Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.116
Filter
1.
Sci Rep ; 14(1): 11567, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773223

ABSTRACT

The receptor for advanced glycation endproducts (RAGE) has pro-inflammatory and pro-atherogenic effects. Low plasma levels of soluble RAGE (sRAGE), a decoy receptor for RAGE ligands, have been associated with increased risk for major adverse coronary events (MACE) in the general population. We performed a genome-wide association study to identify genetic determinants of plasma sRAGE in 4338 individuals from the cardiovascular arm of the Malmö Diet and Cancer study (MDC-CV). Further, we explored the associations between these genetic variants, incident first-time MACE and mortality in 24,640 unrelated individuals of European ancestry from the MDC cohort. The minor alleles of four single nucleotide polymorphisms (SNPs): rs2070600, rs204993, rs116653040, and rs7306778 were independently associated with lower plasma sRAGE. The minor T (vs. C) allele of rs2070600 was associated with increased risk for MACE [HR 1.13 95% CI (1.02-1.25), P = 0.016]. Neither SNP was associated with mortality. This is the largest study to demonstrate a link between a genetic sRAGE determinant and CV risk. Only rs2070600, which enhances RAGE function by inducing a Gly82Ser polymorphism in the ligand-binding domain, was associated with MACE. The lack of associations with incident MACE for the other sRAGE-lowering SNPs suggests that this functional RAGE modification is central for the observed relationship.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Receptor for Advanced Glycation End Products , Humans , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/blood , Male , Female , Middle Aged , Aged , Genetic Predisposition to Disease , Risk Factors , Alleles , Glycine/blood , Coronary Disease/genetics , Coronary Disease/blood
2.
Front Endocrinol (Lausanne) ; 15: 1369676, 2024.
Article in English | MEDLINE | ID: mdl-38745947

ABSTRACT

Background: Depression and coronary heart disease (CHD) have common risk mechanisms. Common single nucleotide polymorphisms (SNPs) may be associated with the risk of depression combined with coronary heart disease. Methods: This study was designed according to the PRISMA-P guidelines. We will include case-control studies and cohort studies investigating the relationship between gene SNPs and depression and coronary heart disease comorbidities. The Newcastle-Ottawa Scale (NOS) will be used to assess the risk of bias. When measuring dichotomous outcomes, we will use the odds ratio (OR) and 95% confidence interval (95%CIs) in a case-control study. Five genetic models (allele model, homozygous model, co-dominant model, dominant model, and recessive model) will be evaluated for each included study. Subgroup analysis by ethnicity will be performed. If necessary, post hoc analysis will be made according to different types. Results: A total of 13 studies were included in this study, and the types of genes included are FKBP5 and SGK1 genes that act on glucocorticoid; miR-146a, IL-4-589, IL-6-174, TNF-α-308, CRP-717 genes that act on inflammatory mechanisms; eNOS genes from endothelial cells; HSP70 genes that act on the autoimmune response; ACE2 and MAS1 genes that act to mediate Ang(1-7) in the RAS system; 5-HTTLPR gene responsible for the transport of serotonin 5-HT and neurotrophic factor BDNF gene. There were three studies on 5-HTTLPR and BDNF genes, respectively, while there was only one study targeting FKBP5, SGK1, miR-146a, IL-4-589, IL-6-174, TNF-alpha-308, CRP-717, eNOS, HSP70, ACE2, and MAS1 genes. We did not perform a meta-analysis for genes reported in a single study, and meta-analysis was performed separately for studies exploring the 5-HTTLPR and BDNF genes. The results showed that for the 5-HTTLPR gene, there was a statistically significant association between 5-HTTLPR gene polymorphisms and depression in combination with coronary diseases (CHD-D) under the co-dominant model (LS vs LL: OR 1.76, 95%CI 1.20-2.59; SS vs LL: OR 2.80, 95%CI 1.45 to 5.41), the dominant model (LS+SS vs LL: OR 2.06, 95%CI 1.44 to 2.96), and the homozygous model (SS vs LL: OR 2.80 95%CI 1.45 to 5.5.41) were statistically significant for CHD-D, demonstrating that polymorphisms in the 5-HTTLPR gene are associated with the development of CHD-D and that the S allele in the 5-HTTLPR gene is likely to be a risk factor for CHD-D. For the BDNF gene, there were no significant differences between one of the co-dominant gene models (AA vs GG: OR 6.63, 95%CI 1.44 to 30.64), the homozygous gene model (AA vs GG: OR 6.63,95% CI 1.44 to 30.64), the dominant gene model (GA+AA vs GG: OR4.29, 95%CI 1.05 to 17.45), recessive gene model (AA vs GG+GA: OR 2.71, 95%CI 1.16 to 6.31), and allele model (A vs G: OR 2.59, 95%CI 1.18 to 5.67) were statistically significant for CHD-D, demonstrating that BDNFrs6265 gene polymorphisms are associated with the CHD-D development and that the A allele in the BDNFrs6265 gene is likely to be a risk factor for CHD-D. We analyzed the allele frequencies of SNPs reported in a single study and found that the SNPs in the microRNA146a gene rs2910164, the SNPs in the ACE2 gene rs2285666 and the SNPs in the SGK1 gene rs1743963 and rs1763509 were risk factors for the development of CHD-D. We performed a subgroup analysis of three studies involving the BDNFrs6265 gene. The results showed that European populations were more at risk of developing CHD-D than Asian populations in both dominant model (GA+AA vs GG: OR 10.47, 95%CI 3.53 to 31.08) and co-dominant model (GA vs GG: OR 6.40, 95%CI 1.98 to 20.73), with statistically significant differences. In contrast, the studies involving the 5-HTTLPR gene were all Asian populations, so subgroup analyses were not performed. We performed sensitivity analyses of studies exploring the 5-HTTLPR and BDNF rs6265 genes. The results showed that the results of the allele model, the dominant model, the recessive model, the homozygous model and the co-dominant model for both 5-HTTLPR and BDNF rs6265 genes were stable. Due to the limited number of studies of the 5-HTTLPR and BDNF genes, it was not possible to determine the symmetry of the funnel plot using Begg's funnel plot and Egger's test. Therefore, we did not assess publication bias. Discussion: SNPs of the microRNA146a gene at rs2910164, the ACE2 gene at the rs2285666 and the SGK1 gene at rs1743963 and rs1763509, and the SNPs at the 5-HTTLPR and BDNF gene loci are associated with the onset of comorbid depression in coronary heart disease. We recommend that future research focus on studying SNPs' impact on comorbid depression in coronary heart disease, specifically targeting the 5-HTTLPR and BDNF gene at rs6265. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42021229371.


Subject(s)
Coronary Disease , Depression , Polymorphism, Single Nucleotide , Humans , Depression/genetics , Depression/epidemiology , Coronary Disease/genetics , Genetic Predisposition to Disease
3.
J Med Life ; 17(2): 195-200, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38813354

ABSTRACT

Numerous studies have established a link between gene variants within the inflammasome complex and the incidence of periodontitis and cardiovascular illness across various ethnic groups. This study investigated the association between PYCARD gene polymorphism and susceptibility to periodontal disease and coronary heart disease (CHD) and their correlation with clinical periodontal indices. A total of 120 participants were enrolled, categorized into four groups: 30 healthy controls (C), 30 patients with generalized periodontitis (P), 30 patients with atherosclerotic CHD but clinically healthy periodontium (AS-C), and 30 patients with both atherosclerotic CHD and generalized periodontitis (AS-P). We recorded demographic data, collected blood samples, and measured periodontal indices, including plaque index, clinical attachment loss, bleeding on probing, and pocket depth. The genomic variant of the PYCARD gene was analyzed using a conventional polymerase reaction. A significant prevalence of T and G allele mutations and a higher distribution of CT and TT genotypes in PYCARD C/T (rs8056505) and the AG genotype in PYCARD A/G (rs372507365) were observed in groups P, AS-P, and AS-C. These single nucleotide polymorphisms (SNPs) were also positively correlated with the severity of clinical periodontitis indices. Our findings suggest that the increased frequency of T and G alleles and the distribution of CT, TT, and AG genotypes in PYCARD SNPs are significantly associated with an elevated risk for periodontal disease and CHD. These SNPs may participate in the pathogenesis of these conditions. The study reinforces the potential role of these genetic markers as risk factors for both diseases in the Iraqi population.


Subject(s)
Coronary Disease , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Humans , Male , Female , Coronary Disease/genetics , Polymorphism, Single Nucleotide/genetics , Middle Aged , CARD Signaling Adaptor Proteins/genetics , Adult , Case-Control Studies , Periodontal Diseases/genetics , Genotype , Periodontitis/genetics , Alleles
4.
Sci Rep ; 14(1): 11993, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796576

ABSTRACT

Observational studies indicate that serum sex hormone-binding globulin (SHBG) levels are inversely correlated with blood lipid levels and coronary heart disease (CHD) risk. Given that dyslipidemia is an established risk factor for CHD, we aim to employ Mendelian randomization (MR) in conjunction with mediation analysis to confirm the mediating role of blood lipid levels in the association between SHBG and CHD. First, we assessed the causality between serum SHBG levels and five cardiovascular diseases using univariable MR. The results revealed causality between SHBG levels and reduced risk of CHD, myocardial infarction, as well as hypertension. Specifically, the most significant reduction was observed in CHD risk, with an odds ratio of 0.73 (95% CI 0.63-0.86) for each one-standard-deviation increase in SHBG. The summary-level data of serum SHBG levels and CHD are derived from a sex-specific genome-wide association study (GWAS) conducted by UK Biobank (sample size = 368,929) and a large-scale GWAS meta-analysis (60,801 cases and 123,504 controls), respectively. Subsequently, we further investigated the mediating role of blood lipid level in the association between SHBG and CHD. Mediation analysis clarified the mediation proportions for four mediators: high cholesterol (48%), very low-density lipoprotein cholesterol (25.1%), low-density lipoprotein cholesterol (18.5%), and triglycerides (44.3%). Summary-level data for each mediator were sourced from the UK Biobank and publicly available GWAS. The above results confirm negative causality between serum SHBG levels and the risk of CHD, myocardial infarction, and hypertension, with the causal effect on reducing CHD risk largely mediated by the improvement of blood lipid profiles.


Subject(s)
Coronary Disease , Genome-Wide Association Study , Lipids , Mendelian Randomization Analysis , Sex Hormone-Binding Globulin , Female , Humans , Male , Coronary Disease/genetics , Coronary Disease/blood , Coronary Disease/epidemiology , Lipids/blood , Mediation Analysis , Risk Factors , Sex Hormone-Binding Globulin/metabolism , Sex Hormone-Binding Globulin/genetics , Sex Hormone-Binding Globulin/analysis
5.
Sci Rep ; 14(1): 10645, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724583

ABSTRACT

Dyslipidaemias is the leading risk factor of several major cardiovascular diseases (CVDs), but there is still a lack of sufficient evidence supporting a causal role of lipoprotein subspecies in CVDs. In this study, we comprehensively investigated several lipoproteins and their subspecies, as well as other metabolites, in relation to coronary heart disease (CHD), heart failure (HF) and ischemic stroke (IS) longitudinally and by Mendelian randomization (MR) leveraging NMR-measured metabolomic data from 118,012 UK Biobank participants. We found that 123, 110 and 36 analytes were longitudinally associated with myocardial infarction, HF and IS (FDR < 0.05), respectively, and 25 of those were associated with all three outcomes. MR analysis suggested that genetically predicted levels of 70, 58 and 7 analytes were associated with CHD, HF and IS (FDR < 0.05), respectively. Two analytes, ApoB/ApoA1 and M-HDL-C were associated with all three CVD outcomes in the MR analyses, and the results for M-HDL-C were concordant in both observational and MR analyses. Our results implied that the apoB/apoA1 ratio and cholesterol in medium size HDL were particularly of importance to understand the shared pathophysiology of CHD, HF and IS and thus should be further investigated for the prevention of all three CVDs.


Subject(s)
Cardiovascular Diseases , Mendelian Randomization Analysis , Humans , Cardiovascular Diseases/genetics , Male , Female , Risk Factors , Middle Aged , Magnetic Resonance Spectroscopy/methods , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Aged , Cholesterol, HDL/blood , Coronary Disease/genetics , Metabolomics/methods , Apolipoprotein B-100/genetics , Ischemic Stroke/genetics , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Heart Failure/genetics
6.
Scand J Clin Lab Invest ; 84(2): 133-137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597780

ABSTRACT

MicroRNA-33b (miR-33b) affected various biological pathways in regulating cholesterol homeostasis which may link to the pathogenesis of atherosclerotic lesions. However, whether this marker is associated with the presence and severity of coronary heart disease (CHD) is undetermined. We aim to explore the diagnostic value of circulating miR-33b level in the presence and severity of CHD. Altogether 320 patients were enrolled, including 240 patients diagnosed with CHD while 80 were classified as controls after CAG examination. Circulating miR-33b level was analyzed in all subjects, the Gensini score was calculated to assess the severity of stenotic lesions. The association between miR-33b and the presence and severity of CHD was analyzed, and the diagnostic potential of miR-33b of CHD was performed by the receiver operating characteristic (ROC) analysis. The CHD group had higher miR-33b levels (p < 0.001), and the miR-33b content significantly elevated following an increasing Gensini score (p for trend < 0.001). After adjustments for potential risk factors, such as several blood lipid markers, miR-33b remained a significant determinant for CHD (p < 0.001). ROC analysis disclosed that the AUC was 0.931. The optimal cutoff value of miR-33b was with a sensitivity of 81.3% and a specificity of 98.7% in differentiating CHD. It can prognosticate that the higher level of miR-33b was linked to increased severity of disease in CHD patients. Thus, the application of this marker might assist in the diagnosis and classification of CHD patients. Nevertheless, additional studies with larger sample sizes will be required to verify these results.


Subject(s)
Biomarkers , Coronary Disease , MicroRNAs , ROC Curve , Severity of Illness Index , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , Case-Control Studies , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Coronary Disease/blood , Coronary Disease/genetics , Coronary Disease/diagnosis , MicroRNAs/blood , Risk Factors
7.
Heart Lung ; 66: 86-93, 2024.
Article in English | MEDLINE | ID: mdl-38593678

ABSTRACT

BACKGROUND: Previous observational studies have suggested associations between Coronary Heart Disease (CHD) and Mental Health Disorders (MHD). However, the causal nature of these relationships has remained elusive. OBJECTIVE: The purpose of this study is to elucidate the causal relationships between eight distinct types of CHD and six types of MHD using Mendelian randomization (MR) analysis. METHODS: The MR analysis employed a suite of methods including inverse variance-weighted (IVW), MR-Egger, weighted mode, weighted median, and simple mode techniques. To assess heterogeneity, IVW and MR-Egger tests were utilized. MR-Egger regression also served to investigate potential pleiotropy. The stability of IVW results was verified by leave-one-out sensitivity analysis. RESULTS: We analyzed data from over 2,473,005 CHD and 803,801 MHD patients, informed by instrumental variables from large-scale genomic studies on European populations. The analysis revealed a causal increase in the risk of Major Depressive Disorder and Mania associated with Coronary Artery Disease and Myocardial Infarction. Heart Failure was found to causally increase the risk for Bipolar Disorder and Schizophrenia. Atrial Fibrillation and Ischemic Heart Diseases were positively linked to Generalized Anxiety Disorder and Mania, respectively. There was no significant evidence of an association between Hypertensive Heart Disease, Hypertrophic Cardiomyopathy, Pulmonary Heart Disease, and MHD. Reverse MR analysis indicated that MHD do not serve as risk factors for CHD. CONCLUSIONS: The findings suggest that specific types of CHD may act as risk factors for certain MHDs. Consequently, incorporating psychological assessments into the management of patients with CHD could be advantageous.


Subject(s)
Coronary Disease , Mendelian Randomization Analysis , Mental Disorders , Humans , Mendelian Randomization Analysis/methods , Coronary Disease/psychology , Coronary Disease/epidemiology , Coronary Disease/genetics , Coronary Disease/complications , Risk Factors , Mental Disorders/epidemiology , Mental Disorders/genetics , Male , Female
8.
Hypertension ; 81(6): 1320-1331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587181

ABSTRACT

BACKGROUND: Higher levels of plasma glycine are linked to a reduced risk, while increased levels of total branched-chain amino acids (tBCAAs) are associated with a higher risk of essential hypertension and coronary heart disease (CHD). As these metabolic components are interconnected, analyzing the tBCAAs/glycine ratio may help to understand their interplay in the pathogenesis of cardiovascular disease. METHODS: The Cox regression approach was combined with the development of novel genetic tools for assessments of associations between plasma metabolomic data (glycine, tBCAAs, and tBCAAs/glycine ratio) from the UK Biobank and the development of hypertension and CHD. Genome-wide association study was performed on 186 523 White UK Biobank participants to identify new independent genetic instruments for the 2-sample Mendelian randomization analyses. P-gain statistic >10 identified instruments associated with tBCAAs/glycine ratio significantly stronger compared with individual amino acids. Outcomes of genome-wide association study on hypertension and CHD were derived from the UK Biobank (nonoverlapping sample), FinnGen, and CARDIoGRAMplusC4D. RESULTS: The tBCAAs/glycine ratio was prospectively associated with a higher risk of developing hypertension and CHD (hazard ratio quintile Q5 versus Q1, 1.196 [95% CI, 1.109-1.289] and 1.226 [95% CI, 1.160-1.296], respectively). Mendelian randomization analysis demonstrated that tBCAAs/glycine ratio (P-gain >10) was a risk factor for hypertension (meta-analyzed inverse-variance weighted causal estimate 0.45 log odds ratio/SD (95% CI, 0.26-0.64) and CHD (0.48 [95% CI, 0.29-0.67]) with an absolute effect significantly larger compared with the effect of glycine (-0.06 [95% CI, -0.1 to -0.03] and -0.08 [95% CI, -0.11 to -0.05], respectively) or tBCAAs (0.22 [95% CI, 0.09-0.34] and 0.12 [95% CI, 0.01-0.24], respectively). CONCLUSIONS: The total BCAAs/glycine ratio is a key element of the metabolic signature contributing to hypertension and CHD, which may reflect biological pathways shared by glycine and tBCAAs.


Subject(s)
Amino Acids, Branched-Chain , Coronary Disease , Genome-Wide Association Study , Glycine , Hypertension , Humans , Glycine/blood , Amino Acids, Branched-Chain/blood , Male , Female , Middle Aged , Coronary Disease/blood , Coronary Disease/genetics , Coronary Disease/epidemiology , Hypertension/blood , Hypertension/epidemiology , Hypertension/genetics , Mendelian Randomization Analysis , Aged , United Kingdom/epidemiology , Prospective Studies
9.
Adv Ther ; 41(6): 2367-2380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662186

ABSTRACT

INTRODUCTION: The cost of secondary prevention of coronary heart disease (CHD) is continuing to increase, with a substantial portion of this acceleration being driven by the expense of confirmatory diagnostic testing. Conceivably, newly developed precision epigenetic technologies could drive down these costs. However, at the current time, their impact on overall expense for CHD care is poorly understood. We hypothesized that the use of a newly developed, highly sensitive, and specific epigenetic test, PrecisionCHD, could decrease the costs of secondary prevention. METHODS: To test this hypothesis, we constructed a budget impact analysis using a cost calculation model that examined the effects of substituting PrecisionCHD for conventional CHD diagnostic tests on the expenses of the initial evaluation and first year of care of stable CHD using a 1-year time horizon with no discounting. RESULTS: The model projected that for a commercial insurer with one million members, full adoption of PrecisionCHD as the primary method of initial CHD assessment would save approximately $113.6 million dollars in the initial year. CONCLUSION: These analyses support the use of precision epigenetic methods as part of the initial diagnosis and care of stable CHD and can meaningfully reduce cost. Real-world pilots to test the reliability of these analyses are indicated.


Subject(s)
Coronary Disease , Health Care Costs , Humans , Coronary Disease/diagnosis , Coronary Disease/economics , Coronary Disease/genetics , Epigenesis, Genetic , Secondary Prevention/economics , Secondary Prevention/methods , Epigenomics/economics , Epigenomics/methods , Precision Medicine/economics , Precision Medicine/methods , Cost-Benefit Analysis
10.
J Transl Med ; 22(1): 404, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689297

ABSTRACT

BACKGROUND: Ischemic heart disease is one of the leading causes of mortality worldwide, and thus calls for development of more effective therapeutic strategies. This study aimed to identify potential therapeutic targets for coronary heart disease (CHD) and myocardial infarction (MI) by investigating the causal relationship between plasma proteins and these conditions. METHODS: A two-sample Mendelian randomization (MR) study was performed to evaluate more than 1600 plasma proteins for their causal associations with CHD and MI. The MR findings were further confirmed through Bayesian colocalization, Summary-data-based Mendelian Randomization (SMR), and Transcriptome-Wide Association Studies (TWAS) analyses. Further analyses, including enrichment analysis, single-cell analysis, MR analysis of cardiovascular risk factors, phenome-wide Mendelian Randomization (Phe-MR), and protein-protein interaction (PPI) network construction were conducted to verify the roles of selected causal proteins. RESULTS: Thirteen proteins were causally associated with CHD, seven of which were also causal for MI. Among them, FES and PCSK9 were causal proteins for both diseases as determined by several analytical methods. PCSK9 was a risk factor of CHD (OR = 1.25, 95% CI: 1.13-1.38, P = 7.47E-06) and MI (OR = 1.36, 95% CI: 1.21-1.54, P = 2.30E-07), whereas FES was protective against CHD (OR = 0.68, 95% CI: 0.59-0.79, P = 6.40E-07) and MI (OR = 0.65, 95% CI: 0.54-0.77, P = 5.38E-07). Further validation through enrichment and single-cell analysis confirmed the causal effects of these proteins. Moreover, MR analysis of cardiovascular risk factors, Phe-MR, and PPI network provided insights into the potential drug development based on the proteins. CONCLUSIONS: This study investigated the causal pathways associated with CHD and MI, highlighting the protective and risk roles of FES and PCSK9, respectively. FES. Specifically, the results showed that these proteins are promising therapeutic targets for future drug development.


Subject(s)
Blood Proteins , Coronary Disease , Mendelian Randomization Analysis , Myocardial Infarction , Proteomics , Humans , Myocardial Infarction/blood , Myocardial Infarction/genetics , Proteomics/methods , Coronary Disease/blood , Coronary Disease/genetics , Blood Proteins/metabolism , Protein Interaction Maps/genetics , Bayes Theorem , Molecular Targeted Therapy , Risk Factors , Genome-Wide Association Study , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood , Proprotein Convertase 9/metabolism
11.
Atherosclerosis ; 392: 117507, 2024 May.
Article in English | MEDLINE | ID: mdl-38663317

ABSTRACT

BACKGROUND AND AIMS: Elderly familial hypercholesterolemia (FH) patients are at high risk of coronary heart disease (CHD) due to high cholesterol burden and late onset of effective cholesterol-lowering therapies. A subset of these individuals remains free from any CHD event, indicating the potential presence of protective factors. Identifying possible cardioprotective gene expression profiles could contribute to our understanding of CHD prevention and future preventive treatment. Therefore, this study aimed to investigate gene expression profiles in elderly event-free FH patients. METHODS: Expression of 773 genes was analysed using the Nanostring Metabolic Pathways Panel, in peripheral blood mononuclear cells (PBMCs) from FH patients ≥65 years without CHD (FH event-free, n = 44) and with CHD (FH CHD, n = 39), and from healthy controls ≥70 years (n = 39). RESULTS: None of the genes were differentially expressed between FH patients with and without CHD after adjusting for multiple testing. However, at nominal p < 0.05, we found 36 (5%) differentially expressed genes (DEGs) between the two FH groups, mainly related to lipid metabolism (e.g. higher expression of ABCA1 and ABCG1 in FH event-free) and immune responses (e.g. lower expression of STAT1 and STAT3 in FH event-free). When comparing FH patients to controls, the event-free group had fewer DEGs than the CHD group; 147 (19%) and 219 (28%) DEGs, respectively. CONCLUSIONS: Elderly event-free FH patients displayed a different PBMC gene expression profile compared to FH patients with CHD. Differences in gene expression compared to healthy controls were more pronounced in the CHD group, indicating a less atherogenic gene expression profile in event-free individuals. Overall, identification of cardioprotective factors could lead to future therapeutic targets.


Subject(s)
Coronary Disease , Gene Expression Profiling , Hyperlipoproteinemia Type II , Humans , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/blood , Male , Female , Aged , Coronary Disease/genetics , Case-Control Studies , Leukocytes, Mononuclear/metabolism , Age Factors , Transcriptome , Aged, 80 and over
12.
Front Biosci (Schol Ed) ; 16(1): 6, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38538346

ABSTRACT

BACKGROUND: Metabolic disorders, including obesity, are often accompanied by an increased risk of cardiovascular complications. Monocytes are the common link between obesity and cardiovascular diseases (CVDs). The bias of innate cellular immunity towards pro-inflammatory activation stimulates the development of diseases associated with chronic inflammation, in particular metabolic disorders, including obesity, as well as CVDs. Disorders in the functional state of monocytes and activation of inflammation may be associated with mitochondrial dysfunction. Mutations accumulating in mitochondrial DNA with age may lead to mitochondrial dysfunction and may be considered a potential marker for developing chronic inflammatory diseases. METHODS: The present study aimed to study the relationship between mitochondrial heteroplasmy in CD14+ monocytes and cardiovascular risk factors in 22 patients with obesity and coronary heart disease (CHD) by comparing them to 22 healthy subjects. RESULTS: It was found that single-nucleotide variations (SNV) A11467G have a negative correlation with total cholesterol (r = -0.82, p < 0.05), low density lipoproteins (LDL) (r = -0.82, p < 0.05), with age (r = -0.57, p < 0.05) and with mean carotid intima-media thickness (cIMT) (r = -0.43, p < 0.05) and a positive correlation with HDL level (r = 0.71, p < 0.05). SNV 576insC positively correlated with body mass index (BMI) (r = 0.60, p < 0.001) and LDL level (r = 0.43, p < 0.05). SNV A1811G positively correlated with mean cIMT (r = 0.60, p < 0.05). CONCLUSIONS: It was revealed that some variants of mitochondrial DNA (mtDNA) heteroplasmy are associated with CVD risk factors. The results demonstrate the potential for using these molecular genetic markers to develop personalized CVD and metabolic disorder treatments.


Subject(s)
Cardiovascular Diseases , Coronary Disease , Genome, Mitochondrial , Metabolic Diseases , Mitochondrial Diseases , Humans , Carotid Intima-Media Thickness , Monocytes , Genome, Mitochondrial/genetics , Coronary Disease/genetics , Obesity/complications , Obesity/genetics , Risk Factors , Inflammation , Biomarkers , Mutation/genetics , DNA, Mitochondrial/genetics
13.
Cardiovasc Diabetol ; 23(1): 98, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493287

ABSTRACT

BACKGROUND: Telomere Length (TL), a marker of cellular aging, holds promise as a biomarker to elucidate the molecular mechanism of diabetes. This study aimed to investigate whether shorter telomeres are associated with a higher risk of type 2 diabetes mellitus (T2DM) incidence in patients with coronary heart disease; and to determine whether the most suitable dietary patterns, particularly a Mediterranean diet or a low-fat diet, can mitigate the development of diabetes in these patients after a follow-up period of five years. METHODS: The CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (CORDIOPREV study) was a single-centre, randomised clinical trial done at the Reina Sofia University Hospital in Córdoba, Spain. Patients with established coronary heart disease (aged 20-75 years) were randomly assigned in a 1:1 ratio by the Andalusian School of Public Health to receive two healthy diets. Clinical investigators were masked to treatment assignment; participants were not. Quantitative-PCR was used to assess TL measurements. FINDINGS: 1002 patients (59.5 ± 8.7 years and 82.5% men) were enrolled into Mediterranean diet (n = 502) or a low-fat diet (n = 500) groups. In this analysis, we included all 462 patients who did not have T2DM at baseline. Among them, 107 patients developed T2DM after a median of 60 months. Cox regression analyses showed that patients at risk of short telomeres (TL < percentile 20th) are more likely to experience T2DM than those at no risk of short telomeres (HR 1.65, p-value 0.023). In terms of diet, patients at high risk of short telomeres had a higher risk of T2DM incidence after consuming a low-fat diet compared to patients at no risk of short telomeres (HR 2.43, 95CI% 1.26 to 4.69, p-value 0.008), while no differences were observed in the Mediterranean diet group. CONCLUSION: Patients with shorter TL presented a higher risk of developing T2DM. This association could be mitigated with a specific dietary pattern, in our case a Mediterranean diet, to prevent T2DM in patients with coronary heart disease. TRIAL REGISTRATION: Clinicaltrials.gov number NCT00924937.


Subject(s)
Cardiovascular Diseases , Coronary Disease , Diabetes Mellitus, Type 2 , Diet, Mediterranean , Female , Humans , Male , Biomarkers , Cardiovascular Diseases/epidemiology , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Coronary Disease/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Telomere , Young Adult , Adult , Middle Aged , Aged
14.
Cardiovasc Toxicol ; 24(4): 385-395, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38536640

ABSTRACT

The aim of this study was to comprehensively assess the causal relationship between the overall genetic effect of circulating ApoE levels and panvascular lesions using newer genome-wide association data and two-sample bidirectional Mendelian randomization (MR) analysis. Two-way MR using single-nucleotide polymorphisms of circulating ApoE as instrumental variables was performed using the highest-priority Genome-wide association study (GWAS) data, with factor-adjusted and data-corrected statistics, to estimate causal associations between circulating ApoE levels and 10 pan-vascular diseases in > 500,000 UK Biobank participants, > 400,000 participants of Finnish ancestry, and numerous participants in a consortium of predominantly European ancestry. Meta-analysis was conducted to assess positive results. After correcting for statistical results, elevated circulating ApoE levels were shown to have a significant protective effect against Cerebral ischemia (CI) [IVW odds ratio (OR) 0.888, 95% Confidence Interval (CI): 0.823-0.958, p = 2.3 × 10-3], Coronary heart disease [IVW OR 0.950,95% CI: 0.924-0.976, p = 2.0 × 10-4] had a significant protective effect and potentially suggestive protective causality against Angina pectoris [IVW odds ratio (OR) 0.961, 95%CI: 0.931-0.991, p = 1.1 × 10-2]. There was a potential causal effect for increased risk of Heart failure (HF) [IVW ratio (OR) 1.040, 95%CI: 1.006-1.060, p = 1.8 × 10-2]. (Bonferroni threshold p < 0.0026, PFDR < 0.05) Reverse MR analysis did not reveal significant evidence of a causal effect of PVD on changes in circulating ApoE levels. Meta-analysis increases reliability of results. Elevated circulating ApoE levels were particularly associated with an increased risk of heart failure. Elevated ApoE levels reduce the risk of cerebral ischemia, coronary heart disease, and angina pectoris, reflecting a protective effect. The possible pathophysiological role of circulating ApoE levels in the development of panvascular disease is emphasized.


Subject(s)
Brain Ischemia , Coronary Disease , Heart Failure , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Reproducibility of Results , Apolipoproteins E , Angina Pectoris , Polymorphism, Single Nucleotide , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Coronary Disease/genetics
15.
Cytokine ; 178: 156567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489870

ABSTRACT

OBJECTIVE: To investigate the association of circulating adiponectin (APN) level and single nucleotide polymorphisms (rs1501299 and rs266729) of the APN gene in the coronary heart disease (CHD) population of Northern Guangxi Province. METHODS: Two hundred and sixty-three CHD patients and 235 healthy controls from our hospital from August 2018 to October 2020 were included in this study. ELISA was used to determine the serum APN concentration. PCR-RFLP and direct DNA sequencing were used to analyze the genotypes of APN gene rs1501299 G/T and rs266729 C/G single-nucleotide loci, their distribution differences between the two groups were compared and their correlation with APN concentration was analyzed. RESULTS: The serum APN concentration in the CHD group was significantly lower than the control group (14.40(1.42-52.26) µg/mL vs. 29.40 (3.18-90.31) µg/mL, P < 0.001). There were statistically significant differences in the rs266729 genotype of APN single nucleotide locus between the two groups (P < 0.001). The dominant model and recessive model of rs266729 genotype showed that mutant homozygous GG genotype carriers significantly increased the risk of CHD in comparison with C allele carriers (CG + CC) (OR = 2.156, 95 %CI: 1.004-4.631, P = 0.049), and this effect was still significant after adjusting gender and age (OR = 2.695, 95 %CI 1.110-6.540, P = 0.028). In both the dominant and recessive models for rs1501299, ORs before and after adjustment for age and sex revealed no significant association with CHD, with ORs of 0.765 (95 % CI: 0.537-1.091, P = 0.139) and 0.718 (95 % CI: 0.466-1.106, P = 0.133) in the Dominant model, and ORs of 0.960 (95 % CI: 0.442-2.087, P = 0.918) and 0.613 (95 % CI: 0.239-1.570, P = 0.308) in the Recessive model, respectively. No statistically significant differences in APN concentrations across genotypes in both groups (P > 0.05), with chi-square values of 1.633 (control group) and 0.823 (CHD group) for rs1501299, and 1.354 (control group) and 0.618 (CHD group) for rs266729. CONCLUSIONS: APN gene of rs266729 C/G single-nucleotide loci gene mutation can significantly increase the risk of CHD. There was no significant correlation between rs1501299 G/T single-nucleotide loci and CHD in Northern Guangxi populations.


Subject(s)
Coronary Disease , Genetic Predisposition to Disease , Humans , Adiponectin/genetics , Case-Control Studies , China , Coronary Disease/genetics , Genetic Predisposition to Disease/genetics , Genotype , Nucleotides , Polymorphism, Single Nucleotide/genetics , Risk Factors
16.
BMC Med Genomics ; 17(1): 66, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438909

ABSTRACT

BACKGROUND: Coronary heart disease (CHD) has become a worldwide public health problem. Genetic factors are considered important risk factors for CHD. The aim of this study was to explore the correlation between CYP4A22 gene polymorphism and CHD susceptibility in the Chinese Han population. METHODS: We used SNPStats online software to complete the association analysis among 962 volunteers. False-positive report probability analysis was used to confirm whether a positive result is noteworthy. Haploview software and SNPStats were used for haplotype analysis and linkage disequilibrium. Multi-factor dimensionality reduction was applied to evaluate the interaction between candidate SNPs. RESULTS: In overall and some stratified analyses (male, age ≤ 60 years or CHD patients complicated with hypertension), CYP4A22-rs12564525 (overall, OR = 0.83, p-value is 0.042) and CYP4A22-rs2056900 (overall, OR = 1.22, p-value is 0.032) were associated with the risk of CHD. CYP4A22-4926581 was associated with increased CHD risk only in some stratified analyses. FPRP indicated that all positive results in our study are noteworthy findings. In addition, MDR showed that the single-locus model composed of rs2056900 is the best model for predicting susceptibility to CHD. CONCLUSION: There are significant associations between susceptibility to CHD and CYP4A22 rs12564525, and rs2056900.


Subject(s)
Coronary Disease , Hypertension , Female , Humans , Male , Middle Aged , Asian People/genetics , Coronary Disease/genetics , Cytochrome P-450 CYP4A/genetics , Cytochrome P-450 Enzyme System/genetics , Polymorphism, Single Nucleotide , Risk Factors
17.
Cell Signal ; 119: 111150, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552892

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) and coronary heart disease (CHD) stand as two of the foremost causes of mortality. However, the comprehensive comprehension of the regulatory mechanisms governing DCM and CHD remains limited, particularly from the vantage point of single-cell transcriptional analysis. METHOD: We used the GSE121893 dataset from the GEO database, analyzing single-cell expressions with tools like DropletUtils, Seurat, and Monocle. We also utilized the GSVA package for comparing gene roles in DCM and CHD, Finally, we conducted qRT-PCR and Western blot analyses to measure the expression levels of SMARCA4, Col1A1, Col3A1 and α-SMA, and the role of SMARCA4 on fibroblasts were explored by EdU and Transwell assay. RESULTS: Our analysis identified six cell types in heart tissue, with fibroblasts showing the most interaction with other cells. DEGs in fibroblasts were linked to muscle development and morphogenesis. Pseudotime analysis revealed the dynamics of fibroblast changes in both the normal and disease groups and many transcription factors (TFs) potentially involved in this process. Among these TFs, SMARCA4 which was translated into protein BRG1, showed the most significantly difference. In vivo experiments have demonstrated that SMARCA4 indeed promoted fibroblasts proliferation and migration. CONCLUSION: This study provides a clearer understanding of cell-type dynamics in heart diseases, emphasizing the role of fibroblasts and the significance of SMARCA4 in their function. Our results offer insights into the cellular mechanisms underlying DCM and CHD, potentially guiding future therapeutic strategies.


Subject(s)
Cardiomyopathy, Dilated , DNA Helicases , Nuclear Proteins , Single-Cell Analysis , Transcription Factors , Transcription Factors/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Fibroblasts/metabolism , Coronary Disease/metabolism , Coronary Disease/genetics , Coronary Disease/pathology , Mice , Cell Proliferation
18.
Cell Cycle ; 23(3): 328-337, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38512812

ABSTRACT

OBJECTIVE: The aim of this study was to explore the effects of Ninjurin 2 (NINJ2) polymorphisms on susceptibility to coronary heart disease (CHD). METHODS: We conducted a case-control study with 499 CHD cases and 505 age and gender-matched controls. Five single nucleotide polymorphisms (SNPs) in NINJ2 (rs118050317, rs75750647, rs7307242, rs10849390, and rs11610368) were genotyped by the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analysis to assess the association of NINJ2 polymorphisms and CHD risk-adjusted for age and gender. What's more, risk genes and molecular functions were screened via protein-protein interaction (PPI) network and functional enrichment analysis. RESULTS: Rs118050317 in NINJ2 significantly increased CHD risk in people aged more than 60 years and women. Rs118050317 and rs7307242 had strong relationships with hypertension risk in CHD patients. Additionally, rs75750647 exceedingly raised diabetes risk in cases under multiple models, whereas rs10849390 could protect CHD patients from diabetes in allele, homozygote, and additive models. We also observed two blocks in NINJ2. Further interaction network and enrichment analysis showed that NINJ2 played a greater role in the pathogenesis and progression of CHD. CONCLUSION: Our results suggest that NINJ2 polymorphisms are associated with CHD risk.


Subject(s)
Cell Adhesion Molecules, Neuronal , Coronary Disease , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Humans , Female , Male , Polymorphism, Single Nucleotide/genetics , Cell Adhesion Molecules, Neuronal/genetics , Genetic Predisposition to Disease/genetics , Middle Aged , Coronary Disease/genetics , Case-Control Studies , Aged , Risk Factors , Genotype
19.
Eur Rev Med Pharmacol Sci ; 28(2): 525-533, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38305598

ABSTRACT

OBJECTIVE: Air pollution is affecting the health of millions of people all over the world. The causal correlations of PM2.5, PM10, and nitrogen dioxide (NOx), as the main fine particulate matter, and coronary heart disease (CHD) are yet to be explored. Low-density lipoprotein (LDL) has been a principal factor in the pathogenesis of CHD. It is an interesting issue to consider whether LDL mediates the effect of air pollutants in CHD pathogenesis. MATERIALS AND METHODS: A genome-wide association study (GWAS) on the European population, followed up from 2010 to 2018, involving over 400,000 participants, was based on a land-use regression model. The annual mean concentrations of major air pollutant particles, PM2.5 (n=423,796), PM10 (n=423,796), and NOx (n=456,380), were recorded. The large GWAS database of CHD covered over ten million SNPs with independent single nucleotide polymorphisms (SNPs). LDL database collected major biochemical blood parameters from over 400,000 patients (n=440,546). Taken together, we conducted independent two-sample Mendelian randomization (MR) analyses for the causality between air pollutants (PM2.5, PM10, and NOx) and CHD. Multivariate MR analysis was conducted using causal relationships to determine the direct effects of exposure on outcome. The fixed-effect inverse variance weighted (IVW2) method was mainly employed to assess this relationship, with a confidence interval of 95% for the odds ratio (OR). Also, MR-Egger, weighted median, maximum likelihood ratio method, and random-effects inverse variance-weighted (IVW1) method were adopted as supplementary methods. RESULTS: Two-sample MR results based on the IVW2 method suggested positive correlations between PM2.5 and CHD [OR 1.875 (1.279-2.748), p=0.001], PM10 and CHD [OR 2.586 (1.479-4.523), p=0.001], and NOx and CHD [OR 2.991 (2.021-4.427), p=4.37E-08]. The direct effect and mediating proportion were calculated using multivariable Mendelian randomization (MVMR). Lastly, the mediating proportions of LDL in the regulatory roles of PM2.5, PM10, and NOx in CHD were 2.82%, 4.73%, and 9.54%, respectively. CONCLUSIONS: PM2.5, PM10, and NOx share direct causal associations with CHD, and LDL performs a mediating role in this pathogenic process. Early prevention against air pollution (such as increasing green areas and reducing large-scale industrial dust emissions) and early lipid-lowering treatment can effectively prevent the occurrence of CHD.


Subject(s)
Air Pollutants , Air Pollution , Coronary Disease , Humans , Lipoproteins, LDL , Mendelian Randomization Analysis , Genome-Wide Association Study , Air Pollution/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Coronary Disease/epidemiology , Coronary Disease/genetics
20.
BMC Med ; 22(1): 35, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273336

ABSTRACT

BACKGROUND: Adverse pregnancy outcomes (APO) may unmask or exacerbate a woman's underlying risk for coronary heart disease (CHD). We estimated associations of maternal and paternal genetically predicted liability for CHD with lifelong risk of APOs. We hypothesized that associations would be found for women, but not their male partners (negative controls). METHODS: We studied up to 83,969‬ women (and up to 55,568‬ male partners) from the Norwegian Mother, Father and Child Cohort Study or the Trøndelag Health Study with genotyping data and lifetime history of any APO in their pregnancies (1967-2019) in the Medical Birth Registry of Norway (miscarriage, stillbirth, hypertensive disorders of pregnancy, gestational diabetes, small for gestational age, large for gestational age, and spontaneous preterm birth). Maternal and paternal genetic risk scores (GRS) for CHD were generated using 148 gene variants (p-value < 5 × 10-8, not in linkage disequilibrium). Associations between GRS for CHD and each APO were determined using logistic regression, adjusting for genomic principal components, in each cohort separately, and combined using fixed effects meta-analysis. RESULTS: One standard deviation higher GRS for CHD in women was related to increased risk of any hypertensive disorders of pregnancy (odds ratio [OR] 1.08, 95% confidence interval [CI] 1.05-1.10), pre-eclampsia (OR 1.08, 95% CI 1.05-1.11), and small for gestational age (OR 1.04, 95% CI 1.01-1.06). Imprecise associations with lower odds of large for gestational age (OR 0.98, 95% CI 0.96-1.00) and higher odds of stillbirth (OR 1.04, 95% CI 0.98-1.11) were suggested. These findings remained consistent after adjusting for number of total pregnancies and the male partners' GRS and restricting analyses to stable couples. Associations for other APOs were close to the null. There was weak evidence of an association of paternal genetically predicted liability for CHD with spontaneous preterm birth in female partners (OR 1.02, 95% CI 0.99-1.05), but not with other APOs. CONCLUSIONS: Hypertensive disorders of pregnancy, small for gestational age, and stillbirth may unmask women with a genetically predicted propensity for CHD. The association of paternal genetically predicted CHD risk with spontaneous preterm birth in female partners needs further exploration.


Subject(s)
Coronary Disease , Hypertension, Pregnancy-Induced , Premature Birth , Pregnancy , Child , Female , Infant, Newborn , Male , Humans , Stillbirth/epidemiology , Stillbirth/genetics , Premature Birth/epidemiology , Premature Birth/genetics , Cohort Studies , Hypertension, Pregnancy-Induced/epidemiology , Hypertension, Pregnancy-Induced/genetics , Pregnancy Outcome/epidemiology , Fetal Growth Retardation , Parents , Coronary Disease/epidemiology , Coronary Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...