Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.689
Filter
1.
J Nanobiotechnology ; 22(1): 290, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802884

ABSTRACT

Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.


Subject(s)
Cornea , Corneal Neovascularization , Nanoparticles , Ophthalmic Solutions , Corneal Neovascularization/drug therapy , Animals , Nanoparticles/chemistry , Ophthalmic Solutions/chemistry , Cornea/metabolism , Cornea/drug effects , Mice , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Particle Size , Humans , Male , Mice, Inbred C57BL , Rabbits
2.
Curr Opin Ophthalmol ; 35(4): 329-342, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813739

ABSTRACT

PURPOSE OF REVIEW: The aim of this study was to highlight recent developments in the medical and surgical management of corneal neovascularization (NV). RECENT FINDINGS: Improved understanding and diagnostic criteria among clinicians have led to advancements in the characterization of corneal NV and objective assessment of treatment response through ancillary imaging devices. Developments in corneal NV treatments, such as antivascular endothelial growth factor, fine needle diathermy, and photodynamic therapy, have improved treatment success rates and visual outcomes. More recent surgical treatment advancements include corneal cross-linking, endothelial keratoplasty, and mitomycin intravascular chemoembolization. Finally, a greater appreciation of the molecular pathogenesis and angiogenic factors involved in corneal NV has identified numerous potential targeted therapies in the future. SUMMARY: The management of corneal NV has evolved to include several standalone and combination medical and surgical options. Additionally, improvements in quantifying corneal NV and understanding its molecular basis have contributed to new management strategies with improved outcomes.


Subject(s)
Angiogenesis Inhibitors , Corneal Neovascularization , Photochemotherapy , Humans , Corneal Neovascularization/therapy , Corneal Neovascularization/diagnosis , Angiogenesis Inhibitors/therapeutic use , Photochemotherapy/methods , Vascular Endothelial Growth Factor A/antagonists & inhibitors
3.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791518

ABSTRACT

Corneal neovascularization can impair vision and result in a poor quality of life. The pathogenesis involves a complex interplay of angiogenic factors, notably vascular endothelial growth factor (VEGF). This review provides a comprehensive overview of potential therapies for corneal neovascularization, covering tissue inhibitors of metalloproteinases (TIMPs), transforming growth factor beta (TGF-ß) inhibitors, interleukin-1L receptor antagonist (IL-1 Ra), nitric oxide synthase (NOS) isoforms, galectin-3 inhibitors, retinal pigment epithelium-derived factor (PEDF), platelet-derived growth factor (PDGF) receptor inhibitors, and surgical treatments. Conventional treatments include anti-VEGF therapy and laser interventions, while emerging therapies such as immunosuppressive drugs (cyclosporine and rapamycin) have been explored. Losartan and decorin are potential antifibrotic agents that mitigate TGF-ß-induced fibrosis. Ocular nanosystems are innovative drug-delivery platforms that facilitate the targeted release of therapeutic agents. Gene therapies, such as small interfering RNA and antisense oligonucleotides, are promising approaches for selectively inhibiting angiogenesis-related gene expression. Aganirsen is efficacious in reducing the corneal neovascularization area without significant adverse effects. These multifaceted approaches underscore the corneal neovascularization management complexity and highlight ideas for enhancing therapeutic outcomes. Furthermore, the importance of combination therapies and the need for further research to develop specific inhibitors while considering their therapeutic efficacy and potential adverse effects are discussed.


Subject(s)
Corneal Neovascularization , Humans , Corneal Neovascularization/drug therapy , Corneal Neovascularization/therapy , Corneal Neovascularization/metabolism , Animals , Genetic Therapy/methods , Angiogenesis Inhibitors/therapeutic use , Transforming Growth Factor beta/metabolism
4.
Indian J Ophthalmol ; 72(Suppl 3): S354-S371, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648452

ABSTRACT

Corneal neovascularization (CoNV) is a sight-threatening condition affecting an estimated 1.4 million people per year, and the incidence is expected to rise. It is a complication of corneal pathological diseases such as infective keratitis, chemical burn, corneal limbal stem cell deficiency, mechanical trauma, and immunological rejection after keratoplasties. CoNV occurs due to a disequilibrium in proangiogenic and antiangiogenic mediators, involving a complex system of molecular interactions. Treatment of CoNV is challenging, and no therapy thus far has been curative. Anti-inflammatory agents such as corticosteroids are the mainstay of treatment due to their accessibility and well-studied safety profile. However, they have limited effectiveness and are unable to regress more mature neovascularization. With the advent of advanced imaging modalities and an expanding understanding of its pathogenesis, contemporary treatments targeting a wide array of molecular mechanisms and surgical options are gaining traction. This review aims to summarize evidence regarding conventional and emerging therapeutic options for CoNV.


Subject(s)
Corneal Neovascularization , Humans , Corneal Neovascularization/diagnosis , Corneal Neovascularization/therapy , Corneal Neovascularization/etiology , Angiogenesis Inhibitors/therapeutic use , Disease Management
5.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504533

ABSTRACT

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Subject(s)
Burns, Chemical , Corneal Neovascularization , Emodin , Humans , Mice , Animals , Corneal Neovascularization/drug therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Burns, Chemical/pathology , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Molecular Docking Simulation , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Signal Transduction , Human Umbilical Vein Endothelial Cells , Inflammation/drug therapy , Disease Models, Animal
6.
Invest Ophthalmol Vis Sci ; 65(3): 30, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38517430

ABSTRACT

Purpose: Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development. Methods: NC-specific conditional knockout mice for Ift46 (NC-Ift46F/F) were generated by crossing Ift46F mice with Wnt1-Cre2 mice, enabling the specific deletion of Ift46 in NC-derived cells (NCCs). Sonic Hedgehog (Shh) and Notch signaling activities in NC-Ift46F/F mice were evaluated using Gli1lacZ and CBF:H2B-Venus reporter mice, respectively. Cell fate mapping was conducted using ROSAmTmG reporter mice. Results: The deletion of Ift46 in NCCs resulted in a spectrum of ocular abnormalities, including thickened corneal stroma, hypoplasia of the anterior chamber, irregular iris morphology, and corneal neovascularization. Notably, this deletion led to reduced Shh signal activity in the periocular mesenchyme, sustained expression of key transcription factors Foxc1, Foxc2 and Pitx2, along with persistent cell proliferation. Additionally, it induced increased Notch signaling activity and the development of ectopic neovascularization within the corneal stroma. Conclusions: The absence of primary cilia due to Ift46 deficiency in NCCs is associated with anterior segment dysgenesis (ASD) and corneal neovascularization, suggesting a potential link to Axenfeld-Rieger syndrome, a disorder characterized by ASD. This underscores the pivotal role of primary cilia in ensuring proper anterior segment development and maintaining an avascular cornea.


Subject(s)
Cilia , Corneal Neovascularization , Eye Abnormalities , Mice , Animals , Cilia/metabolism , Neural Crest/metabolism , Corneal Neovascularization/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Cornea , Mice, Knockout , Cytoskeletal Proteins/metabolism
7.
J Nanobiotechnology ; 22(1): 134, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549081

ABSTRACT

BACKGROUND: Corneal neovascularization (CoNV) threatens vision by disrupting corneal avascularity, however, current treatments, including pharmacotherapy and surgery, are hindered by limitations in efficacy and adverse effects. Minocycline, known for its anti-inflammatory properties, could suppress CoNV but faces challenges in effective delivery due to the cornea's unique structure. Therefore, in this study a novel drug delivery system using minocycline-loaded nano-hydroxyapatite/poly (lactic-co-glycolic acid) (nHAP/PLGA) nanoparticles was developed to improve treatment outcomes for CoNV. RESULTS: Ultra-small nHAP was synthesized using high gravity technology, then encapsulated in PLGA by a double emulsion method to form nHAP/PLGA microspheres, attenuating the acidic by-products of PLGA degradation. The MINO@PLGA nanocomplex, featuring sustained release and permeation properties, demonstrated an efficient delivery system for minocycline that significantly inhibited the CoNV area in an alkali-burn model without exhibiting apparent cytotoxicity. On day 14, the in vivo microscope examination and ex vivo CD31 staining corroborated the inhibition of neovascularization, with the significantly smaller CoNV area (29.40% ± 6.55%) in the MINO@PLGA Tid group (three times daily) than that of the control group (86.81% ± 15.71%), the MINO group (72.42% ± 30.15%), and the PLGA group (86.87% ± 14.94%) (p < 0.05). Fluorescein sodium staining show MINO@PLGA treatments, administered once daily (Qd) and three times daily (Tid) demonstrated rapid corneal epithelial healing while the Alkali injury group and the DEX group showed longer healing times (p < 0.05). Additionally, compared to the control group, treatments with dexamethasone, MINO, and MINO@PLGA were associated with an increased expression of TGF-ß as evidenced by immunofluorescence, while the levels of pro-inflammatory cytokines IL-1ß and TNF-α demonstrated a significant decrease following alkali burn. Safety evaluations, including assessments of renal and hepatic biomarkers, along with H&E staining of major organs, revealed no significant cytotoxicity of the MINO@PLGA nanocomplex in vivo. CONCLUSIONS: The novel MINO@PLGA nanocomplex, comprising minocycline-loaded nHAP/PLGA microspheres, has shown a substantial capacity for preventing CoNV. This study confirms the complex's ability to downregulate inflammatory pathways, significantly reducing CoNV with minimal cytotoxicity and high biosafety in vivo. Given these findings, MINO@PLGA stands as a highly promising candidate for ocular conditions characterized by CoNV.


Subject(s)
Corneal Neovascularization , Minocycline , Humans , Minocycline/pharmacology , Corneal Neovascularization/drug therapy , Corneal Neovascularization/prevention & control , Microspheres , Angiogenesis , Alkalies
8.
ACS Nano ; 18(11): 8209-8228, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38452114

ABSTRACT

Protein drugs have been widely used in treating various clinical diseases because of their high specificity, fewer side effects, and favorable therapeutic effect, but they greatly suffer from their weak permeability through tissue barriers, high sensitivity to microenvironments, degradation by proteases, and rapid clearance by the immune system. Herein, we disrupted the standard protocol where protein drugs must be delivered as the cargo via a delivery system and innovatively developed a free entrapping matrix strategy by simply mixing bevacizumab (Beva) with zinc ions to generate Beva-NPs (Beva-Zn2+), where Beva is coordinatively cross-linked by zinc ions with a loading efficiency as high as 99.2% ± 0.41%. This strategy was universal to generating various protein NPs, with different metal ions (Cu2+, Fe3+, Mg2+, Sr2+). The synthetic conditions of Beva-NPs were optimized, and the generated mechanism was investigated in detail. The entrapment, releasing profile, and the bioactivities of released Beva were thoroughly studied. By using in situ doping of the fourth-generation polyamindoamine dendrimer (G4), the Beva-G4-NPs exhibited extended ocular retention and penetration through biobarriers in the anterior segment through transcellular and paracellular pathways, effectively inhibiting corneal neovascularization (CNV) from 91.6 ± 2.03% to 13.5 ± 1.87% in a rat model of CNV. This study contributes to engineering of protein NPs by using a facile strategy for overcoming the weaknesses of protein drugs and protein NPs, such as weak tissue barrier permeability, low encapsulation efficiency, poor loading capacity, and susceptibility to inactivation.


Subject(s)
Corneal Neovascularization , Nanoparticles , Rats , Animals , Corneal Neovascularization/drug therapy , Nanoparticles/therapeutic use , Ions , Zinc
9.
Photodiagnosis Photodyn Ther ; 46: 104067, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38548042

ABSTRACT

BACKGROUND: To the best of our knowledge, no studies have been performed to determine the optimal parameters of photodynamic therapy (PDT) combined with subconjunctival injection of bevacizumab for corneal neovascularization. This study aimed to compare the effect of photodynamic therapy with two different sets of parameters combined with subconjunctival injection of bevacizumab for corneal neovascularization. METHODS: Patients with stable corneal neovascularization (CNV) unresponsive to conventional treatment (topical steroid) were included in this study. Patients were divided into two groups, receiving PDT with two different sets of parameters (group 1 receiving fluence of 50 J/cm2 at 15 min after intravenous injection of verteporfin with, group 2 receiving fluence of 150 J/cm2 at 60 min after intravenous injection of verteporfin with). Subconjunctival injection of bevacizumab was performed immediately after PDT. All patients were followed for 6 months. Best-corrected visual acuity and intraocular pressure were evaluated, and slit-lamp biomicroscopy as well as digital photography were performed. Average diameter and cumulative length of corneal neovascular were measured to evaluate the corneal neovascularization. RESULTS: Seventeen patients (20 eyes) were included in this study. At the last visit, the vision was improved in 12 eyes (60 %), steady in 4 eyes (20 %) and worsen in 4 eyes (20 %). The intraocular pressure (IOP) of all patients remained in normal range. A significant decrease in corneal neovascularization was showed in all the eyes after treatment. At 6 months after the combined treatment, the average diameter and cumulative length of vessels significantly decreased to 0.041 ± 0.023 mm (P < 0.05) and 18.78 ± 17.73 mm (P < 0.05), respectively, compared with the pretreatment data (0.062 ± 0.015 mm, 31.48 ± 18.21 mm). The reduction was more remarkable in group 2 compared to group 1.In group 1, the average diameter was 0.062 ± 0.013mm before and 0.056 ± 0.017mm after, the cumulative length of vessels was 38.66 ± 22.55mm before and 31.21 ± 17.30 after. In group 2, the date were 0.061 ± 0.016mm before and 0.029 ± 0.020mm after, 25.60 ± 8.95 mm before and 8.61 ± 8.26 mm. The reported complications included epithelial defect in four eyes, small white filaments in two eyes and corneal epithelial erosion in two eyes. CONCLUSION: The PDT combined with subconjunctival injection of bevacizumab was effective for the chronic corneal neovascularization. A more promising treatment outcome was observed when PDT was performed at 60 min after intravenous injection of verteporfin with fluence of 150 J/cm2. No serious complications or systemic events were observed throughout the follow-up period.


Subject(s)
Angiogenesis Inhibitors , Bevacizumab , Corneal Neovascularization , Photochemotherapy , Photosensitizing Agents , Verteporfin , Visual Acuity , Humans , Photochemotherapy/methods , Bevacizumab/administration & dosage , Bevacizumab/therapeutic use , Corneal Neovascularization/drug therapy , Female , Male , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/therapeutic use , Verteporfin/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Middle Aged , Visual Acuity/drug effects , Adult , Aged , Combined Modality Therapy , Injections, Intraocular , Intraocular Pressure/drug effects , Porphyrins/administration & dosage , Conjunctiva/blood supply
11.
Int J Biol Macromol ; 261(Pt 2): 129933, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309411

ABSTRACT

Corneal neovascularization (CNV) is a common multifactorial sequela of anterior corneal segment inflammation, which could lead to visual impairment and even blindness. The main treatments available are surgical sutures and invasive drug injections, which could cause serious ocular complications. To solve this problem, a thermo-sensitive drug-loaded hydrogel with high transparency was prepared in this study, which could achieve the sustained-release of drugs without affecting normal vision. In briefly, the thermo-sensitive hydrogel (PFNOCMC) was prepared from oxidized carboxymethyl cellulose (OCMC) and aminated poloxamer 407 (PF127-NH2). The results proved the PFNOCMC hydrogels possess high transparency, suitable gel temperature and time. In the CNV model, the PFNOCMC hydrogel loading bone morphogenetic protein 4 (BMP4) showed significant inhibition of CNV, this is due to the hydrogel allowed the drug to stay longer in the target area. The animal experiments on the ocular surface were carried out, which proved the hydrogel had excellent biocompatibility, and could realize the sustained-release of loaded drugs, and had a significant inhibitory effect on the neovascularization after ocular surface surgery. In conclusion, PFNOCMC hydrogels have great potential as sustained-release drug carriers in the biomedical field and provide a new minimally invasive option for the treatment of neovascular ocular diseases.


Subject(s)
Corneal Neovascularization , Hydrogels , Animals , Hydrogels/pharmacology , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Carboxymethylcellulose Sodium/therapeutic use , Delayed-Action Preparations/therapeutic use , Poloxamer/therapeutic use
12.
Ocul Surf ; 32: 13-25, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191093

ABSTRACT

PURPOSE: Corneal fibrosis and neovascularization (CNV) after ocular trauma impairs vision. This study tested therapeutic potential of tissue-targeted adeno-associated virus5 (AAV5) mediated decorin (DCN) and pigment epithelium-derived factor (PEDF) combination genes in vivo. METHODS: Corneal fibrosis and CNV were induced in New Zealand White rabbits via chemical trauma. Gene therapy in stroma was delivered 30-min after chemical-trauma via topical AAV5-DCN and AAV5-PEDF application using a cloning cylinder. Clinical eye examinations and multimodal imaging in live rabbits were performed periodically and corneal tissues were collected 9-day and 15-day post euthanasia. Histological, cellular, and molecular and apoptosis assays were used for efficacy, tolerability, and mechanistic studies. RESULTS: The AAV5-DCN and AAV5-PEDF combination gene therapy significantly reduced corneal fibrosis (p < 0.01 or p < 0.001) and CNV (p < 0.001) in therapy-given (chemical-trauma and AAV5-DCN + AAV5-PEDF) rabbit eyes compared to the no-therapy given eyes (chemical-trauma and AAV5-naked vector). Histopathological analyses demonstrated significantly reduced fibrotic α-smooth muscle actin and endothelial lectin expression in therapy-given corneas compared to no-therapy corneas on day-9 (p < 0.001) and day-15 (p < 0.001). Further, therapy-given corneas showed significantly increased Fas-ligand mRNA levels (p < 0.001) and apoptotic cell death in neovessels (p < 0.001) compared to no-therapy corneas. AAV5 delivered 2.69 × 107 copies of DCN and 2.31 × 107 copies of PEDF genes per µg of DNA. AAV5 vector and delivered DCN and PEDF genes found tolerable to the rabbit eyes and caused no significant toxicity to the cornea. CONCLUSION: The combination AAV5-DCN and AAV5-PEDF topical gene therapy effectively reduces corneal fibrosis and CNV with high tolerability in vivo in rabbits. Additional studies are warranted.


Subject(s)
Corneal Neovascularization , Fibrosis , Genetic Therapy , Nerve Growth Factors , Serpins , Animals , Rabbits , Cornea/pathology , Cornea/metabolism , Corneal Neovascularization/therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/pathology , Corneal Neovascularization/metabolism , Decorin/genetics , Decorin/metabolism , Dependovirus/genetics , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Fibrosis/therapy , Genetic Therapy/methods , Genetic Vectors , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Serpins/genetics , Serpins/metabolism
13.
Invest Ophthalmol Vis Sci ; 65(1): 21, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38190126

ABSTRACT

Purpose: Corneal neovascularization (CNV) impairs corneal transparency and visual acuity. The study aims to deepen our understanding of the molecules involved in CNV induced by alkali burns, facilitate a better grasp of CNV mechanisms, and uncover potential therapeutic targets. Methods: Eighty-four mice were selected for establishing CNV models via alkali burns. On days 3, 7, and 14 after the burns, corneal observations and histological investigations were conducted. An integrated analysis of RNA sequencing (RNA-seq)-based transcriptomics and label-free quantitative proteomics was performed in both normal and burned corneas. Bioinformatics approaches, encompassing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, were applied to discern differentially expressed genes (DEGs) and crucial signaling pathways. Four potentially CNV-related genes were validated using quantitative real-time PCR (qRT-PCR) and Western blot. Results: Significant CNV was observed on the seventh day. Forty-one genes were differentially expressed in neovascularized corneas, with 15 upregulated and 26 downregulated at both mRNA and protein levels. Bioinformatics analysis revealed that these DEGs participated in diverse biological processes, encompassing retinol and retinoic acid metabolism, neutrophil chemotaxis, and actin filament assembly, along with significant enrichment pathways like cytochrome P450, tyrosine, and phenylalanine metabolism. The upregulation of lymphocyte cytosolic protein 1 (LCP1) and cysteine and glycine-rich protein 2 (CSRP2) genes and the downregulation of transglutaminase 2 (TGM2) and transforming growth factor-beta-induced (TGFBI) genes were confirmed. Conclusions: We analyzed gene expression differences in mouse corneas 7 days after alkali burns, finding 41 genes with altered expression. The exact role of these genes in CNV is not fully understood, but exploring angiogenesis-related molecules offers potential for CNV treatment or prevention.


Subject(s)
Burns, Chemical , Corneal Neovascularization , Animals , Mice , Corneal Neovascularization/genetics , Burns, Chemical/genetics , Proteomics , Neovascularization, Pathologic , Gene Expression Profiling , Disease Models, Animal
14.
Invest Ophthalmol Vis Sci ; 65(1): 37, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38252525

ABSTRACT

Purpose: Previously we demonstrated that the secreted Ly-6/uPAR related protein 1 (SLURP1), abundantly expressed in the corneal epithelium (CE) and secreted into the tear fluid, serves as an antiangiogenic molecule. Here we describe the Slurp1-null (Slurp1X-/-) mouse corneal response to silver nitrate (AgNO3) cautery. Methods: Five days after AgNO3 cautery, we compared the wild-type (WT) and Slurp1X-/- mouse (1) corneal neovascularization (CNV) and immune cell influx by whole-mount immunofluorescent staining for CD31 and CD45, (2) macrophage and neutrophil infiltration by flow cytometry, and (3) gene expression by quantitative RT-PCR. Quantitative RT-PCR, immunofluorescent staining, and immunoblots were employed to evaluate the expression, phosphorylation status, and subcellular localization of NF-κB pathway components. Results: Unlike the WT, the Slurp1X-/- corneas displayed denser CNV in response to AgNO3 cautery, with more infiltrating macrophages and neutrophils and greater upregulation of the transcripts encoding VEGFA, MMP2, IL-1b, and vimentin. At 2, 7, and 10 days after AgNO3 cautery, Slurp1 expression was significantly downregulated in the WT corneas. Compared with the WT, naive Slurp1X-/- CE displayed increased phosphorylation of IKK(a/b), elevated phosphorylation of IκB with decreased amounts of total IκB, and higher phosphorylation of NF-κB, suggesting that NF-κB signaling is constitutively active in naive Slurp1X-/- corneas. Conclusions: Enhanced angiogenic inflammation in AgNO3 cauterized Slurp1X-/- corneas and constitutively active status of NF-κB signaling in the absence of Slurp1 suggest that Slurp1 modulates corneal angiogenic inflammation via NF-κB signaling.


Subject(s)
Corneal Neovascularization , Keratitis , Signal Transduction , Animals , Mice , Cornea , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Inflammation , Keratitis/metabolism , NF-kappa B
15.
Methods Mol Biol ; 2766: 43-53, 2024.
Article in English | MEDLINE | ID: mdl-38270866

ABSTRACT

Histological analysis is a morphological technique and an effective method for understanding the pathology of rheumatoid arthritis (RA). RA is an inflammatory disease characterized by increased synovial tissue and osteoclasts, angiogenesis, infiltration of inflammatory cells, and pannus formation. These pathologies can be observed in a collagen-induced arthritis model mouse using formaldehyde-fixated paraffin-embedded (FFPE) samples. For the preparation of FFPE samples, the conditions of the fixation and decalcification process significantly affect tissue staining results. Since the lesion sites include bone tissue, a decalcification process is necessary when preparing an FFPE sample. Therefore, selecting an optimal condition for the fixating and decalcifying solution is important. In this chapter, we describe the procedures of preparing paraffin samples, including fixation, decalcification, embedding, and sectioning from the RA model mouse, as well as different staining methods (hematoxylin and eosin, tartrate-resistant acid phosphatase).


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Corneal Neovascularization , Animals , Mice , Arthritis, Experimental/chemically induced , Bone and Bones , Coloring Agents , Formaldehyde , Paraffin
16.
Sci Rep ; 14(1): 2124, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267485

ABSTRACT

The presence of corneal vascularization (CV) interferes with the angiogenic and immune privilege of the cornea, risking rejection in eyes following keratoplasty. Pre-operative (lymph)-angioregression is a promising therapeutic approach, but objective monitoring by non-invasive CV imaging is needed. The purpose of this study was to investigate anterior-segment optical coherence tomography angiography (AS-OCTA) for CV visualization and quantification, and to show its superiority over slit-lamp photography in high-risk eyes scheduled for keratoplasty. This institutional pilot study included 29 eyes of 26 patients (51 ± 16 years, 8 female) with significant CV scheduled for keratoplasty that were imaged by slit-lamp photography (Zeiss SL 800) and AS-OCTA (Zeiss Plex Elite 9000). After manual corneal layer segmentation correction, CV maximum/relative depth was measured with the inbuilt software. Slit-lamp photographs and AS-OCTA images were compared for visualization of vascular details. Angiotool software allowed a semi-automated determination of CV-related parameters in the vascular complex of AS-OCTA images. The predominant causes of CV were the herpes simplex virus keratitis (n = 7) and chemical burn (n = 4). Visualization of vascular morphology in AS-OCTA was superior to slit-lamp photography in all except one eye. Vascular metrics including total vessel length, number of junctions/endpoints, junction density, lacunarity, and vessel area/density were defined using Angiotool, with CV depth localization despite scarring and opacification. AS-OCTA proved effective for angioregressive treatment monitoring. AS-OCTA enables non-invasive and objective three-dimensional visualization of corneal vascularization superior to slit-lamp photography, and could be a precious tool for monitoring angioregressive preconditioning prior to keratoplasty.


Subject(s)
Corneal Neovascularization , Tomography, Optical Coherence , Humans , Female , Pilot Projects , Corneal Neovascularization/diagnostic imaging , Cornea/diagnostic imaging , Angiography
17.
Exp Eye Res ; 240: 109779, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176514

ABSTRACT

This study aimed to evaluate the effects of platelet-rich plasma (PRP), autologous blood serum (ABS), and umbilical cord serum (UCS) on corneal healing following penetrating keratoplasty (PK). A total of 120 New Zealand white rabbits, forty were designated as donors, while the remaining eighty rabbits were randomly divided into four groups after undergoing PRP Group (n = 20), ABS Group (n = 20), UCS Group (n = 20) and Control Group (n = 20). Corneal opacity score, corneal vascularization, corneal staining, histopathological analysis, and immunohistochemical analysis (including CD4+, CD8+, and major histocompatibility complex [MHC] II) were assessed at postoperative 1, 2, 3, and 12 weeks. The results showed that corneal opacity score and corneal vascularization did not differ significantly among the groups. However, corneal staining was found to be statistically higher in the PRP group (0.40 ± 0.60) compared to the other groups (p = 0.011). Immunohistochemical examination revealed no significant differences in CD4+, CD8+, and MHC II levels among the groups. Notably, in all groups, CD4+, CD8+, and MHC II levels were significantly higher at 12 weeks compared to other time points. PRP, ABS, and UCS demonstrated positive effects on corneal healing after PK. However, among the three products, PRP exhibited a superior healing effect compared to ABS and UCS crucial in the postoperative period following PK procedures, as they significantly impact visual quality, graft transparency, graft survival, and prevention of stromal resorption caused by infections. Despite the avascular nature of the cornea and its immune privilege, failure to resolve epithelial defects (ED) commonly observed after PK can result in irreversible scarring and ulceration, leading to graft rejection. While epithelial defects are observed in 14-100% of cases on the first postoperative day, approximately 3-7% of them persist as non-healing ED in subsequent periods. In conclusion, our study demonstrated that PRP, ABS, and UCS have a positive effect on corneal healing after PK.


Subject(s)
Corneal Neovascularization , Corneal Opacity , Platelet-Rich Plasma , Rabbits , Animals , Keratoplasty, Penetrating/methods , Serum , Cornea , Umbilical Cord
18.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37605050

ABSTRACT

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Subject(s)
Corneal Neovascularization , Dry Eye Syndromes , Rats , Humans , Mice , Animals , Female , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rodentia/metabolism , Endothelial Cells/metabolism , Angiogenesis , Inflammation/drug therapy , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/chemically induced , STAT3 Transcription Factor/metabolism
19.
Small ; 20(2): e2302765, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679056

ABSTRACT

Corneal neovascularization (CoNV) is a major cause of visual impairment worldwide. Currently, available treatment options have limited efficacy and are associated with adverse effects due to biological barriers and clearance mechanisms. To address this challenge, a novel topical delivery system is developed-Gel 2_1&Eylea-an aflibercept-loaded eye-drop hydrogel mediated with cell-penetrating peptide 1. Gel 2_1&Eylea demonstrates superior membrane permeability, increased stability, and prolonged drug retention time on the ocular surface, and thus may improve drug efficacy. In a rabbit CoNV model, Gel 2_1&Eylea significantly reduces the density of neovascularization with no adverse effects on normal corneoscleral limbal vessels, demonstrating high efficacy and biocompatibility. This work identifies a promising treatment for CoNV which has the potential to benefit other ocular neovascular diseases.


Subject(s)
Cell-Penetrating Peptides , Corneal Neovascularization , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins , Animals , Rabbits , Corneal Neovascularization/drug therapy , Hydrogels , Ophthalmic Solutions/therapeutic use
20.
Wien Klin Wochenschr ; 136(5-6): 154-162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37261487

ABSTRACT

BACKGROUND: Corneal neovascularization (CNV) is a vision-threatening disease and an increasing public health concern. It was found that administering an Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization. METHODS: This study investigated the effect of an Akt inhibitor on the angiogenesis of human umbilical vein endothelial cells (HUVECs) and its impacts on the degree of CNV and corneal opacity in a rat keratoplasty model. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, tube formation assays, cell scratch experiments, and a fully allogeneic corneal transplant model were performed. RESULTS: It was found that an Akt inhibitor inhibited the proliferation, angiogenesis, and migration of HUVECs induced by vascular endothelial growth factor (VEGF). The results showed that both CNV and corneal opacity were decreased in rats after Akt inhibitor administration. CONCLUSION: The research illustrates the vital role of Akt inhibitors in mediating CNV. The analysis shows that the Akt inhibitor may provide a novel and feasible therapeutic approach to prevent CNV, but its mechanism needs further investigation.


Subject(s)
Corneal Neovascularization , Corneal Opacity , Humans , Rats , Animals , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/prevention & control , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Proto-Oncogene Proteins c-akt/therapeutic use , Human Umbilical Vein Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor A/therapeutic use , Angiogenesis , Corneal Opacity/drug therapy , Corneal Opacity/metabolism , Cell Proliferation , Angiogenesis Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...