Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.137
Filter
1.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831363

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Subject(s)
Antibodies, Monoclonal , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Porcine epidemic diarrhea virus/immunology , Antibodies, Monoclonal/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Swine , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral/immunology , Swine Diseases/virology , Swine Diseases/immunology , HEK293 Cells , Humans , Recombinant Proteins/immunology , Mice, Inbred BALB C , Mice , Fluorescent Antibody Technique, Indirect/veterinary
2.
Hum Vaccin Immunother ; 20(1): 2346390, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38691025

ABSTRACT

Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Silicon Dioxide , Vaccines, DNA , Viral Vaccines , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Mice , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Silicon Dioxide/chemistry , Mice, Inbred BALB C , Female , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccine Development
3.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722338

ABSTRACT

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Neutralization Tests , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Neutralization Tests/methods , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/diagnosis , Animals , Inhibitory Concentration 50 , Sensitivity and Specificity
4.
Virus Res ; 345: 199383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697296

ABSTRACT

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Subject(s)
Antibodies, Bispecific , Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Monoclonal/immunology , Protein Binding , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/immunology , Mice , Neutralization Tests
5.
Hum Vaccin Immunother ; 20(1): 2351664, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38757508

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.


Subject(s)
Antibodies, Viral , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus , Spike Glycoprotein, Coronavirus , Viral Vaccines , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Mice , Female , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Immunogenicity, Vaccine , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine , Humans
6.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696217

ABSTRACT

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Subject(s)
Nanoparticles , Porcine epidemic diarrhea virus , Viral Vaccines , Porcine epidemic diarrhea virus/immunology , Animals , Nanoparticles/chemistry , Swine , Mice , Viral Vaccines/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Mice, Inbred BALB C , Antigens, Viral/immunology , Antigens, Viral/chemistry , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Protein Domains/immunology , Female , Nanovaccines
7.
Front Immunol ; 15: 1382655, 2024.
Article in English | MEDLINE | ID: mdl-38803494

ABSTRACT

Introduction: Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods: Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 µm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results: Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion: The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.


Subject(s)
COVID-19 , Disease Models, Animal , Immunity, Innate , Lung , Microplastics , SARS-CoV-2 , Animals , COVID-19/immunology , COVID-19/virology , Immunity, Innate/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Mice , Lung/immunology , Lung/virology , Lung/pathology , Cytokines/metabolism , Humans , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Female , Cytokine Release Syndrome/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Betacoronavirus/immunology , Pandemics
8.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38758698

ABSTRACT

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Subject(s)
Common Cold , Immunity, Innate , Interferons , Nasal Mucosa , SARS-CoV-2 , Signal Transduction , Humans , Nasal Mucosa/virology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Interferons/metabolism , Interferons/immunology , Common Cold/immunology , Common Cold/virology , Signal Transduction/immunology , SARS-CoV-2/immunology , Virus Replication , Rhinovirus/immunology , Coronavirus 229E, Human/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epithelial Cells/virology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Coronavirus NL63, Human/immunology
9.
Front Immunol ; 15: 1397118, 2024.
Article in English | MEDLINE | ID: mdl-38812505

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes a highly contagious enteric disease with major economic losses to swine production worldwide. Due to the immaturity of the neonatal piglet immune system and given the high virulence of PEDV, improving passive lactogenic immunity is the best approach to protect suckling piglets against the lethal infection. We tested whether oral vitamin A (VA) supplementation and PEDV exposure of gestating and lactating VA-deficient (VAD) sows would enhance their primary immune responses and boost passive lactogenic protection against the PEDV challenge of their piglets. We demonstrated that PEDV inoculation of pregnant VAD sows in the third trimester provided higher levels of lactogenic protection of piglets as demonstrated by >87% survival rates of their litters compared with <10% in mock litters and that VA supplementation to VAD sows further improved the piglets' survival rates to >98%. We observed significantly elevated PEDV IgA and IgG antibody (Ab) titers and Ab-secreting cells (ASCs) in VA-sufficient (VAS)+PEDV and VAD+VA+PEDV sows, with the latter maintaining higher Ab titers in blood prior to parturition and in blood and milk throughout lactation. The litters of VAD+VA+PEDV sows also had the highest serum PEDV-neutralizing Ab titers at piglet post-challenge days (PCD) 0 and 7, coinciding with higher PEDV IgA ASCs and Ab titers in the blood and milk of their sows, suggesting an immunomodulatory role of VA in sows. Thus, sows that delivered sufficient lactogenic immunity to their piglets provided the highest passive protection against the PEDV challenge. Maternal immunization during pregnancy (± VA) and VA sufficiency enhanced the sow primary immune responses, expression of gut-mammary gland trafficking molecules, and passive protection of their offspring. Our findings are relevant to understanding the role of VA in the Ab responses to oral attenuated vaccines that are critical for successful maternal vaccination programs against enteric infections in infants and young animals.


Subject(s)
Adaptive Immunity , Antibodies, Viral , Coronavirus Infections , Immunity, Maternally-Acquired , Porcine epidemic diarrhea virus , Swine Diseases , Vitamin A , Animals , Porcine epidemic diarrhea virus/immunology , Female , Swine , Pregnancy , Vitamin A/administration & dosage , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/blood , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Animals, Newborn , Lactation/immunology , Dietary Supplements , Vitamin A Deficiency/immunology , Immunization
10.
J Nanobiotechnology ; 22(1): 304, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822339

ABSTRACT

Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use , Single-Domain Antibodies/chemistry , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , COVID-19/immunology , COVID-19/therapy , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Virus Internalization/drug effects , Pandemics , Betacoronavirus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use
11.
PLoS Pathog ; 20(4): e1012156, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598560

ABSTRACT

SARS-CoV-2 has been shown to cause wide-ranging ocular abnormalities and vision impairment in COVID-19 patients. However, there is limited understanding of SARS-CoV-2 in ocular transmission, tropism, and associated pathologies. The presence of viral RNA in corneal/conjunctival tissue and tears, along with the evidence of viral entry receptors on the ocular surface, has led to speculation that the eye may serve as a potential route of SARS-CoV-2 transmission. Here, we investigated the interaction of SARS-CoV-2 with cells lining the blood-retinal barrier (BRB) and the role of the eye in its transmission and tropism. The results from our study suggest that SARS-CoV-2 ocular exposure does not cause lung infection and moribund illness in K18-hACE2 mice despite the extended presence of viral remnants in various ocular tissues. In contrast, intranasal exposure not only resulted in SARS-CoV-2 spike (S) protein presence in different ocular tissues but also induces a hyperinflammatory immune response in the retina. Additionally, the long-term exposure to viral S-protein caused microaneurysm, retinal pigmented epithelium (RPE) mottling, retinal atrophy, and vein occlusion in mouse eyes. Notably, cells lining the BRB, the outer barrier, RPE, and the inner barrier, retinal vascular endothelium, were highly permissive to SARS-CoV-2 replication. Unexpectedly, primary human corneal epithelial cells were comparatively resistant to SARS-CoV-2 infection. The cells lining the BRB showed induced expression of viral entry receptors and increased susceptibility towards SARS-CoV-2-induced cell death. Furthermore, hyperglycemic conditions enhanced the viral entry receptor expression, infectivity, and susceptibility of SARS-CoV-2-induced cell death in the BRB cells, confirming the reported heightened pathological manifestations in comorbid populations. Collectively, our study provides the first evidence of SARS-CoV-2 ocular tropism via cells lining the BRB and that the virus can infect the retina via systemic permeation and induce retinal inflammation.


Subject(s)
Blood-Retinal Barrier , COVID-19 , Retina , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Animals , Blood-Retinal Barrier/virology , COVID-19/immunology , COVID-19/virology , Mice , Humans , Retina/virology , Retina/immunology , Retina/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Inflammation/immunology , Inflammation/virology , Betacoronavirus/physiology , Viral Tropism , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/pathology
12.
J Med Virol ; 96(5): e29628, 2024 May.
Article in English | MEDLINE | ID: mdl-38682568

ABSTRACT

This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Enhancement , COVID-19 , Immunoglobulin G , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Middle Aged , Male , Female , Neutralization Tests , Adult , COVID-19 Vaccines/immunology , Antigens, Viral/immunology , Animals , Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination
13.
Vet Immunol Immunopathol ; 271: 110753, 2024 May.
Article in English | MEDLINE | ID: mdl-38608406

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes immensely large economic losses worldwide in the swine industry. PEDV attacks the intestine, disrupts intestinal epithelium morphology and barrier integrity, and results in profound diarrhea and high mortality. A commercially available isotonic protein solution (IPS) (Tonisity Px) has anecdotally been reported to be effective in supportive treatment of piglets with active PEDV infections. This study evaluated the effects of supplementing (or not) the drinking water of 14 day old PEDV-infected piglets with the IPS on the content of E-cadherin, fibronectin, interferon-alpha (IFN-α), and matrix metalloproteinase 9 (MMP-9) in duodenal tissue. The content of PEDV DNA in feces was also measured. Though both groups had similar PEDV shedding at day 1, IPS piglets had significantly lower PEDV shedding at day 5, 14 and 21. The IPS group also had a shorter duration of PEDV virus shedding. Levels of E-cadherin and fibronectin, both of which are structural proteins in the intestine, remained unchanged from baseline in the IPS group, whereas the same molecules decreased significantly in the control group. IFN-α, an antiviral cytokine, and MMP-9, an enzyme that aids in tissue remodeling, were increased at days 5 and 14 post infection, and then decreased at day 21 post-infection in the IPS group compared to control. Overall, the IPS used in this study enhanced epithelial intercellular adhesion (E-cadherin) and extracellular matrix structure (fibronectin), resulted in significantand favorable changes in MMP-9 activity, and favorably modulated IFN-α production. This is the first report of this panel of biomarkers, especially MMP-9 and IFN-α, in the face of in vivo PEDV infection. This is also the first report to investigate a commercially available swine product that does not need to be administered in solid feed, and that is already registered for use throughout Asia, Europe, South America, and North America. Overall, the results of this study serve to clarify the behavior of 4 key biomarkers in the presence of in vivo PEDV infection. The results also indicate that IPS (Tonisity Px) supplementation is a viable intervention to modulate the porcine intestinal immune response with favorable effects on the intestine.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Virus Shedding , Animals , Swine , Porcine epidemic diarrhea virus/physiology , Porcine epidemic diarrhea virus/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Swine Diseases/virology , Swine Diseases/immunology , Fibronectins/metabolism , Matrix Metalloproteinase 9/metabolism , Cadherins/metabolism , Intestines/immunology , Intestines/virology , Interferon-alpha/immunology , Cell Adhesion , Intestinal Mucosa/immunology
14.
Funct Integr Genomics ; 24(3): 79, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653845

ABSTRACT

Coronaviruses have been identified as pathogens of gastrointestinal and respiratory diseases in humans and various animal species. In recent years, the global spread of new coronaviruses has had profound influences for global public health and economies worldwide. As highly pathogenic zoonotic viruses, coronaviruses have become the focus of current research. Porcine Deltacoronavirus (PDCoV), an enterovirus belonging to the family of coronaviruses, has emerged on a global scale in the past decade and significantly influenced the swine industry. Moreover, PDCoV infects not only pigs but also other species, including humans, chickens and cattles, exhibiting a broad host tropism. This emphasizes the need for in-depth studies on coronaviruses to mitigate their potential threats. In this review, we provided a comprehensive summary of the current studies on PDCoV. We first reviewed the epidemiological investigations on the global prevalence and distribution of PDCoV. Then, we delved into the studies on the pathogenesis of PDCoV to understand the mechanisms how the virus impacts its hosts. Furthermore, we also presented some exploration studies on the immune evasion mechanisms of the virus to enhance the understanding of host-virus interactions. Despite current limitations in vaccine development for PDCoV, we highlighted the inhibitory effects observed with certain substances, which offers a potential direction for future research endeavors. In conclusion, this review summarized the scientific findings in epidemiology, pathogenesis, immune evasion mechanisms and vaccine development of PDCoV. The ongoing exploration of potential vaccine candidates and the insights gained from inhibitory substances have provided a solid foundation for future vaccine development to prevent and control diseases associated with PDCoV.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Immune Evasion , Swine Diseases , Viral Vaccines , Animals , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Deltacoronavirus/pathogenicity , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/epidemiology , Viral Vaccines/immunology , Vaccine Development , Humans
15.
Viruses ; 16(4)2024 04 14.
Article in English | MEDLINE | ID: mdl-38675946

ABSTRACT

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Subject(s)
Chickens , Coronavirus Infections , Gene Expression Profiling , Infectious bronchitis virus , Poultry Diseases , Trachea , Animals , Trachea/virology , Trachea/immunology , Chickens/virology , Infectious bronchitis virus/physiology , Infectious bronchitis virus/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Poultry Diseases/virology , Poultry Diseases/immunology , Poultry Diseases/genetics , Epithelial Cells/virology , Epithelial Cells/immunology , Transcriptome , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Virus Replication , Specific Pathogen-Free Organisms
16.
Vet Microbiol ; 293: 110096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636174

ABSTRACT

IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.


Subject(s)
Coronavirus Infections , Immunoglobulin A , Intestine, Small , Porcine epidemic diarrhea virus , Swine Diseases , Toll-Like Receptor 9 , Animals , Swine , Porcine epidemic diarrhea virus/immunology , Swine Diseases/immunology , Swine Diseases/virology , Intestine, Small/immunology , Immunoglobulin A/immunology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , B-Lymphocytes/immunology , Coculture Techniques , Dendritic Cells/immunology
17.
Vet Microbiol ; 293: 110098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677126

ABSTRACT

The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.


Subject(s)
Antibodies, Monoclonal , Coronavirus, Canine , Epitope Mapping , Epitopes, B-Lymphocyte , Nucleocapsid Proteins , Animals , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Dogs , Mice , Nucleocapsid Proteins/immunology , Coronavirus, Canine/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mice, Inbred BALB C , Coronavirus Nucleocapsid Proteins/immunology , Dog Diseases/virology , Dog Diseases/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/diagnosis , Amino Acid Sequence
18.
J Virol ; 98(5): e0176223, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563762

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
19.
Int J Biol Macromol ; 267(Pt 1): 131427, 2024 May.
Article in English | MEDLINE | ID: mdl-38583833

ABSTRACT

Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.


Subject(s)
COVID-19 , Neoplasms , Pseudouridine , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Neoplasms/immunology , Pseudouridine/metabolism , COVID-19 Vaccines/immunology , Animals , mRNA Vaccines , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pneumonia, Viral/prevention & control , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology
20.
Obstet Gynecol ; 143(6): e149-e152, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38574363

ABSTRACT

BACKGROUND: Since the onset of the coronavirus disease (COVID-19) pandemic, a variety of long-COVID-19 symptoms and autoimmune complications have been recognized. CASES: We report three cases of autoimmune premature poor ovarian response in patients aged 30-37 years after mild to asymptomatic COVID-19 before vaccination, with nucleotide antibody confirmation. Two patients failed to respond to maximum-dose gonadotropins for more than 4 weeks, despite a recent history of response before having COVID-19. After a month of prednisone 30 mg, these two patients had normal follicle-stimulating hormone (FSH) levels, high oocyte yield, and blastocyst formation in successful in vitro fertilization cycles. All three patients have above-average anti-müllerian hormone levels that persisted throughout their clinical ovarian insufficiency. Two patients had elevated FSH levels, perhaps resulting from FSH receptor blockade. One patient, with a history of high response to gonadotropins 75 international units per day and below-normal FSH levels, had no ovarian response to more than a month of gonadotropins (525 international units daily), suggesting autoimmune block of the FSH glycoprotein and possible FSH receptor blockade. CONCLUSION: Auto-antibody production in response to COVID-19 before vaccination may be a rare cause of autoimmune poor ovarian response. Although vaccination is likely protective, further study will be required to evaluate the effect of vaccination and duration of autoimmune FSH or FSH receptor blockade.


Subject(s)
COVID-19 , Primary Ovarian Insufficiency , Receptors, FSH , SARS-CoV-2 , Humans , Female , COVID-19/immunology , COVID-19/complications , Primary Ovarian Insufficiency/immunology , Primary Ovarian Insufficiency/drug therapy , Adult , SARS-CoV-2/immunology , Pandemics , Follicle Stimulating Hormone/blood , Coronavirus Infections/immunology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Betacoronavirus
SELECTION OF CITATIONS
SEARCH DETAIL
...