Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 36(13): 109754, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34547223

ABSTRACT

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/ultrastructure , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , Binding Sites/genetics , COVID-19/genetics , COVID-19/metabolism , Coronavirus Papain-Like Proteases/genetics , HEK293 Cells , Humans , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Binding/genetics , SARS-CoV-2/metabolism , Substrate Specificity/genetics , Ubiquitin/metabolism , Ubiquitins/metabolism , Viral Proteins/metabolism
2.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500548

ABSTRACT

The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (-16.8 ± 0.02 kcal/mol, -12.3 ± 0.03 kcal/mol and -13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2. Cyanovirin-N was observed to interact with the crucial residues involved in the attachment of the human ACE2 receptor. Analysis of the binding affinities calculated employing the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) approach revealed that all forms of energy, except the polar solvation energy, favourably contributed to the interactions of cyanovirin-N with the viral proteins. With particular emphasis on cyanovirin-N, the current work presents evidence for the potential inhibition of SARS-CoV-2 by cyanobacterial proteins, and offers the opportunity for in vitro and in vivo experiments to deploy the cyanobacterial proteins as valuable therapeutics against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Bacterial Proteins/pharmacology , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , Bacterial Proteins/therapeutic use , Bacterial Proteins/ultrastructure , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/ultrastructure , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/ultrastructure , Coronavirus Protease Inhibitors/therapeutic use , Coronavirus Protease Inhibitors/ultrastructure , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Mapping , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...