Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38722261

ABSTRACT

Obtaining the complete or near-complete genome sequence of pathogens is becoming increasingly crucial for epidemiology, virology, clinical science and practice. This study aimed to detect viruses and conduct genetic characterization of genomes using metagenomics in order to identify the viral agents responsible for a calf's diarrhoea. The findings showed that bovine coronavirus (BCoV) and bovine rotavirus (BRV) are the primary viral agents responsible for the calf's diarrhoea. The current study successfully obtained the first-ever near-complete genome sequence of a bovine coronavirus (BCoV) from Türkiye. The G+C content was 36.31% and the genetic analysis revealed that the Turkish BCoV strain is closely related to respiratory BCoV strains from France and Ireland, with high nucleotide sequence and amino acid identity and similarity. In the present study, analysis of the S protein of the Turkish BCoV strain revealed the presence of 13 amino acid insertions, one of which was found to be shared with the French respiratory BCoV. The study also identified a BRV strain through metagenomic analysis and detected multiple mutations within the structural and non-structural proteins of the BRV strain, suggesting that the BRV Kirikkale strain may serve as an ancestor for reassortants with interspecies transmission, especially involving rotaviruses that infect rabbits and giraffes.


Subject(s)
Coronavirus, Bovine , Genome, Viral , Metagenomics , Rotavirus , Animals , Metagenomics/methods , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Cattle , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Turkey , Cattle Diseases/virology , Rotavirus Infections/veterinary , Rotavirus Infections/virology
2.
BMC Vet Res ; 20(1): 209, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760785

ABSTRACT

BACKGROUND: Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS: The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS: Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Genome, Viral , Phylogeny , Animals , Cattle , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , China/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Feces/virology , Spike Glycoprotein, Coronavirus/genetics , Animals, Newborn
3.
Viruses ; 16(4)2024 04 11.
Article in English | MEDLINE | ID: mdl-38675932

ABSTRACT

In this study, virological surveillance focused on coronaviruses in marmots in the Alpine region in 2022, captured as part of a population control reduction program in the Livigno area. Seventy-six faecal samples were randomly collected from marmots at the time of capture and release and tested for genome detection of pan-coronavirus, pan-pestivirus, canine distemper virus, and influenza A and D virus. Nine faecal samples were positive in the Pan-CoV RT-PCR, while all were negative for the other viruses. Pan-coronavirus positives were further identified using Illumina's complete genome sequencing, which showed the highest homology with Bovine Coronavirus previously detected in roe deer in the Alps. Blood samples (n.35) were collected randomly from animals at release and tested for bovine coronavirus (BCoV) antibodies using competitive ELISA and VNT. Serological analyses revealed that 8/35 sera were positive for BCoV antibodies in both serological tests. This study provides molecular and serological evidence of the presence of BCoV in an alpine marmot population due to a likely spillover event. Marmots share areas and pastures with roe deer and other wild ruminants, and environmental transmission is a concrete possibility.


Subject(s)
Antibodies, Viral , Coronavirus, Bovine , Feces , Marmota , Phylogeny , Animals , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Marmota/virology , Feces/virology , Antibodies, Viral/blood , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/diagnosis , Cattle , Enzyme-Linked Immunosorbent Assay , Genome, Viral
4.
Biomed Res Int ; 2021: 5778455, 2021.
Article in English | MEDLINE | ID: mdl-34796233

ABSTRACT

BACKGROUND: Bovine rotavirus (BRV) and bovine coronavirus (BCoV) are the most common viral agents in neonatal calf diarrhea and result in serious economic consequences. The aim of the study was to determine the epidemiology of those viruses in randomly selected dairy farms of Addis Ababa. METHODS: A cross-sectional study was conducted from November 2018 to April 2019 using a probability proportional to size (PPS) sampling technique. A total of 110 calves, less than 30 days of age, from 57 dairy herds were involved in the study. Associated factors of herds and calves were collected using semistructured interviews from farm owners and through physical observation of selected calves. Fecal samples were collected and analyzed using the sandwich ELISA method. Data generated from both semistructured interviews and laboratory investigation were analyzed using STATA_MP version 15. RESULTS: From the total 110 calves, 42 (38.18%) had diarrhea during the survey. The prevalence of bovine rotavirus and coronavirus was 3.64% (4/110) and 0.91% (1/110), respectively. Diarrhea, feeding colostrum timing, and sex of the neonatal calves had statistically significant association with bovine rotavirus infection (p < 0.05). All rotavirus-positive neonatal calves were identified in small scale dairy farms and in dairy farms that reported mortality though they lack statistically significant association. Only one coronavirus case was detected among the neonatal calves. The case was identified among small scale herds and in a herd with diarrheal cases. The sex of the coronavirus calf was female, diarrheic, and among 11-20 days old. CONCLUSION: The prevalence of rotavirus and coronavirus infections in neonatal calves was seldom in dairy farms of the study area. Rotavirus was more common than coronavirus, and further studies should be initiated on other (infectious and noninfectious) causes of neonatal calf diarrhea in the area.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Rotavirus Infections/veterinary , Animals , Animals, Newborn , Cattle , Cattle Diseases/virology , Coronavirus Infections/epidemiology , Coronavirus, Bovine/isolation & purification , Cross-Sectional Studies , Diarrhea/epidemiology , Diarrhea/veterinary , Diarrhea/virology , Ethiopia/epidemiology , Farms/statistics & numerical data , Feces/virology , Female , Male , Mortality , Prevalence , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology
5.
Open Vet J ; 11(3): 500-507, 2021.
Article in English | MEDLINE | ID: mdl-34722215

ABSTRACT

Background: Diarrhea in newborn small ruminants continues to be the cause of significant financial loss in sheep and goat farms worldwide. Commercial immunochromatographic (IC) assays have been designed and evaluated to be used for the diagnosis of diarrhea in cattle; however, there are no trials to use rapid tests in small ruminants. Aim: This study was carried out in Kuwait to evaluate the performance of the rapid immunochromatography test (BoviD-4, BioNote, Inc, Korea) for diagnostics of Cryptosporidium, rotavirus A (RVA), bovine coronavirus (BCoV), and Escherichia coli K99 (E. coli K99) in fecal samples of sheep and goats. Methods: A total of 85 samples were examined using BoviD-4, and the results were compared with that of polymerase chain reaction for Cryptosporidium, RVA, and BCoV, whereas for E. coli K99 it was by isolation and identification as reference tests. Results: The kappa test agreement results between the BoviD-4 and reference tests were 0.870 (perfect), 0.783 (substantial), 0.728 (substantial), and 0.281 (fair) for the detection of E. coli K99, Cryptosporidium, RVA, and BCoV, respectively. The sensitivity of BoviD-4 kit was 91.2%, 80.0%, 90.0%, and 37.5% and the specificity was 88.2%, 96.0%, 96.4%, and 92.2% for Cryptosporidium, RVA, E. coli K99, and BCoV, respectively. Conclusion: The Bovid-4 kit can be used as a rapid pen-side test for Cryptosporidium spp., E. coli K99, and RVA in the field. Nonetheless, care must be taken while interpreting the BCoV results of the kit.


Subject(s)
Chromatography, Affinity/veterinary , Coronavirus, Bovine , Cryptosporidium , Escherichia coli , Rotavirus , Animals , Coronavirus, Bovine/isolation & purification , Cryptosporidiosis/diagnosis , Cryptosporidium/isolation & purification , Escherichia coli/isolation & purification , Feces , Goats , Kuwait , Rotavirus/isolation & purification , Sheep
6.
Viruses ; 13(6)2021 06 04.
Article in English | MEDLINE | ID: mdl-34199933

ABSTRACT

Bovine coronavirus (BCoV) is the causative agent of winter dysentery (WD). In adult dairy cattle, WD is characterized by hemorrhagic diarrhea and a reduction in milk production. Therefore, WD leads to significant economic losses in dairy farms. In this study, we aimed to isolate and characterize local BCoV strains. BCoV positive samples, collected during 2017-2021, were used to amplify and sequence the S1 domain of S glycoprotein and the full hemagglutinin esterase gene. Based on our molecular analysis, local strains belong to different genetic variants circulating in dairy farms in Israel. Phylogenetic analysis revealed that all local strains clustered together and in proximity to other BCoV circulating in the area. Additionally, we found that local strains are genetically distant from the reference enteric strain Mebus. To our knowledge, this is the first report providing molecular data on BCoV circulating in Israel.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/genetics , Dysentery/veterinary , Phylogeny , Animals , Antigens, Viral/genetics , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Coronavirus, Bovine/classification , Coronavirus, Bovine/isolation & purification , Dairying , Dysentery/virology , Feces/virology , Female , Genetic Variation , Israel/epidemiology , Sequence Analysis, DNA
7.
Prev Vet Med ; 190: 105323, 2021 May.
Article in English | MEDLINE | ID: mdl-33756433

ABSTRACT

Calf gastrointestinal disease remains one of the main causes of productivity and economic losses on dairy operations. The majority of pre-weaned calf mortality is attributed to diarrhea or other digestive problems. Five enteric pathogens are commonly associated with diarrhea in dairy calves, including bovine rotavirus, bovine coronavirus, Escherichia coli, Salmonella spp., and Cryptosporidium parvum. Pathogen-associated differences in health outcomes and case fatality rates have not been well-characterized. Additionally, updated prevalence estimates may reflect important changes in the epidemiology of the pathogens on dairy farms. For this cohort study, fecal samples were collected from 276 clinically ill calves across 5 central Ohio dairy farms on the first day of diarrheal diagnosis. Genomic techniques, including reverse transcription polymerase chain reaction (RT-PCR) and droplet digital polymerase chain reaction (ddPCR) were used to test for the presence of the five enteric pathogens. A Poisson regression model was used to estimate the relative risk of mortality, and a survival analysis with a Cox regression model was used to analyze time to return to a healthy clinical status by pathogen. Rotavirus was the most frequently identified at 68.1 % (188/276), followed by F5 (K99)+E. coli at 42.5 % (114/268), C. parvum at 28.4 % (66/232), coronavirus at 5.8 % (16/276), and Salmonella had the lowest prevalence at 3.7 % (10/268). Risk of mortality tended to be higher for calves infected with Salmonella (RR = 3.83; 95 %CI: 0.93, 16.02, p = 0.062); however, the time to return to a healthy clinical status was not different for different pathogens. Only farm was a significant predictor of time to return to health (p = 0.017); the within-farm median duration of signs substantially varied between 2 and 7 days. The results suggest that the prevalence and distribution of rotaviral infections is higher than reported in prior studies. With the exception of infections caused by Salmonella spp., pathogen diagnosis on the first day of diarrhea was a poor predictor of the outcome and duration of disease. These results are critical to guide the implementation of prevention measures to detect, treat, and prevent calf diarrhea.


Subject(s)
Cattle Diseases/microbiology , Cattle Diseases/virology , Diarrhea/veterinary , Animals , Animals, Newborn , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/isolation & purification , Cryptosporidiosis/epidemiology , Cryptosporidium parvum/isolation & purification , Dairying , Diarrhea/epidemiology , Diarrhea/microbiology , Diarrhea/virology , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Farms , Longitudinal Studies , Ohio/epidemiology , Prevalence , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Salmonella/isolation & purification , Salmonella Infections, Animal/epidemiology , Treatment Outcome , Weaning
8.
Res Vet Sci ; 135: 450-455, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33203584

ABSTRACT

BRD is associated with infectious agents, but management and transport-stress are trigger factors. Metaphylactic administration of antimicrobial reduces colonization of respiratory tract by pathogens, but the development of antibiotic-resistance raises public health concerns leading to propose new control strategies. The study analyzed nasopharyngeal swabs of 231 imported cattle, 10% of 49 trucks, transported from France to southern Italy and, through Real-time PCR identified the prevalence of the involved pathogens speculating on strategies to reduce the impact of BRD. The samples were tested by Real-time PCR, for the detection of bovine coronavirus (BCoV), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus (BPiV), bovine adenovirus (BAdV), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Yates-corrected chi squared, or Fisher's exact test were used to compare both animal-health status and positivity/negativity to pathogens, and the relationship between presence/absence of clinical signs and Real-time PCR-positivity. H. somni and BCoV were the most frequently identified pathogens. In BRD-diagnosed cattle, BAdV was detected in 13.8% (19/138), BRSV in 14.5% (20/138) and BPiV in 4.3% (6/138). Healthy cattle were mostly positive for H. somni (89.2%, 83/93). A statistically significant association was observed between clinical signs and positivity to M. haemolytica (p value = 0.016). Although mass-medication and vaccination are used for BRD control, it still remains a primary health problem. Our results highlight that the nasopharyngeal microbiota could be affected by transport and that strategies to enhance calf immunity for reducing BRD-risk development would be more effective if applied at farm of origin prior to loading.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus, Bovine/isolation & purification , Microbiota , Pasteurellaceae/isolation & purification , Respiratory Tract Diseases/veterinary , Animals , Cattle , Cattle Diseases/microbiology , Cattle Diseases/prevention & control , Coronavirus, Bovine/genetics , Epidemiologic Studies , France/epidemiology , Immunity , Italy/epidemiology , Male , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Nasopharynx/microbiology , Pasteurellaceae/genetics , Respiratory Syncytial Virus, Bovine/genetics , Respiratory Syncytial Virus, Bovine/isolation & purification , Respiratory System/microbiology , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/prevention & control , Respirovirus/genetics , Respirovirus/isolation & purification , Transportation
9.
BMC Vet Res ; 16(1): 405, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33109183

ABSTRACT

BACKGROUND: Apart from the huge worldwide economic losses often occasioned by bovine coronavirus (BCoV) to the livestock industry, particularly with respect to cattle rearing, continuous surveillance of the virus in cattle and small ruminants is essential in monitoring variations in the virus that could enhance host switching. In this study, we collected rectal swabs from a total of 1,498 cattle, sheep and goats. BCoV detection was based on reverse transcriptase polymerase chain reaction. Sanger sequencing of the partial RNA-dependent RNA polymerase (RdRp) region for postive samples were done and nucleotide sequences were compared with homologous sequences from the GenBank. RESULTS: The study reports a BCoV prevalence of 0.3%, consisting of 4 positive cases; 3 goats and 1 cattle. Less than 10% of all the animals sampled showed clinical signs such as diarrhea and respiratory distress except for high temperature which occurred in > 1000 of the animals. However, none of the 4 BCoV positive animals manifested any clinical signs of the infection at the time of sample collection. Bayesian majority-rule cladogram comparing partial and full length BCoV RdRp genes obtained in the study to data from the GenBank revealed that the sequences obtained from this study formed one large monophyletic group with those from different species and countries. The goat sequences were similar to each other and clustered within the same clade. No major variations were thus observed between our isolates and those from elsewhere. CONCLUSIONS: Given that Ghana predominantly practices the extensive and semi-intensive systems of animal rearing, our study highlights the potential for spillover of BCoV to small ruminants in settings with mixed husbandry and limited separation between species.


Subject(s)
Cattle Diseases/virology , Coronavirus Infections/veterinary , Coronavirus, Bovine/isolation & purification , Goat Diseases/virology , Sheep Diseases/virology , Animals , Base Sequence , Bayes Theorem , Cattle , Cattle Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Bovine/genetics , Diarrhea/veterinary , Ghana/epidemiology , Goat Diseases/epidemiology , Goats , Phylogeny , Prevalence , RNA-Dependent RNA Polymerase/genetics , Respiratory Distress Syndrome/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sheep , Sheep Diseases/epidemiology
10.
Arch Virol ; 165(12): 3011-3015, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33025200

ABSTRACT

The hemagglutinin-esterase (HE) protein of betacoronavirus lineage A is a secondary receptor in the infection process and is involved in the emergence of new betacoronavirus genotypes with altered host specificity and tissue tropism. We previously reported a novel recombinant bovine coronavirus (BCoV) strain that was circulating in dairy cattle in China, but this virus was not successfully isolated, and the genetic characteristics of BCoV are still largely unknown. In this study, 20 diarrheic faecal samples were collected from a farm in Liaoning province that had an outbreak of calf diarrhea (≤ 3 months of age) in November 2018, and all of the samples tested positive for BCoV by RT-PCR. In addition, a BCoV strain with a recombinant HE (designated as SWUN/A1/2018) and another BCoV strain with a recombinant HE containing an insertion (designated as SWUN/A10/2018) were successfully isolated in cell culture (TCID50: 104.25/mL and 104.73/mL, respectively). Unexpectedly, we identified the emergence of a novel BCoV variant characterized by a 12-nt bovine gene insertion in the receptor-binding domain in a natural recombinant HE gene, suggesting a novel evolutionary pattern in BCoV.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/genetics , Diarrhea/veterinary , Hemagglutinins, Viral/genetics , RNA, Viral/genetics , Viral Fusion Proteins/genetics , Animals , Cattle , Cattle Diseases/pathology , Cattle Diseases/virology , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Coronavirus, Bovine/classification , Coronavirus, Bovine/isolation & purification , Diarrhea/epidemiology , Diarrhea/pathology , Diarrhea/virology , Evolution, Molecular , Feces/virology , Gene Expression , Genotype , Models, Molecular , Mutagenesis, Insertional , Phylogeny , Protein Structure, Secondary , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
11.
Can J Vet Res ; 84(3): 163-171, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32801450

ABSTRACT

Bovine respiratory disease complex is etiologically complex and usually involves co-infection by several agents, including bovine parainfluenza virus-3 (BPIV-3), bovine respiratory syncytial virus (BRSV), and bovine coronavirus (BCoV). Traditionally, vaccines have been tested in seronegative calves infected with a single in vitro-passaged agent, often with little disease, resulting in unvaccinated subjects. To overcome the potential problem of attenuation coincident with in vitro culture of the viruses, cocktails of field isolates of BPIV-3s and BCoVs were passaged in the lungs of neonatal colostrum-deprived calves. Lung lavage fluids were used as inocula, alone and in combination with in-vivo passaged BRSV, and aerosolized into a trailer containing conventionally reared 9-week-old weaned Holstein calves with decayed, but still measurable, maternal antibodies. Calves developed acute respiratory disease of variable severity. Upon necropsy, there were characteristic gross and histologic lesions in the respiratory tract, associated immunohistochemically with BPIV-3, BRSV, and BCoV. In-vivo passage of viruses is an alternative to in vitro culture to produce inocula to better study the pathogenesis of infection and more rigorously and relevantly assess vaccine efficacy.


Le complexe des maladies respiratoires bovines possède une étiologie complexe et implique habituellement une co-infection par plusieurs agents, incluant le virus parainfluenza bovin 3 (BPIV-3), le virus respiratoire syncitial bovin (BRSV) et le coronavirus bovin (BCoV). Traditionnellement, les vaccins ont été testés chez des veaux séronégatifs infectés avec un seul agent cultivé in vitro, présentant souvent peu de maladie, résultant en des sujets non-vaccinés. Afin de contrecarrer le problème potentiel d'atténuation associé à la culture in vitro des virus, des cocktails d'isolats de champs de BPIV-3 et de BCoV furent passés dans des poumons de veaux nouveau-nés privés de colostrum. Les liquides de lavage pulmonaire furent utilisés comme inoculum, seul et en combinaison avec des BRSV passés in vivo, et aérosolisés dans une remorque contenant des veaux Holstein sevrés élevés de manière conventionnelle âgés de 9 semaines ayant des anticorps maternels en déclin mais toujours mesurables. Les veaux ont développé une maladie respiratoire aiguë de sévérité variable. Lors de la nécropsie, il y avait des lésions macroscopiques et histologiques caractéristiques dans le tractus respiratoire, associées immuno-histochimiquement avec BPIV-3, BRSV et BCoV. Le passage in vivo de virus est une alternative à la culture in vitro afin de produire un inoculum permettant de mieux étudier la pathogénie de l'infection et d'évaluer plus rigoureusement et plus pertinemment l'efficacité de vaccins.(Traduit par Docteur Serge Messier).


Subject(s)
Cattle Diseases/virology , Coronavirus Infections/veterinary , Coronavirus, Bovine/pathogenicity , Parainfluenza Virus 3, Bovine/pathogenicity , Respiratory Syncytial Virus Infections/veterinary , Respirovirus Infections/veterinary , Animals , Antibodies, Viral/blood , Antigens, Viral/isolation & purification , Cattle , Cattle Diseases/pathology , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Coronavirus, Bovine/isolation & purification , Immunohistochemistry/veterinary , Lung/pathology , Lung/virology , Parainfluenza Virus 3, Bovine/immunology , Parainfluenza Virus 3, Bovine/isolation & purification , Pulmonary Atelectasis/pathology , Pulmonary Atelectasis/veterinary , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Viruses/isolation & purification , Respiratory Syncytial Viruses/pathogenicity , Respirovirus Infections/complications , Respirovirus Infections/pathology , Respirovirus Infections/virology , Trachea/pathology , Trachea/virology
12.
Trop Anim Health Prod ; 52(6): 2809-2816, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32681447

ABSTRACT

Bovine coronaviruses are spread all over the world. They cause two types of clinical manifestations in cattle either an enteric, calf diarrhoea and winter dysentery in adult cattle, or respiratory in all age groups of cattle. The role of coronaviruses in respiratory infections is still a hot topic of discussion since they have been isolated from sick as well as healthy animals and replication of disease is rarely successful. Bovine coronavirus infection is characterised by high morbidity but low mortality. The laboratory diagnosis is typically based on serological or molecular methods. There is no registered drug for the treatment of virus infections in cattle and we are limited to supportive therapy and preventative measures. The prevention of infection is based on vaccination, biosecurity, management and hygiene. This paper will cover epidemiology, taxonomy, pathogenesis, clinical signs, diagnosis, therapy, economic impact and prevention of coronavirus infections in cattle.


Subject(s)
Cattle Diseases/virology , Coronavirus Infections/veterinary , Coronavirus, Bovine , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Cattle Diseases/therapy , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Coronavirus, Bovine/classification , Coronavirus, Bovine/isolation & purification , Coronavirus, Bovine/physiology , Diarrhea/veterinary , Diarrhea/virology , Enterocolitis, Necrotizing/veterinary , Enterocolitis, Necrotizing/virology , Respiratory Tract Infections/veterinary , Respiratory Tract Infections/virology , Vaccination/veterinary
13.
Trop Anim Health Prod ; 52(5): 2761-2768, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32488696

ABSTRACT

Group A rotavirus (RVA) and bovine coronavirus (BCoV) are the two main viral enteropathogens associated with neonatal calf diarrhea. The aim of the present survey was to investigate the epidemiology and the role of RVA and BCoV in the presentation of dairy and beef calf diarrhea in Lerma Valley of Salta province, within the Northwest region of Argentina. Stool samples of calves with or without diarrhea younger than 2 months of age were collected from 19 dairy farms and 20 beef farms between the years 2014 and 2016. Stool samples were screened for RVA and BCoV detection by ELISA. Heminested multiplex RT-PCR was used for RVA typing and RT-PCR to confirm BCoV. Positive samples were submitted to sequencing analysis. Bovine RVA and BCoV were circulating in 63% (12/19) and 10.52% (2/19) of the dairy farms, respectively, where 9.5% (46/484) of the calves were positives to RVA and 0.4% (2/484) to BCoV. In beef herds, RVA was detected in 40% (8/20) of the farms and in 6.75% (21/311) of the calves, without positives cases of BCoV. Molecular analysis showed that in dairy farms, G6P[11] and G10P[11] were the prevalent RVA strains, while in beef farms, G10P[11] was the prevalent. The main finding was the detection for the first time of a G15P[11] causing diarrhea in beef calves of Argentina that represents a new alert to be consider for future vaccine updates. Analysis of detected BCoV showed that it is related to the other circulating strains of Argentina.


Subject(s)
Cattle Diseases/virology , Coronavirus, Bovine/isolation & purification , Diarrhea/veterinary , Rotavirus Infections/veterinary , Rotavirus/isolation & purification , Animals , Animals, Newborn , Argentina , Cattle , Coronavirus, Bovine/genetics , Diarrhea/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Feces/virology , Genotype , Rotavirus/genetics , Rotavirus Infections/virology
14.
J Vet Diagn Invest ; 32(4): 513-526, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32484424

ABSTRACT

Bovine coronaviruses (BoCVs) have been found in respiratory tissues in cattle and frequently associated with bovine respiratory disease (BRD); however, pathogenesis studies in calves are limited. To characterize the pathogenesis and pathogenicity of BoCV isolates, we used 5 different BoCV strains to inoculate colostrum-deprived calves, ~ 2-5 wk of age. Later, to determine if dual viral infection would potentiate pathogenicity of BoCV, calves were inoculated with BoCV alone, bovine viral diarrhea virus (BVDV) alone, or a series of dual-infection (BVDV-BoCV) schemes. A negative control group was included in all studies. Clinical signs and body temperature were monitored during the study and samples collected for lymphocyte counts, virus isolation, and serology. During autopsy, gross lesions were recorded and fixed tissues collected for histopathology and immunohistochemistry; fresh tissues were collected for virus isolation. Results suggest increased pathogenicity for isolate BoCV OK 1776. Increased body temperature was found in all virus-inoculated groups. Lung lesions were present in calves in all dual-infection groups; however, lesions were most pronounced in calves inoculated with BVDV followed by BoCV inoculation 6 d later. Lung lesions were consistent with mild-to-moderate interstitial pneumonia, and immunohistochemistry confirmed the presence of BoCV antigen. Our studies demonstrated that BVDV-BoCV dual infection may play an important role in BRD pathogenesis, and timing between infections seems critical to the severity of lesions.


Subject(s)
Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/virology , Coronavirus, Bovine/isolation & purification , Diarrhea Virus 1, Bovine Viral/isolation & purification , Respiratory Tract Diseases/veterinary , Animals , Bovine Virus Diarrhea-Mucosal Disease/pathology , Cattle , Colostrum , Diarrhea/veterinary , Diarrhea Viruses, Bovine Viral/immunology , Female , Pregnancy , Respiratory Tract Diseases/pathology , Respiratory Tract Diseases/virology
15.
Comp Immunol Microbiol Infect Dis ; 71: 101494, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32434101

ABSTRACT

The etiological agents involved in a bovine respiratory disease (BRD) outbreak were investigated in a dairy heifer calf rearing unit from southern Brazil. A battery of PCR assays was performed to detect the most common viruses and bacteria associated with BRD, such as bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), bovine parainfluenza virus 3 (BPIV-3), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Bronchoalveolar lavage fluid (BALF) samples were taken from 21 heifer calves (symptomatic n = 15; asymptomatic n = 6) that, during the occurrence of the BDR outbreak, were aged between 6 and 90 days. At least one microorganism was detected in 85.7 % (18/21) of the BALF samples. Mixed infections were more frequent (72.2 %) than single infections (27.7 %). The interactions between viruses and bacteria were the most common in coinfections (55.5 %). The frequencies of BRD agents were 38.1 % for BRSV, 28.6 % for BVDV, 33.3 % for BCoV, 42.85 % for P. multocida, 33.3 % for M. bovis, and 19 % for H. somni. BoHV-1, BPIV-3, and M. haemolytica were not identified in any of the 21 BALF samples. Considering that BALF and not nasal swabs were analyzed, these results demonstrate the etiological multiplicity that may be involved in BRD outbreaks in dairy calves.


Subject(s)
Bronchoalveolar Lavage Fluid/microbiology , Cattle Diseases/microbiology , Disease Outbreaks/veterinary , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Animals , Brazil/epidemiology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/etiology , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Dairying , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Molecular Diagnostic Techniques/veterinary , Mycoplasma bovis/genetics , Mycoplasma bovis/isolation & purification , Pasteurella multocida/genetics , Pasteurella multocida/isolation & purification , Pasteurellaceae/genetics , Pasteurellaceae/isolation & purification , Polymerase Chain Reaction , Respiratory Syncytial Virus, Bovine/genetics , Respiratory Syncytial Virus, Bovine/isolation & purification , Respiratory Tract Infections/etiology , Respiratory Tract Infections/veterinary
16.
Vet Clin North Am Food Anim Pract ; 36(2): 321-332, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32451028

ABSTRACT

Advances in viral detection in bovine respiratory disease (BRD) have resulted from advances in viral sequencing of respiratory tract samples. New viruses detected include influenza D virus, bovine coronavirus, bovine rhinitis A, bovine rhinitis B virus, and others. Serosurveys demonstrate widespread presence of some of these viruses in North American cattle. These viruses sometimes cause disease after animal challenge, and some have been found in BRD cases more frequently than in healthy cattle. Continued work is needed to develop reagents for identification of new viruses, to confirm their pathogenicity, and to determine whether vaccines have a place in their control.


Subject(s)
Cattle Diseases/virology , Coronavirus, Bovine/genetics , Diarrhea Viruses, Bovine Viral/genetics , Genetic Testing/veterinary , Herpesvirus 1, Bovine/genetics , Respiratory Tract Diseases/veterinary , Animals , Cattle , Coronavirus, Bovine/isolation & purification , Diarrhea Viruses, Bovine Viral/isolation & purification , Genomics/methods , Herpesvirus 1, Bovine/isolation & purification , Respiratory Tract Diseases/virology
17.
J Vet Med Sci ; 82(6): 726-730, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32269197

ABSTRACT

Bovine coronavirus (BCoV) is an etiological agent of bovine respiratory disease (BRD). BRD is a costly illness worldwide; thus, epidemiological surveys of BCoV are important. Here, we conducted a molecular epidemiological survey of BCoV in respiratory-diseased and healthy cattle in Japan from 2016 to 2018. We found that 21.2% (58/273) of the respiratory-diseased cattle were infected with BCoV. The respiratory-diseased cattle had virus amounts 4.7 times higher than those in the asymptomatic cattle. Phylogenetic analyses showed that the BCoV identified in Japan after 2005 formed an individual lineage that was distinct from the strains found in other countries. These results suggest that BCoV is epidemic and has evolved uniquely in Japan.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/genetics , Molecular Epidemiology , Phylogeny , Respiratory Tract Infections/veterinary , Animals , Cattle , Cattle Diseases/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Bovine/classification , Coronavirus, Bovine/isolation & purification , Japan , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Viral Load
18.
Viruses ; 12(2)2020 02 06.
Article in English | MEDLINE | ID: mdl-32041103

ABSTRACT

Bovine coronavirus (BCoV) is zoonotically transmissible among species, since BCoV-like viruses have been detected in wild ruminants and humans. BCoV causing enteric and respiratory disease is widespread in cattle farms worldwide; however, limited information is available regarding the molecular characterization of BCoV because of its large genome size, despite its significant economic impact. This study aimed to better understand the genomic characterization and evolutionary dynamics of BCoV via comparative sequence and phylogenetic analyses through whole genome sequence analysis using 67 BCoV isolates collected throughout Japan from 2006 to 2017. On comparing the genomic sequences of the 67 BCoVs, genetic variations were detected in 5 of 10 open reading frames (ORFs) in the BCoV genome. Phylogenetic analysis using whole genomes from the 67 Japanese BCoV isolates in addition to those from 16 reference BCoV strains, revealed the existence of two major genotypes (classical and US wild ruminant genotypes). All Japanese BCoV isolates originated from the US wild ruminant genotype, and they tended to form the same clusters based on the year and farm of collection, not the disease type. Phylogenetic trees on hemagglutinin-esterase protein (HE), spike glycoprotein (S), nucleocapsid protein (N) genes and ORF1 revealed clusters similar to that on whole genome, suggesting that the evolution of BCoVs may be closely associated with variations in these genes. Furthermore, phylogenetic analysis of BCoV S genes including those of European and Asian BCoVs and human enteric coronavirus along with the Japanese BCoVs revealed that BCoVs differentiated into two major types (European and American types). Moreover, the European and American types were divided into eleven and three genotypes, respectively. Our analysis also demonstrated that BCoVs with different genotypes periodically emerged and predominantly circulated within the country. These findings provide useful information to elucidate the detailed molecular characterization of BCoVs, which have spread worldwide. Further genomic analyses of BCoV are essential to deepen the understanding of the evolution of this virus.


Subject(s)
Cattle Diseases/virology , Coronavirus Infections/veterinary , Coronavirus, Bovine/classification , Coronavirus, Bovine/genetics , Animals , Cattle , Cattle Diseases/epidemiology , Cell Line, Tumor , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Bovine/isolation & purification , Evolution, Molecular , Genetic Variation , Genome, Viral/genetics , Genotype , Humans , Japan/epidemiology , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics
19.
J Vet Med Sci ; 82(3): 314-319, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31941845

ABSTRACT

It can be judged that if the detection frequency of prevalent pathogenic viruses decreases, biosecurity has been enhanced. To monitor bovine farm biosecurity levels, one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) for the simultaneous detection of group A rotavirus (RVA), bovine torovirus (BToV), bovine enterovirus (BEV), and bovine coronavirus (BCV) was designed, with the aim of configuring candidates for "viral pathogen indicators". A total of 322 bovine fecal samples were collected from calves aged less than three months at 48 bovine farms in Ibaraki and Chiba prefectures. At farm A, 20 calves were selected and sampled weekly for 12 weeks (184 samples); at farm B, 10 calves were selected and sampled for five weeks (50 samples); and at the rest of the 46 farms, 88 calves were sampled once. The screening on the 358 field samples proved positive for 27 RVA, 4 BToV, 55 BEV, and 52 BCV. In the successive sampling, RVA was detected once but not continuously, whereas BEV and BCV were detected in succession for up to five weeks. The results revealed that RVA was the primary agent among the positive samples obtained from calves aged three weeks or less, while BEV was the primary among those from the older than three weeks old. They can be employed as useful viral pathogen indicators for soundly evaluating biosecurity at bovine farms.


Subject(s)
Cattle Diseases/virology , Coronavirus, Bovine/isolation & purification , Enterovirus, Bovine/isolation & purification , Rotavirus/isolation & purification , Torovirus/isolation & purification , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/prevention & control , Feces/virology , Japan/epidemiology , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary
20.
J Dairy Sci ; 103(3): 2556-2566, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31954585

ABSTRACT

Respiratory tract infections (bovine respiratory disease) are a major concern in calf rearing. The objective of this study was to identify pathogen-specific risk factors associated with epidemic respiratory disease in calves. A cross-sectional study was conducted, involving 128 outbreaks (29 dairy, 58 dairy-mixed, and 41 beef) in Belgium (2016-2018). A semiquantitative PCR for 7 respiratory pathogens was done on a pooled nonendoscopic bronchoalveolar lavage sample for each herd. Potential risk factors were collected by questionnaire and derived from the national cattle registration databank. Most outbreaks occurred between October and March, and single and multiple viral infections were detected in 58.6% (75/128) and 13.3% (17/128), respectively. Bovine coronavirus (BCV) was the most frequently isolated virus (38.4%), followed by bovine respiratory syncytial virus (bRSV; 29.4%) and parainfluenzavirus type 3 (PI-3; 8.1%). Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni were detected in 33.3, 41.2, 89.1, and 36.4% of the herds, respectively. Specific risk factors for BCV detection were detection of M. haemolytica [odds ratio (OR) = 2.8 (95% confidence interval = 1.1-7.5)], increasing herd size [OR = 1.3 (1.0-1.8) for each increase with 100 animals] and detection of BCV by antigen ELISA on feces in calves in the last year [OR = 3.6 (1.2-11.1)]. A seasonal effect was shown for bRSV only {more in winter compared with autumn [OR = 10.3 (2.8-37.5)]}. Other factors associated with bRSV were PI-3 detection [OR = 13.4 (2.1-86.0)], prevalence of calves with respiratory disease [OR = 1.02 (1.00-1.04) per 1% increase], and number of days with respiratory signs before sampling [OR = 0.99 (0.98-0.99) per day increase]. Next to its association with BCV, M. haemolytica was more frequently detected in herds with 5 to 10 animals per pen [OR = 8.0 (1.4-46.9)] compared with <5 animals, and in herds with sawdust as bedding [OR = 18.3 (1.8-191.6)]. Also, for H. somni, housing on sawdust was a risk factor [OR = 5.2 (1.2-23.0)]. Purchase of cattle [OR = 2.9 (1.0-8.0)] and housing of recently purchased animals in the same airspace [OR = 5.0 (1.5-16.5)] were risk factors for M. bovis. This study identified pathogen-specific risk factors that might be useful for the development of customized control and prevention and for the design of decision support tools to justify antimicrobial use by predicting the most likely pathogen before sampling results are available.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus, Bovine/isolation & purification , Disease Outbreaks/veterinary , Respiratory Tract Infections/veterinary , Animals , Belgium/epidemiology , Bronchoalveolar Lavage/veterinary , Cattle , Cattle Diseases/microbiology , Cross-Sectional Studies , Feces/microbiology , Female , Male , Mannheimia haemolytica/isolation & purification , Mycoplasma bovis/isolation & purification , Parainfluenza Virus 3, Bovine/isolation & purification , Pasteurella multocida/isolation & purification , Pasteurellaceae/isolation & purification , Respiratory Syncytial Virus, Bovine/isolation & purification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Risk Factors , Species Specificity , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...