Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.647
Filter
1.
Lasers Med Sci ; 39(1): 157, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879698

ABSTRACT

Frequently orthopedic surgeries require mechanical drilling processes especially for inserted biodegradable screws or removing small bone lesions. However mechanical drilling techniques induce large number of forces as well as have substantially lower material removal rates resulting in prolong healing times. This study focuses on analyzing the impact of quasi-continuous laser drilling on the bone's surface as well as optimizing the drilling conditions to achieve high material removal rates. An ex-vivo study was conducted on the cortical region of desiccated bovine bone. The laser-based drilling on the bovine bine specimens was conducted in an argon atmosphere using a number of laser pulses ranging from 100 to 15,000. The morphology of the resulting laser drilled cavities was characterized using Energy dispersive Spectroscopy (EDS) and the width and depth of the drills were measured using a laser based Profilometer. Data from the profilometer was then used to calculate material removal rates. At last, the material removal rates and laser processing parameters were used to develop a statistical model based on Design of Experiments (DOE) approach to predict the optimal laser drilling parameters. The main outcome of the study based on the laser drilled cavities was that as the number of laser pulses increases, the depth and diameter of the cavities progressively increase. However, the material removal rates revealed a decrease in value at a point between 4000 and 6000 laser pulses. Therefore, based on the sequential sum of square method, a polynomial curve to the 6th power was fit to the experimental data. The predicted equation of the curve had a p-value of 0.0010 indicating statistical significance and predicted the maximum material removal rate to be 32.10 mm3/s with 95%CI [28.3,35.9] which was associated with the optimum number of laser pulses of 4820. Whereas the experimental verification of bone drilling with 4820 laser pulses yielded a material removal rate of 33.37 mm3/s. Therefore, this study found that the carbonized layer formed due to laser processing had a decreased carbon content and helped in increasing the material removal rate. Then using the experimental data, a polymetric equation to the sixth power was developed which predicted the optimized material removal rate to occur at 4820 pulses.


Subject(s)
Cortical Bone , Laser Therapy , Animals , Cattle , Cortical Bone/surgery , Cortical Bone/radiation effects , Laser Therapy/methods , Laser Therapy/instrumentation , Spectrometry, X-Ray Emission , Orthopedic Procedures/methods , Orthopedic Procedures/instrumentation
2.
J Oral Implantol ; 50(3): 220-230, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38839068

ABSTRACT

This study analyzed the stress distributions on zygomatic and dental implants placed in the zygomatic bone, supporting bones, and superstructures under occlusal loads after maxillary reconstruction with obturator prostheses. A total of 12 scenarios of 3-dimensional finite element models were constructed based on computerized tomography scans of a hemimaxillectomy patient. Two obturator prostheses were analyzed for each model. A total force of 600 N was applied from the palatal to buccal bones at an angle of 45°. The maximum and minimum principal stress values for bone and von Mises stress values for dental implants and prostheses were calculated. When zygomatic implants were applied to the defect area, the maximum principal stresses were similar in intensity to the other models; however, the minimum principal stress values were higher than in scenarios without zygomatic implants. In models that used zygomatic implants in the defect area, von Mises stress levels were significantly higher in zygomatic implants than in dental implants. In scenarios where the prosthesis was supported by tissue in the nondefect area, the maximum and minimum principal stress values on cortical bone were higher than in scenarios where implants were applied to defect and nondefect areas. In patients who lack an alveolar crest after maxillectomy, a custom bar-retained prosthesis placed on the dental implant should reduce stress on the zygomatic bone. The stress was higher on zygomatic implants without alveolar crest support than on dental implants.


Subject(s)
Dental Implants , Finite Element Analysis , Maxilla , Palatal Obturators , Zygoma , Humans , Zygoma/surgery , Maxilla/surgery , Imaging, Three-Dimensional , Dental Stress Analysis , Bite Force , Biomechanical Phenomena , Computer Simulation , Stress, Mechanical , Cortical Bone , Tomography, X-Ray Computed , Dental Implantation, Endosseous/methods , Dental Prosthesis, Implant-Supported
3.
J Orthop Surg Res ; 19(1): 355, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879553

ABSTRACT

BACKGROUND: The purpose of this study was to clarify (1) the differences in cortical bone thickness (CBT) of the tibial diaphysis between healthy and osteoarthritic knees and (2) the influences of the femorotibial angle (FTA) and inclination of the medial compartment of the proximal tibia (MCT) on tibial CBT. METHODS: The study assessed 60 subjects with varus knee osteoarthritis (OA) (22 males and 38 females; mean age, 74 ± 7 years) and 53 healthy elderly subjects (28 males and 25 females; mean age, 70 ± 6 years). Three-dimensional estimated CBT of the tibial diaphysis was automatically calculated for 2752-11,296 points using high-resolution measurements from CT. The standardized CBT was assessed in 24 regions by combining six heights and four areas. Additionally, the association between the CBT, each FTA, and MCT inclination was investigated. RESULTS: The OA group showed a thicker CBT in the medial areas than in the lateral areas of the proximal tibia, while the healthy group had a thicker lateral CBT. The medial-to-lateral ratio of the proximal tibia was significantly higher in the OA group than in the healthy group. The proximal-medial CBT correlated with FTA and MCT inclinations in the OA group. CONCLUSIONS: This study demonstrated that varus osteoarthritic knees showed a different trend of proximal-medial CBT with associations in FTA and MCT inclination from healthy knees, possibly due to medial load concentration.


Subject(s)
Cortical Bone , Diaphyses , Osteoarthritis, Knee , Tibia , Humans , Male , Female , Tibia/diagnostic imaging , Tibia/pathology , Aged , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Cortical Bone/diagnostic imaging , Cortical Bone/pathology , Diaphyses/diagnostic imaging , Diaphyses/pathology , Aged, 80 and over , Tomography, X-Ray Computed , Lower Extremity/diagnostic imaging , Middle Aged
4.
Arch Orthop Trauma Surg ; 144(6): 2583-2590, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691146

ABSTRACT

BACKGROUND: Cortical thickness and porosity are two main determinants of cortical bone strength. Thus, mapping variations in these parameters across the full width of the distal end of the clavicle may be helpful for better understanding the basis of distal clavicle fractures and for selecting optimal surgical treatment. METHODS: Distal ends of 11 clavicles (6 men, 5 women; age: 81.9 ± 15.1 years) were scanned by micro-computed tomography at 10-µm resolution. We first analyzed cortical thickness and porosity of each 500-µm-wide area across the superior surface of distal clavicle at the level of conoid tubercle in an antero-posterior direction. This level was chosen for detailed evaluation because previous studies have demonstrated its superior microarchitecture relative to the rest of the distal clavicle. Subsequently, we divided the full width of distal clavicle to three subregions (anterior, middle, and posterior) and analyzed cortical porosity, pore diameter, pore separation, and cortical thickness. RESULTS: We found the largest number of low-thickness and high-porosity areas in the anterior subregion. Cortical porosity, pore diameter, pore separation, and cortical thickness varied significantly among the three subregions (p < 0.001 p = 0.016, p = 0.001, p < 0.001, respectively). Cortex of the anterior subregion was more porous than that of the middle subregion (p < 0.001) and more porous and thinner than that of the posterior subregion (p < 0.001, p = 0.030, respectively). Interaction of site and sex revealed higher porosity of the anterior subregion in women (p < 0.001). The anterior subregion had larger pores than the middle subregion (p = 0.019), whereas the middle subregion had greater pore separation compared with the anterior (p = 0.002) and posterior subregions (p = 0.006). In general, compared with men, women had thinner (p < 0.001) and more porous cortex (p = 0.03) with larger cortical pores (p < 0.001). CONCLUSIONS: Due to high cortical porosity and low thickness, the anterior conoid subregion exhibits poor bone microarchitecture, particularly in women, which may be considered in clinical practice. LEVELS OF EVIDENCE: Level IV.


Subject(s)
Clavicle , Fractures, Bone , Humans , Clavicle/injuries , Clavicle/surgery , Clavicle/diagnostic imaging , Female , Male , Aged , Fractures, Bone/surgery , Fractures, Bone/diagnostic imaging , Aged, 80 and over , X-Ray Microtomography , Cortical Bone/diagnostic imaging , Cortical Bone/surgery , Cortical Bone/anatomy & histology , Porosity , Middle Aged , Cadaver
5.
Acta Biomater ; 182: 139-155, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38750914

ABSTRACT

Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.


Subject(s)
Alloys , Cortical Bone , Zinc , Alloys/chemistry , Alloys/pharmacology , Zinc/chemistry , Zinc/pharmacology , Animals , Mice , Cortical Bone/drug effects , Porosity , Magnesium/chemistry , Magnesium/pharmacology , Materials Testing , Compressive Strength , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Absorbable Implants , Elastic Modulus , Cell Line
6.
Biomater Adv ; 161: 213871, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692181

ABSTRACT

Drawing on the structure and components of natural bone, this study developed Mg-doped hydroxyapatite (Mg-HA) bioceramics, characterized by multileveled and oriented micro/nano channels. These channels play a critical role in ensuring both mechanical and biological properties, making bioceramics suitable for various bone defects, particularly those bearing loads. Bioceramics feature uniformly distributed nanogrooves along the microchannels. The compressive strength or fracture toughness of the Mg-HA bioceramics with micro/nano channels formed by single carbon nanotube/carbon fiber (CNT/CF) (Mg-HA(05-CNT/CF)) are comparable to those of cortical bone, attributed to a combination of strengthened compact walls and microchannels, along with a toughening mechanism involving crack pinning and deflection at nanogroove intersections. The introduction of uniform nanogrooves also enhanced the porosity by 35.4 %, while maintaining high permeability owing to the capillary action in the oriented channels. This leads to superior degradation properties, protein adsorption, and in vivo osteogenesis compared with bioceramics with only microchannels. Mg-HA(05-CNT/CF) exhibited not only high strength and toughness comparable to cortical bone, but also permeability similar to cancellous bone, enhanced cell activity, and excellent osteogenic properties. This study presents a novel approach to address the global challenge of applying HA-based bioceramics to load-bearing bone defects, potentially revolutionizing their application in tissue engineering.


Subject(s)
Ceramics , Durapatite , Magnesium , Durapatite/chemistry , Magnesium/chemistry , Ceramics/chemistry , Animals , Cortical Bone/drug effects , Cancellous Bone , Osteogenesis/drug effects , Materials Testing , Nanotubes, Carbon/chemistry , Porosity , Compressive Strength , Bone Substitutes/chemistry , Biocompatible Materials/chemistry
7.
J Histochem Cytochem ; 72(5): 309-327, 2024 05.
Article in English | MEDLINE | ID: mdl-38725403

ABSTRACT

To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.


Subject(s)
Cortical Bone , Endothelial Cells , Parathyroid Hormone , Animals , Mice , Parathyroid Hormone/pharmacology , Parathyroid Hormone/administration & dosage , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cortical Bone/drug effects , Cortical Bone/metabolism , Porosity , Male , Osteoblasts/drug effects , Osteoblasts/metabolism , Immunohistochemistry , Femur/drug effects , Femur/blood supply , Femur/metabolism , Humans
8.
J Craniofac Surg ; 35(4): 1284-1288, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38727232

ABSTRACT

Cortical bone thickness is essential for the mechanical function of bone. Some factors including aging, sex, body size, hormone levels, behavior, and genetics lead to changes in cranial cortical robusticity. Moreover, the skull is one of the hardest and most durable structures in the human body. Schizophrenia is defined as a psychiatric disease characterized by delusions and hallucinations, and these patients have reduced brain volume; however, there is no study including cortical bone structure. For this reason, the aim of this study was to determine whether there is a difference in the skull cortical thickness of patients with schizophrenia and, compare it with healthy subjects. The cranial length, cranial width, anterior cortical thickness, right and left anterior cortical thickness, right and left lateral cortical thickness, right and left posterior lateral thickness, and posterior cortical thickness were measured with axial computed tomography images of 30 patients with schizophrenia and 132 healthy individuals aged between 18 and 69years. A statistically significant difference was found between the two groups in the measurements of right and left posterior lateral thickness, and posterior cortical thickness ( P = 0.006, P = 0.001, and P = 0.047, respectively). The sexes were compared, and it was found that the cranial width, anterior thickness, left anterior thickness, and right and left posterior thickness measurements of patients with schizophrenia showed a statistically significant difference compared with the control group ( P < 0.001, P = 0.003, P = 0.001, P < 0.001 and P < 0.001, respectively). The authors observed that skull cortical thickness may be different in schizophrenia. The results obtained from this study may be beneficial for evaluating these structures for clinical and pathological processes. Furthermore, knowledge about the skull cortical thickness in planning surgical procedures will increase the reliability and effectiveness of the surgical method, and this will minimize the risk of complications.


Subject(s)
Schizophrenia , Skull , Tomography, X-Ray Computed , Humans , Male , Female , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Adult , Middle Aged , Skull/diagnostic imaging , Tomography, X-Ray Computed/methods , Adolescent , Aged , Young Adult , Cortical Bone/diagnostic imaging , Cortical Bone/pathology , Case-Control Studies
9.
J Robot Surg ; 18(1): 204, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714574

ABSTRACT

Workflow for cortical bone trajectory (CBT) screws includes tapping line-to-line or under tapping by 1 mm. We describe a non-tapping, two-step workflow for CBT screw placement, and compare the safety profile and time savings to the Tap (three-step) workflow. Patients undergoing robotic assisted 1-3 level posterior fusion with CBT screws for degenerative conditions were identified and separated into either a No-Tap or Tap workflow. Number of total screws, screw-related complications, estimated blood loss, operative time, robotic time, and return to the operating room were collected and analyzed. There were 91 cases (458 screws) in the No-Tap and 88 cases (466 screws) in the Tap groups, with no difference in demographics, revision status, ASA grade, approach, number of levels fused or diagnosis between cohorts. Total robotic time was lower in the No-Tap (26.7 min) versus the Tap group (30.3 min, p = 0.053). There was no difference in the number of malpositioned screws identified intraoperatively (10 vs 6, p = 0.427), screws converted to freehand (3 vs 3, p = 0.699), or screws abandoned (3 vs 2, p = 1.000). No pedicle/pars fracture or fixation failure was seen in the No-Tap cohort and one in the Tap cohort (p = 1.00). No patients in either cohort were returned to OR for malpositioned screws. This study showed that the No-Tap screw insertion workflow for robot-assisted CBT reduces robotic time without increasing complications.


Subject(s)
Cortical Bone , Robotic Surgical Procedures , Spinal Fusion , Humans , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/instrumentation , Male , Female , Middle Aged , Cortical Bone/surgery , Aged , Spinal Fusion/methods , Spinal Fusion/instrumentation , Operative Time , Bone Screws , Workflow , Pedicle Screws , Adult
10.
Int J Implant Dent ; 10(1): 23, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713411

ABSTRACT

PURPOSE: To analyze the visibility of the maxillary sinus septa (MSS) in panoramic radiography (PR) versus cone beam computed tomography (CBCT) and to investigate whether the buccal cortical bone thickness (BT) or the septa dimensions influence their visibility. METHODS: Corresponding PR and CBCT images of 355 patients were selected and examined for MSS visibility. The septa dimensions (width, height, depth) and the BT were measured. Results were analysed statistically. RESULTS: Comparing the corresponding regions on CBCT and PR, 170 MSS were identified; however, only 106 of these were also visible using PR. The MSS visibility was significantly higher on CBCT versus PR images (P1: p = 0.039, P2: p = 0.015, M1: p = 0.041, M2: p = 0.017, M3: p = 0.000), except region C (p = 0.625). Regarding the measurements of MSS dimensions, only the height in region M1 (p = 0.013) and the width in region P2 (p = 0.034) were significantly more visible on CBCT. The BT in the area of the MSS was found to have a marginal influence on its visibility on the PR images only in regions M3 and M1 (M3: p = 0.043, M1: p = 0.047). In terms of MSS visibility based on the dimensions, significance was found for all three influencing variables only in region P2 (width; p = 0.041, height; p = 0.001, depth; p = 0.007). There were only isolated cases of further significance: M3 for width (p = 0.043), M2 for height (p = 0.024), and P1 for depth (p = 0.034), no further significance was noted. CONCLUSION: MSS visibility appears significantly higher on CBCT versus PR images. It is concluded that the septa dimensions and BT can influence MSS visibility on PR images just in certain regions.


Subject(s)
Cone-Beam Computed Tomography , Cortical Bone , Maxillary Sinus , Radiography, Panoramic , Humans , Cone-Beam Computed Tomography/methods , Radiography, Panoramic/methods , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/anatomy & histology , Retrospective Studies , Male , Female , Middle Aged , Adult , Cortical Bone/diagnostic imaging , Cortical Bone/anatomy & histology , Aged , Young Adult , Aged, 80 and over
11.
Bone Joint J ; 106-B(6): 548-554, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38821498

ABSTRACT

Aims: The aim of this study was to compare the pattern of initial fixation and changes in periprosthetic bone mineral density (BMD) between patients who underwent total hip arthroplasty (THA) using a traditional fully hydroxyapatite (HA)-coated stem (T-HA group) and those with a newly introduced fully HA-coated stem (N-HA group). Methods: The study included 36 patients with T-HA stems and 30 with N-HA stems. Dual-energy X-ray absorptiometry was used to measure the change in periprosthetic BMD, one and two years postoperatively. The 3D contact between the stem and femoral cortical bone was evaluated using a density-mapping system, and clinical assessment, including patient-reported outcome measurements, was recorded. Results: There were significantly larger contact areas in Gruen zones 3, 5, and 6 in the N-HA group than in the T-HA group. At two years postoperatively, there was a significant decrease in BMD around the proximal-medial femur (zone 6) in the N-HA group and a significant increase in the T-HA group. BMD changes in both groups correlated with BMI or preoperative lumbar BMD rather than with the extent of contact with the femoral cortical bone. Conclusion: The N-HA-coated stem showed a significantly larger contact area, indicating a distal fixation pattern, compared with the traditional fully HA-coated stem. The T-HA-coated stem showed better preservation of periprosthetic BMD, two years postoperatively. Surgeons should consider these patterns of fixation and differences in BMD when selecting fully HA-coated stems for THA, to improve the long-term outcomes.


Subject(s)
Absorptiometry, Photon , Arthroplasty, Replacement, Hip , Bone Density , Coated Materials, Biocompatible , Cortical Bone , Durapatite , Femur , Hip Prosthesis , Prosthesis Design , Humans , Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/methods , Female , Male , Aged , Middle Aged , Femur/surgery , Cortical Bone/surgery
12.
Jt Dis Relat Surg ; 35(2): 417-421, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727123

ABSTRACT

Although hemangiomas are the most common soft tissue tumors, intramuscular hemangiomas account for only 0.8% of all vascular tumors. These lesions are rarely located adjacent to the bone and cause changes in the adjacent bone. They are often mistakenly diagnosed as bone tumors. In this study, a case of a 19-year-old male patient with intramuscular hemangioma causing cortical thickening was reported.


Subject(s)
Bone Neoplasms , Hemangioma , Hypertrophy , Muscle Neoplasms , Humans , Male , Hemangioma/pathology , Hemangioma/diagnosis , Hemangioma/diagnostic imaging , Diagnosis, Differential , Young Adult , Bone Neoplasms/diagnosis , Bone Neoplasms/pathology , Muscle Neoplasms/pathology , Muscle Neoplasms/diagnostic imaging , Muscle Neoplasms/diagnosis , Hypertrophy/pathology , Magnetic Resonance Imaging , Cortical Bone/pathology , Cortical Bone/diagnostic imaging , Tomography, X-Ray Computed
13.
Clin Oral Investig ; 28(6): 336, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795258

ABSTRACT

OBJECTIVE: Stress distribution assessment by finite elements analysis in poly(etheretherketone) (PEEK) implant and abutment as retainers of single crowns in the anterior region. MATERIALS AND METHODS: Five 3D models were created, varying implant/abutment manufacturing materials: titanium (Ti), zirconia (Zr), pure PEEK (PEEKp), carbon fiber-reinforced PEEK (PEEKc), glass fiber-reinforced PEEK (PEEKg). A 50 N load was applied 30o off-axis at the incisal edge of the upper central incisor. The Von Mises stress (σvM) was evaluated on abutment, implant/screw, and minimum principal stress (σmin) and maximum shear stress (τmax) for cortical and cancellous bone. RESULTS: The abutment σvM lowest stress was observed in PEEKp group, being 70% lower than Ti and 74% than Zr. On the implant, PEEKp reduced 68% compared to Ti and a 71% to Zr. In the abutment screws, an increase of at least 33% was found in PEEKc compared to Ti, and of at least 81% to Zr. For cortical bone, the highest τmax values were in the PEEKp group, and a slight increase in stress was observed compared to all PEEK groups with Ti and Zr. For σmin, the highest stress was found in the PEEKc. Stress increased at least 7% in cancellous bone for all PEEK groups. CONCLUSION: Abutments and implants made by PEEKc concentrate less σvM stress, transmitting greater stress to the cortical and medullary bone. CLINICAL RELEVANCE: The best stress distribution in PEEKc components may contribute to decreased stress shielding; in vitro and in vivo research is recommended to investigate this.


Subject(s)
Benzophenones , Crowns , Dental Abutments , Dental Stress Analysis , Finite Element Analysis , Ketones , Materials Testing , Polyethylene Glycols , Polymers , Titanium , Zirconium , Ketones/chemistry , Polyethylene Glycols/chemistry , Humans , Zirconium/chemistry , Titanium/chemistry , Carbon Fiber/chemistry , Dental Implant-Abutment Design , Incisor , Dental Materials/chemistry , Dental Implants, Single-Tooth , Cortical Bone , Glass/chemistry , Dental Prosthesis Design
14.
J Mech Behav Biomed Mater ; 155: 106577, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759587

ABSTRACT

The present study simulates the fracture behavior of diabetic cortical bone with high levels of advanced glycation end-products (AGEs) under dynamic loading. We consider that the increased AGEs in diabetic cortical bone degrade the materials heterogeneity of cortical bone through a reduction in critical energy release rates of the microstructural features. To simulate the initiation and propagation of cracks, we implement a phase field fracture framework on 2D models of human tibia cortical microstructure. The simulations show that the mismatch between the fracture properties (e.g., critical energy release rate) of osteons and interstitial tissue due to high AGEs contents can change crack growth trajectories. The results show crack branching in the cortical microstructure under dynamic loading is affected by the mismatches related to AGEs. In addition, we observe cortical features such as osteons and cement lines can prevent multiple cracking under dynamic loading even with changing the mismatches due to high AGEs. Furthermore, under dynamic loading, some toughening mechanisms can be activated and deactivated with different AGEs contents. In conclusion, the current findings present that the combination of the loading type and materials heterogeneity of microstructural features can change the fracture response of diabetic cortical bone and its fragility.


Subject(s)
Cortical Bone , Glycation End Products, Advanced , Weight-Bearing , Humans , Cortical Bone/metabolism , Glycation End Products, Advanced/metabolism , Biomechanical Phenomena , Fractures, Bone/metabolism , Tibia/metabolism , Finite Element Analysis , Stress, Mechanical
15.
Bone ; 185: 117111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679220

ABSTRACT

Chronic heavy alcohol consumption is a risk factor for low trauma bone fracture. Using a non-human primate model of voluntary alcohol consumption, we investigated the effects of 6 months of ethanol intake on cortical bone in cynomolgus macaques (Macaca fascicularis). Young adult (6.4 ± 0.1 years old, mean ± SE) male cynomolgus macaques (n = 17) were subjected to a 4-month graded ethanol induction period, followed by voluntary self-administration of water or ethanol (4 % w/v) for 22 h/d, 7 d/wk. for 6 months. Control animals (n = 6) consumed an isocaloric maltose-dextrin solution. Tibial response was evaluated using densitometry, microcomputed tomography, histomorphometry, biomechanical testing, and Raman spectroscopy. Global bone response was evaluated using biochemical markers of bone turnover. Monkeys in the ethanol group consumed an average of 2.3 ± 0.2 g/kg/d ethanol resulting in a blood ethanol concentration of 90 ± 12 mg/dl in longitudinal samples taken 7 h after the daily session began. Ethanol consumption had no effect on tibia length, mass, density, mechanical properties, or mineralization (p > 0.642). However, compared to controls, ethanol intake resulted in a dose-dependent reduction in intracortical bone porosity (Spearman rank correlation = -0.770; p < 0.0001) and compared to baseline, a strong tendency (p = 0.058) for lower plasma CTX, a biochemical marker of global bone resorption. These findings are important because suppressed cortical bone remodeling can result in a decrease in bone quality. In conclusion, intracortical bone porosity was reduced to subnormal values 6 months following initiation of voluntary ethanol consumption but other measures of tibia architecture, mineralization, or mechanics were not altered.


Subject(s)
Alcohol Drinking , Calcification, Physiologic , Cortical Bone , Macaca fascicularis , Animals , Male , Porosity , Alcohol Drinking/physiopathology , Cortical Bone/drug effects , Cortical Bone/pathology , Cortical Bone/diagnostic imaging , Calcification, Physiologic/drug effects , Biomechanical Phenomena/drug effects , X-Ray Microtomography , Tibia/drug effects , Tibia/diagnostic imaging , Tibia/pathology , Ethanol/pharmacology , Spectrum Analysis, Raman , Bone Density/drug effects
16.
J Bone Miner Metab ; 42(3): 352-360, 2024 May.
Article in English | MEDLINE | ID: mdl-38664255

ABSTRACT

INTRODUCTION: Trabecular bone score (TBS) estimates bone microstructure, which is directly measured by high-resolution peripheral quantitative computed tomography (HRpQCT). We evaluated the correlation between these methods and TBS influence on fracture risk assessed by FRAX. MATERIALS AND METHODS: We evaluated 129 individuals (82 women, 43 postmenopausal) 20 to 82.3 years without prevalent clinical or non-clinical morphometric vertebral fractures, using DXA (spine and hip), HR-pQCT at distal radius (R) and tibia (T) and TBS which classifies bone microarchitecture as normal (TBS ≥ 1.350), partially degraded (1.200 < TBS < 1.350), or degraded (TBS ≤ 1.200). RESULTS: Spine and hip BMD and HR-pQCT parameters at cortical bone: area (T), density (R,T) thickness (T) and trabecular bone: density (R,T), number (T) and thickness (R) were significantly better in the 78 individuals with normal TBS (group 1) versus the 51 classified as partially degraded (n = 42) or degraded microarchitecture (n = 9) altogether (group 2). TBS values correlated with age (r = - 0.55), positively with spine and hip BMD and all cortical and trabecular bone density and microstructure parameters evaluated, p < 0.05 all tests. Binary logistic regression defined age (p = 0.008) and cortical thickness (p = 0.018) as main influences on TBS, while ANCOVA demonstrated that HR-pQCT data corrected for age were not different between TBS groups 1 and 2. TBS adjustment increased FRAX risk for major osteoporotic fractures and hip fractures. CONCLUSION: We describe significant association between TBS and both trabecular and cortical bone parameters measured by HR-pQCT, consistent with TBS influence on fracture risk estimation by FRAX, including hip fractures, where cortical bone predominates.


Subject(s)
Bone Density , Cancellous Bone , Cortical Bone , Tomography, X-Ray Computed , Humans , Female , Aged , Middle Aged , Cortical Bone/diagnostic imaging , Cancellous Bone/diagnostic imaging , Male , Aged, 80 and over , Adult , Absorptiometry, Photon , Young Adult
17.
Phys Med Biol ; 69(11)2024 May 20.
Article in English | MEDLINE | ID: mdl-38631364

ABSTRACT

Cortical bone is characterized by a dense solid matrix permeated by fluid-filled pores. Ultrasound scattering has potential for the non-invasive evaluation of changes in bone porosity. However, there is an incomplete understanding of the impact of ultrasonic absorption in the solid matrix on ultrasound scattering. In this study, maps were derived from scanning acoustic microscopy images of human femur cross-sections. Finite-difference time domain ultrasound scatter simulations were conducted on these maps. Pore density, diameter distribution of the pores, and nominal absorption values in the solid and fluid matrices were controlled. Ultrasound pulses with a central frequency of 8.2 MHz were propagated, both in through-transmission and backscattering configurations. From these data, the scattering, bone matrix absorption, and attenuation extinction lengths were calculated. The results demonstrated that as absorption in the solid matrix was varied, the scattering, absorption, and attenuation extinction lengths were significantly impacted. It was shown that for lower values of absorption in the solid matrix (less than 2 dB mm-1), attenuation due to scattering dominates, whereas at higher values of absorption (more than 2 dB mm-1), attenuation due to absorption dominates. This will impact how ultrasound attenuation and scattering parameters can be used to extract quantitative information on bone microstructure.


Subject(s)
Cortical Bone , Scattering, Radiation , Cortical Bone/diagnostic imaging , Humans , Ultrasonic Waves , Ultrasonography/methods , Bone Matrix/metabolism , Bone Matrix/diagnostic imaging , Femur/diagnostic imaging
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 303-308, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645868

ABSTRACT

Objective: To compare the clinical effects of cortical bone trajectory screws and traditional pedicle screws in posterior lumbar fusion. Methods: A retrospective study was conducted to analyze lumbar degeneration patients who underwent surgical treatment at our hospital between January 2016 and January 2019. A total of 123 patients who met the inclusion criteria were enrolled. The subjects were divided into two groups according to their surgical procedures and the members of the two groups were matched by age, sex, and the number of fusion segments. There were 63 patients in the traditional pedicle screws (PS) group and 60 in the cortical bone trajectory screws (CBTS) group. The outcomes of the two groups were compared. The primary outcome measures were perioperative conditions, including operation duration, estimated intraoperative blood loss (EBL), and length-of-stay (LOS), visual analog scale (VAS) score, Oswestry Disability Index (ODI) score, and interbody fusion rate. The secondary outcome measures were the time to postoperative ambulation and the incidence of complications. VAS scores and ODI scores were assessed before operation, 1 week, 1 month, 3 months, and 12 months after operation, and at the final follow-up. The interbody fusion rate was assessed in 1 year and 2 years after the operation and at the final follow-up. Results: The CBTS group showed a reduction in operation duration ([142.8±13.1] min vs. [174.7±15.4] min, P<0.001), LOS ([9.5±1.5] d vs. [12.0±2.0] d, P<0.001), and EBL ([194.2±38.3] mL vs. [377.5±33.1] mL, P<0.001) in comparison with the PS group. The VAS score for back pain in the CBTS group was lower than that in the PS group at 1 week and 1 month after operation and the ODI score in the CBTS group was lower than that in the PS group at 1 month after operation, with the differences being statistically significant (P<0.05). At each postoperative time point, the VAS score for leg pain and the interbody fusion rate did not show significant difference between the two groups. The VAS score for back and leg pain and the ODI score at each time point after operation in both the CBTS group and the PS group were significantly lower than those before operation (P<0.05). No significant difference was found in the time to postoperative ambulation or the overall complication incidence between the two groups. Conclusion: The CBTS technique could significantly shorten the operation duration and LOS, reduce EBL, and achieve the same effect as the PS technique does in terms of intervertebral fusion rate, pain relief, functional improvement, and complication incidence in patients undergoing posterior lumbar fusion.


Subject(s)
Cortical Bone , Lumbar Vertebrae , Pedicle Screws , Spinal Fusion , Humans , Spinal Fusion/methods , Spinal Fusion/instrumentation , Lumbar Vertebrae/surgery , Retrospective Studies , Male , Female , Cortical Bone/surgery , Operative Time , Length of Stay , Middle Aged , Treatment Outcome , Intervertebral Disc Degeneration/surgery , Bone Screws , Blood Loss, Surgical/statistics & numerical data
19.
Spine J ; 24(7): 1202-1210, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38437917

ABSTRACT

BACKGROUND CONTEXT: Cortical bone trajectory (CBT) screws have been introduced as an alternative technique for pedicle screw (PS) insertion because they have greater contact with the cortex and a greater uniaxial pullout load than traditional PS. CBT screwing can also minimize muscle dissection. However, CBT screws and traditional PSs have not yet been compared in terms of fusion rates and clinical outcomes for particular operative procedures. PURPOSE: This study aimed to assess the fusion rate and clinical outcomes of facet fusion (FF) fixed with CBT screws (CBT-FF) and to compare them with those of FF fixed with percutaneous PS (PPS-FF). STUDY DESIGN: Retrospective study. PATIENT SAMPLE: Records of 68 patients who underwent CBT-FF for single-level degenerative lumbar spondylolisthesis (DLS) with at least 1 year of follow-up were retrospectively reviewed. The control group comprised 143 patients who underwent PPS-FF under the same conditions. OUTCOME MEASURES: Computed tomography was performed to confirm fusion. Therapeutic effectiveness was assessed as a clinical outcome using the Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (JOABPEQ), Roland-Morris Disability Questionnaire (RMDQ), and visual analog scale (VAS) preoperatively and 1 year postoperatively. The rate of revision surgery was also calculated. Intraoperative blood loss was measured. METHODS: Fusion rate, clinical outcomes, revision surgery rate, and intraoperative blood loss of CBT-FF and PPS-FF were compared. RESULTS: The CBT-FF and PPS-FF fusion rates were 91.2% and 90.1%, respectively. The JOABPEQ category scores demonstrated therapeutic effectiveness in 74.5% and 77.1% of the patients for low back pain; the corresponding proportions for walking ability were 84.7% and 89.3%, respectively. No significant differences in therapeutic effectiveness were observed for any category, including the RMDQ and VAS scores for buttock and lower limb pain. Three patients required revision surgery for adjacent segment disease between 6 months and 3.5 years after CBT-FF (revision surgery rate, 4.4%), whereas the revision surgery rate for PPS-FF was 6.3% (9/143 cases). Average intraoperative blood loss was significantly less in the CBT-FF group than in the PPS-FF group. CONCLUSIONS: Both procedures were equally useful in terms of fusion rate and clinical outcomes for DLS management.


Subject(s)
Lumbar Vertebrae , Pedicle Screws , Spinal Fusion , Spondylolisthesis , Humans , Spondylolisthesis/surgery , Male , Female , Spinal Fusion/methods , Spinal Fusion/instrumentation , Middle Aged , Lumbar Vertebrae/surgery , Aged , Retrospective Studies , Treatment Outcome , Cortical Bone/surgery , Adult , Bone Screws
20.
J Mech Behav Biomed Mater ; 153: 106487, 2024 May.
Article in English | MEDLINE | ID: mdl-38490048

ABSTRACT

Computational models of mature bone have been used to predict fracture; however, analogous study of immature diaphyseal fracture has not been conducted due to sparse experimental mechanical data. A model of immature bone fracture may be used to aid in the differentiation of accidental and non-accidental trauma fractures in young, newly ambulatory children (0-3 years). The objective of this study was to characterize the evolution of tissue-level mechanical behavior, composition, and microstructure of maturing cortical porcine bone with uniaxial tension, Raman spectroscopy, and light microscopy as a function of maturation. We asked: 1) How do the monotonic uniaxial tensile properties change with maturation and displacement rate; 2) How does the composition and microstructure change with maturation; and 3) Is there a correlation between composition and tensile properties with maturation? Elastic modulus (p < 0.001), fracture stress (p < 0.001), and energy absorption (p < 0.014) increased as a function of maturation at the quasistatic rate by 110%, 86%, and 96%, respectively. Fracture stress also increased by 90% with maturation at the faster rate (p = 0.001). Fracture stress increased as a function of increasing displacement rate by 28% (newborn p = 0.048; 1-month p = 0.004; 3-month p= < 0.001), and fracture strain decreased by 68% with increasing displacement rate (newborn p = 0.002; 1-month p = 0.036; 3-month p < 0.001). Carbonate-to-phosphate ratio was positively linearly related to elastic modulus, and fracture stress was positively related to carbonate-to-phosphate ratio and matrix maturation ratio. The results of this study support that immature bone is strain-rate dependent and becomes more brittle at faster rates, contributing to the foundation upon which a computational model can be built to evaluate immature bone fracture.


Subject(s)
Cortical Bone , Fractures, Bone , Child , Infant, Newborn , Humans , Animals , Swine , Biomechanical Phenomena , Phosphates , Carbonates , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...