Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Colloid Interface Sci ; 662: 535-544, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364478

ABSTRACT

HYPOTHESIS: Surfactants are inexpensive chemicals with promising applications in virus inactivation, particularly for enveloped viruses. Yet, the detailed mechanisms by which surfactants deactivate coronaviruses remain underexplored. This study delves into the virucidal mechanisms of various surfactants on Feline Coronavirus (FCoV) and their potential applications against more pathogenic coronaviruses. EXPERIMENTS: By integrating virucidal activity assays with fluorescence spectroscopy, dynamic light scattering and laser Doppler electrophoresis, alongside liposome permeability experiments, we have analyzed the effects of non-ionic and ionic surfactants on viral activity. FINDINGS: The non-ionic surfactant octaethylene glycol monodecyl ether (C10EO8) inactivates the virus by disrupting the lipid envelope, whereas ionic surfactants like Sodium Dodecyl Sulfate and Cetylpyridinium Chloride predominantly affect the spike proteins, with their impact on the viral membrane being hampered by kinetic and thermodynamic constraints. FCoV served as a safe model for studying virucidal activity, offering a faster alternative to traditional virucidal assays. The study demonstrates that physicochemical techniques can expedite the screening of virucidal compounds, contributing to the design of effective disinfectant formulations. Our results not only highlight the critical role of surfactant-virus interactions but also contribute to strategic advancements in public health measures for future pandemic containment and the ongoing challenge of antimicrobial resistance.


Subject(s)
Coronavirus, Feline , Surface-Active Agents , Animals , Cats , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Coronavirus, Feline/physiology , Sodium Dodecyl Sulfate , Virus Inactivation
2.
J Biol Chem ; 299(3): 102976, 2023 03.
Article in English | MEDLINE | ID: mdl-36738790

ABSTRACT

Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Nucleocapsid Proteins , Virus Replication , Animals , Cats , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Culture Techniques , Coronavirus, Feline/drug effects , Coronavirus, Feline/physiology , Feline Infectious Peritonitis/drug therapy , RNA, Viral/genetics , Virus Replication/drug effects
3.
Viruses ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34452302

ABSTRACT

Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs through respiratory droplets passed directly from person to person or indirectly through fomites, such as common use surfaces or objects. The aim of this study was to determine the virucidal efficacy of blue LED (405 nm) and far-UVC (222 nm) light in comparison to standard UVC (254 nm) irradiation for the inactivation of feline infectious peritonitis virus (FIPV) on different matrices as a model for SARS-CoV-2. Wet or dried FIPV on stainless steel, plastic, or paper discs, in the presence or absence of artificial saliva, were exposed to various wavelengths of light for different time periods (1-90 min). Dual activity of blue LED and far-UVC lights were virucidal for most wet and dried FIPV within 4 to 16 min on all matrices. Individual action of blue LED and far-UVC lights were virucidal for wet FIPV but required longer irradiation times (8-90 min) to reach a 4-log reduction. In comparison, LED (265 nm) and germicidal UVC (254 nm) were virucidal on almost all matrices for both wet and dried FIPV within 1 min exposure. UVC was more effective for the disinfection of surfaces as compared to blue LED and far-UVC individually or together. However, dual action of blue LED and far-UVC was virucidal. This combination of lights could be used as a safer alternative to traditional UVC.


Subject(s)
COVID-19/virology , Coronavirus, Feline/radiation effects , Disinfection/methods , SARS-CoV-2/radiation effects , Animals , COVID-19/prevention & control , Cats , Coronavirus Infections/virology , Coronavirus, Feline/growth & development , Coronavirus, Feline/physiology , Disinfection/instrumentation , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Ultraviolet Rays , Virus Inactivation/radiation effects
4.
Biomed Res Int ; 2020: 9089768, 2020.
Article in English | MEDLINE | ID: mdl-32923488

ABSTRACT

PURPOSE: We investigated sequences of the feline coronaviruses (FCoV), which include feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV), from China and other countries to gain insight into the adaptive evolution of this virus. METHODS: Ascites samples from 31 cats with suspected FIP and feces samples from 8 healthy cats were screened for the presence of FCoV. Partial viral genome sequences, including parts of the nsp12-nsp14, S, N, and 7b genes, were obtained and aligned with additional sequences obtained from the GenBank database. Bayesian phylogenetic analysis was conducted, and the possibility of recombination within these sequences was assessed. Analysis of the levels of selection pressure experienced by these sequences was assessed using methods on both the PAML and Datamonkey platforms. RESULTS: Of the 31 cats investigated, two suspected FIP cats and one healthy cat tested positive for FCoV. Phylogenetic analysis showed that all of the sequences from mainland China cluster together with a few sequences from the Netherlands as a distinct clade when analyzed with FCoV sequences from other countries. Fewer than 3 recombination breakpoints were detected in the nsp12-nsp14, S, N, and 7b genes, suggesting that analyses for positive selection could be conducted. A total of 4, 12, 4, and 4 positively selected sites were detected in the nsp12-nsp14, S, N, and 7b genes, respectively, with the previously described site 245 of the S gene, which distinguishes FIPV from FECV, being a positive selection site. Conversely, 106, 168, 25, and 17 negative selection sites in the nsp12-14, S, N, and 7b genes, respectively, were identified. CONCLUSION: Our study provides evidence that the FCoV genes encoding replicative, entry, and virulence proteins potentially experienced adaptive evolution. A greater number of sites in each gene experienced negative rather than positive selection, which suggests that most of the protein sequence must be conservatively maintained for virus survival. A few of the sites showing evidence of positive selection might be associated with the more severe pathology of FIPV or help these viruses survive other harmful conditions.


Subject(s)
Adaptation, Biological/genetics , Coronavirus, Feline/genetics , Feline Infectious Peritonitis/virology , Feline Panleukopenia/virology , Genome, Viral/genetics , Animals , Bayes Theorem , Cats , China , Coronavirus, Feline/physiology , Evolution, Molecular , Feces/virology , Feline Infectious Peritonitis/pathology , Feline Panleukopenia/pathology , Mutation , Phylogeny , Recombination, Genetic , Selection, Genetic , Viral Proteins/genetics
5.
Res Vet Sci ; 125: 272-278, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31326703

ABSTRACT

Feline coronaviruses (FCoV) colonize the intestinal tract, however, due to not fully understood mutations, they can spread systemically and cause feline infectious peritonitis (FIP). Recent studies on human medicine report that gut microbiota is involved in the development of systemic disorders and could influence the immune response to viral diseases. The aim of this study was to provide preliminary data on the fecal microbiota composition in healthy cats compared to FCoV-infected cats, with and without FIP. Cats were equally grouped as healthy FCoV-negative, healthy FCoV-positive or FIP affected (total n = 15). Fecal sample were evaluated for the microbiota composition. A total of 3,231,916 sequences were analyzed. The samples' alpha-diversity curves did not reach a proper plateau and, for the beta-diversity, the samples seemed not to group perfectly by category, even if the healthy FCoV-positive group showed a hybrid microbial composition between FCoV-negative and FIP groups. Although there were no taxa significantly linked to the different conditions, some peculiar patterns were recognized: Firmicutes was always the most represented phylum, followed by Bacteroidetes and Actinobacteria. In FCoV-positive cats, the Firmicutes and Bacteroidetes were respectively over- and under-represented, compared to the other groups. Among FIP cats, three subjects shared a similar microbiome, one cat showed a different microbial profile and the other one had the lowest number of diverse phyla. Despite the limited number of animals, some differences in the fecal microbiome between the groups were observed, suggesting to further investigate the possible correlation between gut microbiota and FCoV infection in cats.


Subject(s)
Coronavirus, Feline/physiology , Feline Infectious Peritonitis/virology , Gastrointestinal Microbiome , Animals , Case-Control Studies , Cats , Feces/virology , Pilot Projects
6.
Viruses ; 12(1)2019 12 30.
Article in English | MEDLINE | ID: mdl-31905881

ABSTRACT

Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to evade host IFN response. However, whether feline infectious peritonitis virus (FIPV) antagonizes the type I IFN signaling remains unclear. In this study, we demonstrated that FIPV strain DF2 infection not only failed to induce interferon-ß (IFN-ß) and interferon-stimulated gene (ISG) production, but also inhibited Sendai virus (SEV) or polyinosinic-polycytidylic acid (poly(I:C))-induced IFN-ß production. Subsequently, we found that one of the non-structural proteins encoded by the FIPV genome, nsp5, interrupted type I IFN signaling in a protease-dependent manner by cleaving the nuclear factor κB (NF-κB) essential modulator (NEMO) at three sites-glutamine132 (Q132), Q205, and Q231. Further investigation revealed that the cleavage products of NEMO lost the ability to activate the IFN-ß promoter. Mechanistically, the nsp5-mediated NEMO cleavage disrupted the recruitment of the TRAF family member-associated NF-κB activator (TANK) to NEMO, which reduced the phosphorylation of interferon regulatory factor 3 (IRF3), leading to the inhibition of type I IFN production. Our research provides new insights into the mechanism for FIPV to counteract host innate immune response.


Subject(s)
Coronavirus Infections/immunology , Coronavirus, Feline/physiology , Cysteine Endopeptidases/metabolism , I-kappa B Kinase/metabolism , Interferon Type I/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Animals , Cats , Cell Line , Coronavirus 3C Proteases , Coronavirus, Feline/metabolism , Cysteine Endopeptidases/genetics , I-kappa B Kinase/genetics , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3 , Interferon Type I/metabolism , Interferon-beta/antagonists & inhibitors , Interferon-beta/genetics , Interferon-beta/metabolism , Mutation , NF-kappa B/metabolism , Promoter Regions, Genetic , Signal Transduction , Viral Nonstructural Proteins/genetics
7.
Virology ; 525: 1-9, 2018 12.
Article in English | MEDLINE | ID: mdl-30205273

ABSTRACT

Investigating type I feline coronaviruses (FCoVs) in tissue culture is critical for understanding the basic virology, pathogenesis, and virus-host interactome of these important veterinary pathogens. This has been a perennial challenge as type I FCoV strains do not easily adapt to cell culture. Here we characterize replication kinetics and plaque formation of a model type I strain FIPV Black in Fcwf-4 cells established at Cornell University (Fcwf-4 CU). We determined that maximum virus titers (>107 pfu/mL) were recoverable from infected Fcwf-4 CU cell-free supernatant at 20 h post-infection. Type I FIPV Black and both biotypes of type II FCoV formed uniform and enumerable plaques on Fcwf-4 CU cells. Therefore, these cells were employable in a standardized plaque assay. Finally, we determined that the Fcwf-4 CU cells were morphologically distinct from feline bone marrow-derived macrophages and were less sensitive to exogenous type I interferon than were Fcwf-4 cells purchased from ATCC.


Subject(s)
Coronavirus, Feline/physiology , Viral Plaque Assay/veterinary , Virus Cultivation/methods , Virus Replication/physiology , Animals , Cats , Cell Line
8.
Res Vet Sci ; 120: 57-62, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30265871

ABSTRACT

Feline infectious peritonitis (FIP) is a feline coronavirus (FCoV)-induced fatal disease in wild and domestic cats. There are two FCoV serotypes. Both type I and II FCoV can replicate in Felis catus whole fetus (fcwf)-4 cells, but the replicability of type I FCoV in feline cell lines is lower than that of type II FCoV, the reason for which is unclear. Inhibition of IFNß production by non-structural and structural proteins, excluding spike protein has been reported in many coronavirus infections. In this study, we investigated whether IFNß is involved in the difference in replicability in feline cell lines between types I and II FCoV. When fcwf-4 cells were infected with FCoV, the virus titer of type II FCoV in the culture supernatant was higher than that of type I FIPV. When the IFNß expression level in FCoV-infected fcwf-4 cells was semi-quantitatively analyzed, infection with type I FIPV, excluding type I FIPV UCD-1, highly induced IFNß expression. In contrast, induction of IFNß by type II FCoV infection was significantly lower than that by type I FIPV. In addition, when fcwf-4 cells were adsorbed by FIPV and then stimulated with Poly(I:C), type II FCoV infection inhibited Poly(I:C)-induced IFNß gene expression. Also, the proliferation of type I FIPV was enhanced by a IFN inhibitor. These findings clarified that, unlike type I FIPV, type II FCoV strongly inhibits IFNß expression in infected cells. It was also suggested that the IFNß-inducing ability is different among type I FIPV strains.


Subject(s)
Coronavirus, Feline/physiology , Gene Expression Regulation/drug effects , Interferon Type I/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , Animals , Cats , Cell Line , Coronavirus, Feline/classification , Coronavirus, Feline/genetics , Serogroup , Spike Glycoprotein, Coronavirus/genetics
9.
Vet Res ; 49(1): 81, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30086792

ABSTRACT

Laboratory cats were infected with a serotype I cat-passaged field strain of FIP virus (FIPV) and peritoneal cells harvested 2-3 weeks later at onset of lymphopenia, fever and serositis. Comparison peritoneal cells were collected from four healthy laboratory cats by peritoneal lavage and macrophages predominated in both populations. Differential mRNA expression analysis identified 5621 genes as deregulated in peritoneal cells from FIPV infected versus normal cats; 956 genes showed > 2.0 Log2 Fold Change (Log2FC) and 1589 genes showed < -2.0 Log2FC. Eighteen significantly upregulated pathways were identified by InnateDB enrichment analysis. These pathways involved apoptosis, cytokine-cytokine receptor interaction, pathogen recognition, Jak-STAT signaling, NK cell mediated cytotoxicity, several chronic infectious diseases, graft versus host disease, allograft rejection and certain autoimmune disorders. Infected peritoneal macrophages were activated M1 type based on pattern of RNA expression. Apoptosis was found to involve large virus-laden peritoneal macrophages more than less mature macrophages, suggesting that macrophage death played a role in virus dissemination. Gene transcripts for MHC I but not II receptors were upregulated, while mRNA for receptors commonly associated with virus attachment and identified in other coronaviruses were either not detected (APN, L-SIGN), not deregulated (DDP-4) or down-regulated (DC-SIGN). However, the mRNA for FcγRIIIA (CD16A/ADCC receptor) was significantly upregulated, supporting entry of virus as an immune complex. Analysis of KEGG associated gene transcripts indicated that Th1 polarization overshadowed Th2 polarization, but the addition of relevant B cell associated genes previously linked to FIP macrophages tended to alter this perception.


Subject(s)
Coronavirus, Feline/physiology , Epithelial Cells/virology , Feline Infectious Peritonitis/virology , Animals , Cat Diseases , Cats , Cells, Cultured , Epithelial Cells/physiology , Feline Infectious Peritonitis/physiopathology , Polymerase Chain Reaction/veterinary , Sequence Analysis, RNA/veterinary
10.
Virus Res ; 255: 14-23, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29936068

ABSTRACT

The ability to infect and replicate in monocytes/macrophages is a critically distinguishing feature between the two feline coronavirus (FCoV) pathotypes: feline enteric coronavirus (FECV; low-virulent) and feline infectious peritonitis virus (FIPV; lethal). Previously, by comparing serotype II strains FIPV 79-1146 and FECV 79-1683 and recombinant chimeric forms thereof in cultured feline bone marrow macrophages, we mapped this difference to the C-terminal part of the viral spike (S) protein (S2). In view of the later identified diagnostic difference in this very part of the S protein of serotype I FCoV pathotypes, the present study aimed to further define the contribution of the earlier observed ten amino acids difference to the serotype II virus phenotype in macrophages. Using targeted RNA recombination as a reverse genetics system we introduced the mutations singly and in combinations into the S gene and evaluated their effects on the infection characteristics of the mutant viruses in macrophages. While some of the single mutations had a significant effect, none of them fully reverted the infection phenotype. Only by combining five specific mutations the infections mediated by the FIPV and FECV spike proteins could be fully blocked or potentiated, respectively. Hence, the differential macrophage infection phenotype is caused by the cooperative effect of five mutations, which occur in five functionally different domains of the spike fusion subunit S2. The significance of these observations will be discussed, taking into account also some questions related to the identity of the virus strains used.


Subject(s)
Coronavirus, Feline/pathogenicity , Feline Infectious Peritonitis/virology , Macrophages/virology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Animals , Cats , Cells, Cultured , Coronavirus, Feline/genetics , Coronavirus, Feline/physiology , Mice , Protein Domains , RNA, Viral/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombination, Genetic , Serogroup , Viral Tropism , Virus Internalization , Virus Replication
11.
Vet Pathol ; 54(6): 933-944, 2017 11.
Article in English | MEDLINE | ID: mdl-29065819

ABSTRACT

Feline infectious peritonitis (FIP) is a serious, widely distributed systemic disease caused by feline coronavirus (FCoV), in which ocular disease is common. However, questions remain about the patterns of ocular inflammation and the distribution of viral antigen in the eyes of cats with FIP. This study characterized the ocular lesions of FIP including the expression of glial fibrillary acidic protein and proliferating cell nuclear antigen by Müller cells in the retina in cases of FIP and to what extent macrophages are involved in ocular inflammation in FIP. Immunohistochemistry for FCoV, CD3, CD79a, glial fibrillary acidic protein, calprotectin, and proliferating cell nuclear antigen was performed on paraffin sections from 15 naturally occurring cases of FIP and from controls. Glial fibrillary acidic protein expression was increased in the retina in cases of FIP. Müller cell proliferation was present within lesions of retinal detachment. Macrophages were present in FIP-associated ocular lesions, but they were the most numerous inflammatory cells only within granulomas (2/15 cats, 13%). In cases of severe inflammation of the ciliary body with damage to blood vessel walls and ciliary epithelium (3/15, 20%), some macrophages expressed FCoV antigens, and immunolabeling for calprotectin on consecutive sections suggested that these FCoV-positive macrophages were likely to be recently derived from blood. In cases of severe and massive inflammation of most ocular structures (4/15, 26%), B cells and plasma cells predominated over T cells and macrophages. These results indicate that gliosis can be present in FIP-affected retinas and suggest that breakdown of the blood-ocular barrier can allow FCoV-bearing macrophages to access the eye.


Subject(s)
Antigens, Viral/metabolism , Coronavirus, Feline/physiology , Eye Infections, Viral/veterinary , Feline Infectious Peritonitis/pathology , Inflammation/veterinary , Animals , B-Lymphocytes/pathology , Cats , Eye/pathology , Eye/virology , Eye Infections, Viral/pathology , Eye Infections, Viral/virology , Feline Infectious Peritonitis/virology , Female , Gliosis/pathology , Gliosis/veterinary , Gliosis/virology , Immunohistochemistry/veterinary , Inflammation/pathology , Inflammation/virology , Macrophages/pathology , Male , Retinitis/pathology , Retinitis/veterinary , Retinitis/virology , T-Lymphocytes/pathology , Uveitis/pathology , Uveitis/veterinary , Uveitis/virology
12.
J Gen Virol ; 98(2): 190-200, 2017 02.
Article in English | MEDLINE | ID: mdl-27902373

ABSTRACT

Feline coronavirus (FCoV) causes the fatal disease feline infectious peritonitis, which is currently incurable by drug treatment, and no effective vaccines are available. Cyclosporin A (CsA), a cyclophilin (Cyp) inhibitor, inhibits the replication of FCoV in vitro and in vivo as well as the replication of human and animal coronaviruses. However, the mechanism underlying the regulation of coronavirus replication by CsA is unknown. In this study, we analysed the role of Cyps in FCoV replication using knockdown and knockout cells specific to Cyps. Inhibition of CypA and CypB reduced FCoV replication, with replication in knockout cells being much less than that in knockdown cells. Furthermore, the proteins expressed by CypA and CypB harbouring mutations in their respective predicted peptidyl-prolyl cis-transisomerase active sites, which also alter the affinities between Cyps and CsA, inhibited FCoV replication. These findings indicate that the peptidyl-prolyl cis-transisomerase active sites of Cyps might be required for FCoV replication.


Subject(s)
Coronavirus, Feline/physiology , Cyclophilin A/metabolism , Cyclophilins/metabolism , Feline Infectious Peritonitis/enzymology , Feline Infectious Peritonitis/virology , Virus Replication/physiology , Animals , Catalytic Domain , Cats , Cell Line , Coronavirus, Feline/drug effects , Cyclophilin A/antagonists & inhibitors , Cyclophilin A/genetics , Cyclophilins/antagonists & inhibitors , Cyclophilins/genetics , Cyclosporine/pharmacology , Gene Knockdown Techniques , Virus Replication/drug effects , Virus Replication/genetics
13.
J Gen Virol ; 97(10): 2633-2642, 2016 10.
Article in English | MEDLINE | ID: mdl-27543142

ABSTRACT

One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.


Subject(s)
Cell Adhesion Molecules/genetics , Coronavirus, Feline/physiology , Endothelial Cells/virology , Feline Infectious Peritonitis/virology , Kidney Cortex/virology , Monocytes/virology , Animals , Cats , Cell Adhesion , Cell Adhesion Molecules/immunology , Cells, Cultured , Coronavirus, Feline/genetics , E-Selectin/genetics , E-Selectin/immunology , Endothelial Cells/cytology , Endothelial Cells/immunology , Feline Infectious Peritonitis/genetics , Feline Infectious Peritonitis/immunology , Feline Infectious Peritonitis/physiopathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Kidney Cortex/cytology , Kidney Cortex/immunology , Monocytes/immunology , P-Selectin/genetics , P-Selectin/immunology , Up-Regulation , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology
14.
Sci Rep ; 6: 20022, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26822958

ABSTRACT

Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections are lacking, the present study investigated these missing links during experimental infection of three SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted for 28-56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not different compared to the other cats, except for the CD8(+) regulatory T cells. These data indicate that FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that the gradual adaptation to these cells can allow non-enterotropic mutants to arise.


Subject(s)
Coronavirus, Feline/physiology , Enterocytes/virology , Feline Infectious Peritonitis/virology , Mutation , Virus Shedding , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cats , Cells, Cultured , Evolution, Molecular , Feces/virology , Feline Infectious Peritonitis/immunology , Genome, Viral , Leukocyte Count , Viremia
15.
Arch Virol ; 161(1): 125-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26514843

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal disease of domestic and wild felidae that is caused by feline coronavirus (FCoV). FCoV has been classified into types I and II. Since type I FCoV infection is dominant in the field, it is necessary to develop antiviral agents and vaccines against type I FCoV infection. However, few studies have been conducted on type I FCoV. Here, we compare the effects of cholesterol on types I and II FCoV infections. When cells were treated methyl-ß-cyclodextrin (MßCD) and inoculated with type I FCoV, the infection rate decreased significantly, and the addition of exogenous cholesterol to MßCD-treated cells resulted in the recovery of the infectivity of type I FCoV. Furthermore, exogenous cholesterol increased the infectivity of type I FCoV. In contrast, the addition of MßCD and exogenous cholesterol had little effect on the efficiency of type II FCoV infection. These results strongly suggest that the dependence of infection by types I and II FCoV on cholesterol differs.


Subject(s)
Cat Diseases/metabolism , Cholesterol/metabolism , Coronavirus Infections/veterinary , Coronavirus, Feline/physiology , Animals , Cat Diseases/virology , Cats , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus, Feline/genetics
16.
Antiviral Res ; 126: 1-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26675666

ABSTRACT

Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation.


Subject(s)
Coronavirus, Feline/enzymology , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Virus Replication/physiology , Amino Acid Sequence , Animals , Cats , Cell Line , Coronavirus, Feline/drug effects , Coronavirus, Feline/genetics , Coronavirus, Feline/physiology , Cyclophilins/drug effects , Cyclosporine/pharmacology , DNA Replication/drug effects , Drug Discovery , Feline Infectious Peritonitis/virology , Gene Knockout Techniques , Immunosuppressive Agents/pharmacology , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , NIMA-Interacting Peptidylprolyl Isomerase/biosynthesis , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Piperidines/pharmacology , RNA Interference , RNA, Small Interfering/genetics , Tacrolimus Binding Proteins/pharmacology , Thiram/analogs & derivatives , Thiram/pharmacology , Virus Replication/drug effects
17.
Apoptosis ; 20(11): 1457-70, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26386572

ABSTRACT

Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p < 0.05) followed by late apoptosis at 12 hpi (p < 0.05) and necrosis from 24 hpi (p < 0.05). Then, next generation sequencing was performed on 9 hpi and control uninfected cells by Illumina analyzer. An aggregate of 4546 genes (2229 down-regulated and 2317 up-regulated) from 17 cellular process, 11 molecular functions and 130 possible biological pathways were affected by FIPV. 131 genes from apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.


Subject(s)
Apoptosis , Cat Diseases/genetics , Coronavirus Infections/veterinary , Coronavirus, Feline/physiology , Animals , Cat Diseases/physiopathology , Cat Diseases/virology , Cats , Coronavirus Infections/genetics , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Coronavirus, Feline/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , p38 Mitogen-Activated Protein Kinases/genetics
18.
Res Vet Sci ; 100: 12-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25819115

ABSTRACT

The purpose of this study was to elucidate the possible presence of oxidative stress in cats naturally affected by feline infectious peritonitis (FIP) by investigating two antioxidant biomarkers in serum: paraoxonase-1 (PON1) and total antioxidant capacity (TAC). PON1 was measured by spectrophotometric assays using three different substrates: p-nitrophenyl acetate (pNA), phenyl acetate (PA) and 5-thiobutil butyrolactone (TBBL), in order to evaluate possible differences between them. The PA and TBBL assays for PON1 and the assay for TAC were validated, providing acceptable precision and linearity although PA and TAC assays showed limit of detection higher than the values found in some cats with FIP. Cats with FIP and other inflammatory conditions showed lower PON1 values compared with a group of healthy cats with the three assays used, and cats with FIP showed significant decreased TAC concentrations. This study demonstrated the existence of oxidative stress in cats with FIP.


Subject(s)
Aryldialkylphosphatase/blood , Coronavirus, Feline/physiology , Feline Infectious Peritonitis/blood , Oxidative Stress , Animals , Biomarkers/blood , Blood Chemical Analysis/veterinary , Cats , Feline Infectious Peritonitis/virology , Retrospective Studies , Spectrophotometry/veterinary
19.
J Virol ; 89(8): 4434-48, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653449

ABSTRACT

UNLABELLED: In addition to transporting ions, the multisubunit Na(+),K(+)-ATPase also functions by relaying cardiotonic steroid (CTS)-binding-induced signals into cells. In this study, we analyzed the role of Na(+),K(+)-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection. As controls, the vesicular stomatitis virus (VSV) and influenza A virus (IAV) were included. Using gene silencing, the ATP1A1 protein was shown to be critical for infection of cells with murine hepatitis virus (MHV), feline infectious peritonitis virus (FIPV), and VSV but not with IAV. Lack of ATP1A1 did not affect virus binding to host cells but resulted in inhibited entry of MHV and VSV. Consistently, nanomolar concentrations of the cardiotonic steroids ouabain and bufalin, which are known not to affect the transport function of Na(+),K(+)-ATPase, inhibited infection of cells with MHV, FIPV, Middle East respiratory syndrome (MERS)-CoV, and VSV, but not IAV, when the compounds were present during virus inoculation. Cardiotonic steroids were shown to inhibit entry of MHV at an early stage, resulting in accumulation of virions close to the cell surface and, as a consequence, in reduced fusion. In agreement with an early block in infection, the inhibition of VSV by CTSs could be bypassed by low-pH shock. Viral RNA replication was not affected when these compounds were added after virus entry. The antiviral effect of ouabain could be relieved by the addition of different Src kinase inhibitors, indicating that Src signaling mediated via ATP1A1 plays a crucial role in the inhibition of CoV and VSV infections. IMPORTANCE: Coronaviruses (CoVs) are important pathogens of animals and humans, as demonstrated by the recent emergence of new human CoVs of zoonotic origin. Antiviral drugs targeting CoV infections are lacking. In the present study, we show that the ATP1A1 subunit of Na(+),K(+)-ATPase, an ion transporter and signaling transducer, supports CoV infection. Targeting ATP1A1 either by gene silencing or by low concentrations of the ATP1A1-binding cardiotonic steroids ouabain and bufalin resulted in inhibition of infection with murine, feline, and MERS-CoVs at an early entry stage. Infection with the control virus VSV was also inhibited. Src signaling mediated by ATP1A1 was shown to play a crucial role in the inhibition of virus entry by ouabain and bufalin. These results suggest that targeting the Na(+),K(+)-ATPase using cardiotonic steroids, several of which are FDA-approved compounds, may be an attractive therapeutic approach against CoV and VSV infections.


Subject(s)
Cardiac Glycosides/pharmacology , Coronaviridae Infections/physiopathology , Signal Transduction/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Virus Attachment/drug effects , Virus Internalization/drug effects , Animals , Bufanolides/pharmacology , Cell Line , Chlorocebus aethiops , Coronavirus, Feline/physiology , Gene Silencing , Humans , Hydrogen-Ion Concentration , Mice , Murine hepatitis virus/physiology , Ouabain/pharmacology , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Vero Cells
20.
Arch Virol ; 160(5): 1163-70, 2015 May.
Article in English | MEDLINE | ID: mdl-25701212

ABSTRACT

Feline infectious peritonitis virus (FIP virus: FIPV), a feline coronavirus of the family Coronaviridae, causes a fatal disease called FIP in wild and domestic cat species. The genome of coronaviruses encodes a hydrophobic transmembrane protein, the envelope (E) protein. The E protein possesses ion channel activity. Viral proteins with ion channel activity are collectively termed "viroporins". Hexamethylene amiloride (HMA), a viroporin inhibitor, can inhibit the ion channel activity of the E protein and replication of several coronaviruses. However, it is not clear whether HMA and other viroporin inhibitors affect replication of FIPV. We examined the effect of HMA and other viroporin inhibitors (DIDS [4,4'-disothiocyano-2,2'-stilbenedisulphonic acid] and amantadine) on infection by FIPV serotypes I and II. HMA treatment drastically decreased the titers of FIPV serotype I strains Black and KU-2 in a dose-dependent manner, but it only slightly decreased the titer of FIPV serotype II strain 79-1146. In contrast, DIDS treatment decreased the titer of FIPV serotype II strain 79-1146 in dose-dependent manner, but it only slightly decreased the titers of FIPV serotype I strains Black and KU-2. We investigated whether there is a difference in ion channel activity of the E protein between viral serotypes using E. coli cells expressing the E protein of FIPV serotypes I and II. No difference was observed, suggesting that a viroporin other than the E protein influences the differences in the actions of HMA and DIDS on FIPV serotypes I and II.


Subject(s)
Amiloride/analogs & derivatives , Antiviral Agents/pharmacology , Coronavirus, Feline/drug effects , Coronavirus, Feline/physiology , Viral Envelope Proteins/antagonists & inhibitors , Virus Replication/drug effects , Amiloride/pharmacology , Animals , Cats , Coronavirus, Feline/classification , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Serogroup , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...