diseases, including outcomes of surgery for pterygium and glaucoma. It is mainly driven by chronic inflammation that stimulates conjunctival fibroblasts to differentiate into myofibroblasts over time, leading to abnormal wound healing and scar formation. Soluble guanylate cyclase (sGC) stimulation was found to suppress transforming growth factor ß (TGFß)-induced myofibroblastic differentiation in various stromal cells such as skin and pulmonary fibroblasts, as well as corneal keratocytes. Here, we evaluated the in vitro effects of stimulation of the sGC enzyme with the cell-permeable pyrazolopyridinylpyrimidine compound BAY 41-2272 in modulating the TGFß1-mediated profibrotic activation of human conjunctival fibroblasts. Cells were pretreated with the sGC stimulator before challenging with recombinant human TGFß1, and subsequently assayed for viability, proliferation, migration, invasiveness, myofibroblast marker expression, and contractile properties. Stimulation of sGC significantly counteracted TGFß1-induced cell proliferation, migration, invasiveness, and acquisition of a myofibroblast-like phenotype, as shown by a significant downregulation of FAP, ACTA2, COL1A1, COL1A2, FN1, MMP2, TIMP1, and TIMP2 mRNA levels, as well as by a significant reduction in α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein expression. In addition, pretreatment with the sGC stimulator was capable of significantly dampening TGFß1-induced acquisition of a contractile phenotype by conjunctival fibroblasts, as well as phosphorylation of Smad3 and release of the proinflammatory cytokines IL-1ß and IL-6. Taken together, our findings are the first to demonstrate the effectiveness of pharmacological sGC stimulation in counteracting conjunctival fibroblast-to-myofibroblast transition, thus providing a promising scientific background to further explore the feasibility of sGC stimulators as potential new adjuvant therapeutic compounds to treat conjunctival fibrotic conditions.


Subject(s)
Fibroblasts , Myofibroblasts , Humans , Soluble Guanylyl Cyclase/metabolism , Fibroblasts/metabolism , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Corneal Keratocytes/metabolism
5.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1847-1855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38133799

ABSTRACT

BACKGROUND: Corneal tissues indirectly obtain nutritional needs and oxygen to maintain their homeostasis, and therefore, benzalkonium chloride (BAC) containing ocular instillations for medical therapy may, in turn, induce toxic effects more than expected in corneal tissues, especially the inside stroma layer. METHODS: To evaluate the effects of very low concentrations (10-8%, 10-6%, or 10-4%) of BAC on human corneal stroma, we used two-dimensional (2D) cultures of human corneal stromal fibroblast (HCSF) cells and carried out the following analyses: (1) cell viability measurements, (2) Seahorse cellular bio-metabolism analysis, and (3) the expression of ECM molecules and endoplasmic reticulum (ER) stress-related molecules. RESULTS: In the absence and presence of 10-8%, 10-6%, or 10-4% concentrations of BAC, cell viability deteriorated and this deterioration was dose-dependent. The results showed that maximal mitochondrial respiration was decreased, the mRNA expression of most of ECM proteins was decreased, and ER stress-related molecules were substantially and dose-dependently down-regulated in HCSFs by the BAC treatment. CONCLUSIONS: The findings reported herein indicate that the presence of BAC, even at such low concentrations, is capable of causing the deterioration of cellular metabolic functions and negatively affecting the response to ER stress in HCSF cells resulting in a substantially decreased cellular viability.


Subject(s)
Benzalkonium Compounds , Cell Survival , Corneal Stroma , Preservatives, Pharmaceutical , Humans , Benzalkonium Compounds/toxicity , Corneal Stroma/drug effects , Corneal Stroma/metabolism , Cell Survival/drug effects , Cells, Cultured , Preservatives, Pharmaceutical/toxicity , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Corneal Keratocytes/drug effects , Corneal Keratocytes/metabolism , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Sci Rep ; 13(1): 11350, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443325

ABSTRACT

Improper healing of the cornea after injury, infections or surgery can lead to corneal scar formation, which is associated with the transition of resident corneal keratocytes into activated fibroblasts and myofibroblasts (K-F/M). Myofibroblasts can create an extracellular matrix (ECM) niche in which fibrosis is promoted and perpetuated, resulting in progressive tissue opacification and vision loss. As a reversion back to quiescent keratocytes is essential to restore corneal transparency after injury, we characterized how growth factors with demonstrated profibrotic effects (PDGF, FGF, FBS, TGFß1) induce the K-F/M transition, and whether their withdrawal can revert it. Indeed, the upregulated expression of αSMA and the associated changes in cytoskeletal architecture correlated with increases in cell contractility, fibronectin (Fn) and collagen matrix density and Fn fiber strain, as revealed by 2D cell culture, nanopillar cellular force mapping and a FRET-labeled Fn tension probe. Substrate mechanosensing drove a more complete K-F/M transition reversal following growth factor withdrawal on nanopillar arrays than on planar glass substrates. Using decellularized ECM scaffolds, we demonstrated that the K-F/M transition was inhibited in keratocytes reseeded onto myofibroblast-assembled, and/or collagen-1-rich ECM. This supports the presence of a myofibroblast-derived ECM niche that contains cues favoring tissue homeostasis rather than fibrosis.


Subject(s)
Corneal Keratocytes , Myofibroblasts , Humans , Corneal Keratocytes/metabolism , Myofibroblasts/metabolism , Fibroblasts/metabolism , Extracellular Matrix/metabolism , Collagen/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Fibrosis , Cells, Cultured
7.
Tissue Cell ; 82: 102117, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37267821

ABSTRACT

Keratocytes are the main cellular components of the corneal stroma. This cell is quiescent and cannot be cultured easily. The aim of this study was to investigate differentiate human adipose mesenchymal stem cells (hADSCs) into corneal keratocyte cells by combining natural scaffolds and conditioned medium (CM) and evaluating their safety in the rabbit's cornea. Keratocytes were cultured in an optimal culture medium and this medium was collected and kept as a CM. hADSCs were cultured on the decellularized human small incision lenticule extraction (SMILE) lenticule (SL), amniotic membrane (AM), and collagen-coated plates, and were exposed to keratocyte-CM (KCM) for 7, 14, and 21 days. Differentiation was evaluated using Real-time PCR and immunocytochemistry (ICC). hADSCs were cultured on the SL scaffolds and implanted in the corneal stroma of 8 New Zealand male rabbits. Rabbits were followed for 3 months and the safety was evaluated by clinical and histological variables. Real-time PCR results showed a significant increase in the expression of keratocyte-specific markers on the 21 day of differentiation compared to the control group. ICC also confirmed the induction of differentiation. Implantation of SLs containing differentiated cells in the cornea of animals showed no serious complications including neovascularization, corneal opacity, inflammation, or signs of tissue rejection. Furthermore, the evaluation of the presence of keratocyte-like cells after three months in the rabbit stroma was confirmed by Real-time PCR and immunohistochemistry (IHC) analysis. Our results showed that combination of combination of corneal extracellular matrix and KCM can induced keratocytes differentiation of hADSC and can be introduced as a alternative method to supply the required keratocytes in corneal tissue engineering.


Subject(s)
Corneal Keratocytes , Mesenchymal Stem Cells , Humans , Male , Rabbits , Animals , Corneal Keratocytes/metabolism , Cornea , Cell Differentiation , Corneal Stroma/metabolism , Cells, Cultured
8.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240176

ABSTRACT

Fibroblasts isolated and expanded from ReLEx SMILE lenticules can be a source of human keratocytes. Since corneal keratocytes are quiescent cells, it is difficult to expand them in vitro in suitable numbers for clinical and experimental use. In the present study, this problem was solved by isolating and growing corneal fibroblasts (CFs) with a high proliferative potential and their reversion to keratocytes in a selective serum-free medium. Fibroblasts reversed into keratocytes (rCFs) had a dendritic morphology and ultrastructural signs of activation of protein synthesis and metabolism. The cultivation of CFs in a medium with 10% FCS and their reversion into keratocytes was not accompanied by the induction of myofibroblasts. After reversion, the cells spontaneously formed spheroids and expressed keratocan and lumican markers, but not mesenchymal ones. The rCFs had low proliferative and migratory activity, and their conditioned medium contained a low level of VEGF. CF reversion was not accompanied by a change with the levels of IGF-1, TNF-alpha, SDF-1a, and sICAM-1. In the present study, it has been demonstrated that fibroblasts from ReLEx SMILE lenticules reverse into keratocytes in serum-free KGM, maintaining the morphology and functional properties of primary keratocytes. These keratocytes have a potential for tissue engineering and cell therapy of various corneal pathologies.


Subject(s)
Corneal Keratocytes , Tissue Engineering , Humans , Corneal Keratocytes/metabolism , Cells, Cultured , Corneal Stroma/metabolism , Cell- and Tissue-Based Therapy , Fibroblasts/metabolism
9.
Ocul Surf ; 29: 53-62, 2023 07.
Article in English | MEDLINE | ID: mdl-37080483

ABSTRACT

PURPOSE: To review the functions of corneal fibroblasts in wound healing. METHODS: Literature review. RESULTS: Corneal fibroblasts arise in the corneal stroma after anterior, posterior or limbal injuries and are derived from keratocytes. Transforming growth factor (TGF) ß1 and TGFß2, along with platelet-derived growth factor (PDGF), are the major modulators of the keratocyte to corneal fibroblast transition, while fibroblast growth factor (FGF)-2, TGFß3, and retinoic acid are thought to regulate the transition of corneal fibroblasts back to keratocytes. Adequate and sustained levels of TGFß1 and/or TGFß2, primarily from epithelium, tears, aqueous humor, and corneal endothelium, drive the development of corneal fibroblasts into myofibroblasts. Myofibroblasts have been shown in vitro to transition back to corneal fibroblasts, although apoptosis of myofibroblasts has been documented as a major contributor to the resolution of fibrosis in several in situ corneal injury models. Corneal fibroblasts, aside from their role as a major progenitor to myofibroblasts, also perform many critical functions in the injured cornea, including the production of critical basement membrane (BM) components during regeneration of the epithelial BM and Descemet's membrane, production of non-basement membrane-associated stromal collagen type IV to control and downregulate TGFß effects on stromal cells, release of chemotactic chemokines that attract bone marrow-derived cells to the injured stroma, production of growth factors that modulate regeneration and maturation of the overlying epithelium, and production of collagens and other ECM components that contribute to stromal integrity after injury. CONCLUSIONS: Corneal fibroblasts are major contributors to and overseers of the corneal response to injuries.


Subject(s)
Cornea , Corneal Injuries , Humans , Cornea/metabolism , Corneal Stroma , Basement Membrane/metabolism , Corneal Injuries/metabolism , Corneal Keratocytes/metabolism
10.
Biomed Mater ; 18(4)2023 04 27.
Article in English | MEDLINE | ID: mdl-37068490

ABSTRACT

Although extensive studies have evaluated the regulation effect of microenvironment on cell phenotype and cell differentiation, further investigations in the field of the cornea are needed to gain sufficient knowledge for possible clinical translation. This study aims to evaluate the regulation effects of substrate stiffness and inflammation on keratocyte phenotype of corneal fibroblasts, as well as the differentiation from stem cells towards keratocytes. Soft and stiff substrates were prepared based on polydimethylsiloxane. HTK and stem cells were cultured on these substrates to evaluate the effects of stiffness. The possible synergistic effects between substrate stiffness and inflammatory factor IL-1ßwere examined by qPCR and immunofluorescence staining. In addition, macrophages were cultured on soft and stiff substrates to evaluate the effect of substrate stiffness on the synthesis of inflammatory factors. The conditioned medium of macrophages (Soft-CM and Stiff-CM) was collected to examine the effects on HTK and stem cells. It was found that inflammatory factor IL-1ßpromoted keratocyte phenotype and differentiation when cells were cultured on soft substrate (∼130 kPa), which were different from cells cultured on stiff substrate (∼2 × 103kPa) and TCP (∼106kPa). Besides, macrophages cultured on stiff substrates had significantly higher expression ofIL-1ßandTnf-αas compared to the cells cultured on soft substrates. And Stiff-CM decreased the expression of keratocyte phenotype markers as compared to Soft-CM. The results of our study indicate a stiffness-dependent dynamic effect of inflammation on keratocyte phenotype and differentiation, which is of significance not only in gaining a deeper knowledge of corneal pathology and repair, but also in being instructive for scaffold design in corneal tissue engineering and ultimate regeneration.


Subject(s)
Corneal Keratocytes , Stem Cells , Humans , Cell Differentiation , Phenotype , Corneal Keratocytes/metabolism , Inflammation/metabolism , Cells, Cultured
11.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499651

ABSTRACT

Corneal transparency, necessary for vision and depending on the high organization of stromal extracellular matrix, is maintained by keratocytes. Severe or continuous corneal injuries determine exaggerated healing responses resulting in the formation of irreversible fibrotic scars and vision impairment. Soluble guanylate cyclase (sGC) stimulation demonstrated antifibrotic effects in both experimental fibrosis and human lung and skin fibroblasts. Here, we assessed whether sGC stimulation with BAY 41-2272 could attenuate transforming growth factor ß1 (TGFß1)-induced myofibroblast differentiation of human corneal keratocytes. Cells were challenged with TGFß1, with/without BAY 41-2272 preincubation, and subsequently assessed for viability, proliferation, migration, chemoinvasion, as well for the expression of myofibroblast/fibroblast activation markers and contractile abilities. Treatment with BAY 41-2272 did not affect keratocyte viability, while preincubation of cells with the sGC stimulator was able to inhibit TGFß1-induced proliferation, wound healing capacity, and invasiveness. BAY 41-2272 was also able to attenuate TGFß1-induced myofibroblast-like profibrotic phenotype of keratocytes, as demonstrated by the significant decrease in ACTA2, COL1A1, COL1A2, FN1 and PDPN gene expression, as well as in α-smooth muscle actin, α-1 chain of type I collagen, podoplanin, vimentin and N-cadherin protein expression. Finally, BAY 41-2272 significantly counteracted the TGFß1-induced myofibroblast-like ability of keratocytes to contract collagen gels, reduced phosphorylated Smad3 protein levels, and attenuated gene expression of proinflammatory cytokines. Collectively, our data show for the first time that BAY 41-2272 is effective in counteracting keratocyte-to-myofibroblast transition, thus providing the rationale for the development of sGC stimulators as novel promising modulators of corneal scarring and fibrosis.


Subject(s)
Corneal Injuries , Corneal Keratocytes , Humans , Corneal Keratocytes/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Soluble Guanylyl Cyclase/metabolism , Cells, Cultured , Myofibroblasts/metabolism , Cell Differentiation , Actins/metabolism , Fibroblasts/metabolism , Corneal Injuries/metabolism , Fibrosis
12.
Stem Cell Reports ; 17(6): 1442-1457, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35623350

ABSTRACT

The cornea fends off chemicals, dirt, and infectious particles and provides most of the eye's focusing power. Corneal transparency is of paramount importance to normal vision, yet how it is established and maintained remains unclear. Here, we ablated Notch1 in keratocytes using Twist2-Cre mice and found that Twist2-Cre; Notch1f/f mice developed stroma expansion and neovascularization, followed by hyperproliferation and metaplasia of corneal epithelial progenitor cells and plaque formation at central cornea, leading to loss of transparency. Development of these phenotypes does not involve bacteria-caused inflammation; instead, Notch1 deletion upregulates Vegfa and Vegfc via Hif1α in keratocytes. Vascular endothelial growth factor (VEGF) receptor inhibitor axitinib prevented development of these anomalies in Twist2-Cre; Notch1f/f mice, suggesting that VEGFs secreted by keratocytes promote not only neovascularization but also proliferation and metaplasia of epithelial progenitor cells at central cornea. This study uncovers a Notch1-Hif1α-VEGF pathway in keratocytes that maintains corneal transparency and represents a potential target for treatment of related corneal disorders.


Subject(s)
Cornea , Corneal Keratocytes , Vascular Endothelial Growth Factor A , Animals , Corneal Keratocytes/metabolism , Metaplasia , Mice , Receptor, Notch1/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factors
13.
Cells ; 11(1)2022 01 05.
Article in English | MEDLINE | ID: mdl-35011740

ABSTRACT

The human corneal stroma contains corneal stromal keratocytes (CSKs) that synthesize and deposit collagens and keratan sulfate proteoglycans into the stromal matrix to maintain the corneal structural integrity and transparency. In adult corneas, CSKs are quiescent and arrested in the G0 phase of the cell cycle. Following injury, some CSKs undergo apoptosis, whereas the surviving cells are activated to become stromal fibroblasts (SFs) and myofibroblasts (MyoFBs), as a natural mechanism of wound healing. The SFs and MyoFBs secrete abnormal extracellular matrix proteins, leading to corneal fibrosis and scar formation (corneal opacification). The issue is compounded by the fact that CSK transformation into SFs or MyoFBs is irreversible in vivo, which leads to chronic opacification. In this scenario, corneal transplantation is the only recourse. The application of cell therapy by replenishing CSKs, propagated in vitro, in the injured corneas has been demonstrated to be efficacious in resolving early-onset corneal opacification. However, expanding CSKs is challenging and has been the limiting factor for the application in corneal tissue engineering and cell therapy. The supplementation of serum in the culture medium promotes cell division but inevitably converts the CSKs into SFs. Similar to the in vivo conditions, the transformation is irreversible, even when the SF culture is switched to a serum-free medium. In the current article, we present a detailed protocol on the isolation and propagation of bona fide human CSKs and the morphological and genotypic differences from SFs.


Subject(s)
Cell Separation , Cell- and Tissue-Based Therapy , Corneal Keratocytes/cytology , Corneal Stroma/cytology , Tissue Engineering , Cell Proliferation , Cell Shape , Cells, Cultured , Corneal Keratocytes/metabolism , Cryopreservation , Gene Expression Regulation , Humans
14.
Exp Eye Res ; 216: 108946, 2022 03.
Article in English | MEDLINE | ID: mdl-35038457

ABSTRACT

Chemokines and adhesion molecules are major inflammatory mediators of chronic and recurrent vernal keratoconjunctivitis (VKC). Sulforaphane (SFN) is a natural plant extract that is known to have anti-inflammatory and antioxidant properties. SFN is demonstrated to be effective against a variety of human diseases. The current investigation examines the effects and the molecular mechanisms of SFN on cytokine-induced human corneal fibroblasts (HCFs) expression of adhesion molecules and chemokines. HCFs were exposed to both interleukin (IL)-4 and tumor necrosis factor (TNF)-α in the absence or presence of SFN treatment. The levels of thymus- and activation-regulated chemokine (TARC) and eotaxin-1 in culture supernatants were evaluated using enzyme-linked immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction analysis (RT-PCR) enabled quantification of mRNA levels of vascular cell adhesion molecule (VCAM)-1, eotaxin-1, and TARC along with cytokine receptors. An immunoblotting assay was used to evaluate the activities of VCAM-1, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), signal transducer and activator of transcription factor (STAT)6 pathways, along with the expression of the cytokine receptors including IL-4 receptor (R)α, IL-13Rα1, TNFRI, as well as TNFRII. SFN inhibited TARC and eotaxin-1 release in HCFs stimulated by TNF-α and IL-4 in a manner dependent on dose and time. SFN suppressed transcriptions of TARC, eotaxin-1, and VCAM-1. Furthermore, the mRNA and protein expression levels of IL-4Rα, TNFRI, and TNFRII were also attenuated by SFN exposure, however, those of IL-13Rα1 remained unaffected. In addition, SFN downregulated the expression of VCAM-1 and the phosphorylation of MAPKs, IκBα, and STAT6. These results suggest that SFN inhibited cytokine-stimulated TARC, eotaxin-1 secretion as well as VCAM-1 expression in HCFs, with these effects likely occurring as a result of cytokine receptor inhibition and attenuation of MAPK, NF-κB, and STAT6 signaling. SFN may therefore have therapeutic potential in VKC treatment.


Subject(s)
Chemokines/genetics , Corneal Keratocytes/drug effects , Cytokines/antagonists & inhibitors , Isothiocyanates/pharmacology , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , STAT1 Transcription Factor/metabolism , Sulfoxides/pharmacology , Vascular Cell Adhesion Molecule-1/genetics , Anticarcinogenic Agents/pharmacology , Cell Survival , Cells, Cultured , Chemokine CCL11/genetics , Chemokine CCL17/genetics , Corneal Keratocytes/metabolism , Cytokines/pharmacology , Enzyme-Linked Immunosorbent Assay , Gene Expression , Gene Expression Regulation/physiology , Humans , Phosphorylation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction
15.
Exp Eye Res ; 214: 108862, 2022 01.
Article in English | MEDLINE | ID: mdl-34826417

ABSTRACT

Macular corneal dystrophy (MCD) is a rare form of hereditary corneal dystrophy caused by CHST6 mutations. Owing to the genetic heterogeneity and population differences among patients with MCD, the genetic cause of MCD has not been fully elucidated, and the pathogenesis underlying the genetic mutation is still unclear. In this study, Chinese families and sporadic patients were included as subjects, and clinical and genetic analyses were performed to detect novel CHST6 mutations. In addition, the underlying pathogenic mechanisms of MCD were investigated by in vitro cell experiments. Two consanguineously married families and 10 sporadic patients with MCD were enrolled. Direct sequencing of the CHST6 gene was performed in all the patients to identify novel mutations. Wild-type and mutant overexpression cell lines were constructed to study the effects of the mutation in vitro. The expressions of endoplasmic reticulum (ER) stress markers and apoptotic factors, cell senescence, and migration levels tests were performed in different overexpression cell lines. As a result, four novel mutations (R155Afs*66, S84Cfs*17, E71G, and E71Q) and 10 previously reported mutations in the CHST6 gene were identified. Among the reported mutations, the most frequent mutations detected in the patients were L21Rfs*88 (4/14) and L21H (4/14). All the novel mutations were absent in the 50 healthy controls and were predicted to alter highly conserved amino acids across the different species and considered to be "disease causing" by function prediction. The results of the in vitro cell experiment further demonstrated that the novel homozygous frameshift mutations (S84Cfs*17 and R155Afs*66) of CHST6 detected in the consanguineously married families could lead to truncated proteins with defect functions, higher ER stress and apoptotic levels, decreased cell migration, and excessive cell senescence in corneal stromal cells, thereby affecting the normal functions of corneal stromal cells. These changes might play important roles in corneal opacity, which is characteristic of corneas with MCD. Our study extended the existing spectrum of disease-causing mutations and further elucidated the underlying pathogenic mechanisms of MCD.


Subject(s)
Apoptosis/genetics , Cellular Senescence/genetics , Corneal Dystrophies, Hereditary/genetics , Frameshift Mutation/genetics , Sulfotransferases/genetics , Adult , Asian People/genetics , China/epidemiology , Consanguinity , Corneal Dystrophies, Hereditary/diagnostic imaging , Corneal Keratocytes/metabolism , DNA Mutational Analysis , Endoplasmic Reticulum Stress/genetics , Female , Humans , Male , Pedigree , Polymerase Chain Reaction , Slit Lamp Microscopy , Tomography, Optical Coherence , Carbohydrate Sulfotransferases
16.
Exp Eye Res ; 213: 108803, 2021 12.
Article in English | MEDLINE | ID: mdl-34736886

ABSTRACT

The purpose of this investigation was to study Descemet's membrane and corneal endothelial regeneration, myofibroblast generation and disappearance, and TGF beta-1 localization after Descemet's membrane-endothelial excision (Descemetorhexis) in rabbits. Thirty-six rabbits had 8 mm Descemetorhexis and standardized slit lamp photos at 1, 2 and 4 days, 1, 2 and 4 weeks, and 2, 4 and 6 months, as well as multiplex IHC for stromal cell markers keratocan, vimentin, and alpha-smooth muscle actin (SMA); basement membrane (BM) components perlecan, nidogen-1, laminin alpha-5, and collagen type IV; and corneal endothelial marker Na,K-ATPase ß1, and TGF beta-1, with ImageJ quantitation. Stromal transparency increased from the periphery beginning at two months after injury and progressed into the central cornea by six months. At six months, central transparency was primarily limited by persistent mid-stromal neovascularization. Stromal myofibroblast zone thickness in the posterior stroma peaked at one month after injury, and then progressively decreased until to six months when few myofibroblasts remained. The regeneration of a laminin alpha-5 and nidogen-1 Descemet's membrane "railroad track" structure was accompanied by corneal endothelial closure and stromal cell production of BM components in corneas from four to six months after injury. TGF beta-1 deposition at the posterior corneal surface from the aqueous humor peaked at one day after Descemetorhexis and diminished even before regeneration of the endothelium and Descemet's membrane. This decrease was associated with collagen type IV protein production by corneal fibroblasts, and possibly myofibroblasts, in the posterior stroma. Descemet's membrane and the corneal endothelium regenerated in the rabbit cornea by six months after eight mm Descemetorhexis. Real-time quantitative RT-PCR experiments in vitro with marker-verified rabbit corneal cells found that 5 ng/ml or 10 ng/ml TGF beta-1 upregulated col4a1 or col4a2 mRNA expression after 6 h or 12 h of exposure in corneal fibroblasts, but not in myofibroblasts. Stromal cells produced large amounts of collagen type IV that likely decreased TGF beta-1 penetration into the stroma and facilitated the resolution of myofibroblast-generated fibrosis.


Subject(s)
Cornea/pathology , Descemet Membrane/injuries , Endothelium, Corneal/physiology , Regeneration/physiology , Wound Healing/physiology , Animals , Biomarkers/metabolism , Cornea/metabolism , Corneal Keratocytes/metabolism , Corneal Stroma/metabolism , Eye Proteins/metabolism , Female , Fibrosis , Immunohistochemistry , Rabbits , Slit Lamp Microscopy , Transforming Growth Factor beta1/metabolism
17.
Exp Eye Res ; 213: 108804, 2021 12.
Article in English | MEDLINE | ID: mdl-34756941

ABSTRACT

PURPOSE: Alike keratoconus (KC), keratoglobus (KG) and pellucid marginal degeneration (PMD) belong to ectatic corneal diseases. While there are numerous studies on keratoconus pathophysiology, there is no exact knowledge on genetic and pathophysiological background of KG and PMD, so far. It is not yet clarified, whether KG and PMD are independent clinical entities or represent different stages of the same disease. Our purpose was to investigate key parameters concerning collagen synthesis, intracellular LOX expression and inflammation in corneal stromal cells of KG and PMD subjects, in vitro. METHODS: Normal human keratocytes of corneas from the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz and human keratocytes of KG and PMD patients were isolated and cultured as keratocytes. To examine Collagen I and V (Col I, Col V), heat shock protein 47 (Hsp47), Lysyl Oxidase (LOX), nuclear factor kappa B (NF-κB) mRNA and protein expression in all cell types, quantitative PCR and Western blot analysis has been performed. RESULTS: Col5A1 mRNA expression was significantly lower in KG and PMD keratocytes and LOX mRNA expression was significantly higher in KG-keratocytes, compared to controls. Col1A1, Hsp47 and NF-κB mRNA expression and the analyzed protein expressions did not differ from controls, in KG or PMD. CONCLUSIONS: Col5A1 mRNA expression is decreased in KG and PMD and LOX mRNA expression is increased in KG. Therefore, the pathophysiology of KG and PMD differs from KC and these seem to be from KC independent entities. The explanation of the peripheral corneal thinning in KG and PMD must be investigated in further studies.


Subject(s)
Collagen Type V/genetics , Corneal Dystrophies, Hereditary/genetics , Corneal Keratocytes/metabolism , Gene Expression Regulation/physiology , Keratoconus/genetics , Protein-Lysine 6-Oxidase/genetics , RNA, Messenger/genetics , Adult , Aged , Aged, 80 and over , Blotting, Western , Cells, Cultured , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/physiopathology , Corneal Dystrophies, Hereditary/surgery , Corneal Stroma/cytology , Female , Healthy Volunteers , Humans , Keratoconus/metabolism , Keratoconus/physiopathology , Keratoconus/surgery , Keratoplasty, Penetrating , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Tissue Donors
18.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830053

ABSTRACT

Over the last three decades, there has been special interest in developing drugs that mimic the characteristics of natural tears for use it in the treatment of several ocular surface disorders. Interestingly, the composition of blood plasma is very similar to tears. Therefore, different blood-derived products like autologous serum (AS) and plasma rich in growth factors (PRGF) have been developed for the treatment of diverse ocular pathologies. However, scarce studies have been carried out to analyze the differences between both types of blood-derived products. In the present study, blood from three healthy donors was drawn and processed to obtain AS and PRGF eye drops. Then, human corneal stromal keratocytes (HK) were treated with PRGF or undiluted AS. Proteomic analysis was carried out to analyze and characterize the differential protein profiles between PRGF and AS, and the differentially expressed proteins in HK cells after PRGF and AS treatment. The results obtained in the present study show that undiluted AS induces the activation of different pathways related to an inflammatory, angiogenic, oxidative stress and scarring response in HK cells regarding PRGF. These results suggest that PRGF could be a better alternative than AS for the treatment of ocular surface disorders.


Subject(s)
Intercellular Signaling Peptides and Proteins/pharmacology , Ophthalmic Solutions/pharmacology , Platelet-Rich Plasma/chemistry , Platelet-Rich Plasma/metabolism , Proteome/analysis , Serum/chemistry , Serum/metabolism , Cells, Cultured , Corneal Diseases/drug therapy , Corneal Keratocytes/drug effects , Corneal Keratocytes/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Indicator Dilution Techniques , Intercellular Signaling Peptides and Proteins/analysis
19.
PLoS One ; 16(10): e0258503, 2021.
Article in English | MEDLINE | ID: mdl-34637469

ABSTRACT

Sulfur mustard (SM) is a cytotoxic, vesicating, chemical warfare agent, first used in 1917; corneas are particularly vulnerable to SM exposure. They may develop inflammation, ulceration, neovascularization (NV), impaired vision, and partial/complete blindness depending upon the concentration of SM, exposure duration, and bio-physiological conditions of the eyes. Comprehensive in vivo studies have established ocular structural alterations, opacity, NV, and inflammation upon short durations (<4 min) of SM exposure. In this study, detailed analyses of histopathological alterations in corneal structure, keratocytes, inflammatory cells, blood vessels, and expressions of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and cytokines were performed in New Zealand white rabbits, in a time-dependent manner till 28 days, post longer durations (5 and 7 min) of ocular SM exposure to establish quantifiable endpoints of injury and healing. Results indicated that SM exposure led to duration-dependent increases in corneal thickness, opacity, ulceration, epithelial-stromal separation, and epithelial degradation. Significant increases in NV, keratocyte death, blood vessels, and inflammatory markers (COX-2, MMP-9, VEGF, and interleukin-8) were also observed for both exposure durations compared to the controls. Collectively, these findings would benefit in temporal delineation of mechanisms underlying SM-induced corneal toxicity and provide models for testing therapeutic interventions.


Subject(s)
Biomarkers/metabolism , Chemical Warfare Agents/toxicity , Cornea/pathology , Corneal Injuries/etiology , Mustard Gas/toxicity , Animals , Blood Vessels/cytology , Blood Vessels/drug effects , Blood Vessels/metabolism , Cell Survival/drug effects , Cornea/drug effects , Cornea/metabolism , Corneal Injuries/metabolism , Corneal Keratocytes/cytology , Corneal Keratocytes/drug effects , Corneal Keratocytes/metabolism , Cyclooxygenase 2/metabolism , Interleukin-8/metabolism , Matrix Metalloproteinase 9/metabolism , Rabbits
20.
J Cell Mol Med ; 25(20): 9647-9659, 2021 10.
Article in English | MEDLINE | ID: mdl-34486211

ABSTRACT

The isolation and propagation of primary human corneal stromal keratocytes (CSK) are crucial for cellular research and corneal tissue engineering. However, this delicate cell type easily transforms into stromal fibroblasts (SF) and scar inducing myofibroblasts (Myo-SF). Current protocols mainly rely on xenogeneic fetal bovine serum (FBS). Human platelet lysate (hPL) could be a viable, potentially autologous, alternative. We found high cell survival with both supplements in CSK and SF. Cell numbers and Ki67+ ratios increased with higher fractions of hPL and FBS in CSK and SF. We detected a loss in CSK marker expression (Col8A2, ALDH3A1 and LUM) with increasing fractions of FBS and hPL in CSK and SF. The expression of the Myo-SF marker SMA increased with higher amounts of FBS but decreased with incremental hPL substitution in both cell types, implying an antifibrotic effect of hPL. Immunohistochemistry confirmed the RT-PCR findings. bFGF and HGF were only found in hPL and could be responsible for suppressing the Myo-SF conversion. Considering all findings, we propose 0.5% hPL as a suitable substitution in CSK culture, as this xeno-free component efficiently preserved CSK characteristics, with non-inferiority in terms of cell viability, cell number and proliferation in comparison to the established 0.5% FBS protocol.


Subject(s)
Blood Platelets/metabolism , Cell Culture Techniques , Corneal Keratocytes/cytology , Corneal Stroma/cytology , Culture Media , Fibroblasts/cytology , Serum Albumin, Bovine , Aged , Animals , Biomarkers , Cattle , Cell Survival , Corneal Keratocytes/metabolism , Corneal Stroma/metabolism , Female , Fibroblasts/metabolism , Humans , Immunohistochemistry , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...