Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 245: 125577, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37379944

ABSTRACT

In this study, graphene oxide/N-halamine nanocomposite was synthesized through Pickering miniemulsion polymerization, which was then coated on cotton surface. The modified cotton exhibited excellent superhydrophobicity, which could effectively prevent microbial infestation and reduce the probability of hydrolysis of active chlorine, with virtually no active chlorine released in water after 72 h. Deposition of reduced graphene oxide nanosheets endowed cotton with ultraviolet-blocking properties, attributing to enhanced UV adsorption and long UV paths. Moreover, encapsulation of polymeric N-halamine resulted in improved UV stability, thus extending the life of N-halamine-based agents. After 24 h of irradiation, 85 % of original biocidal component (active chlorine content) was retained, and approximately 97 % of initial chlorine could be regenerated. Modified cotton has been proven to be an effective oxidizing material against organic pollutants and a potential antimicrobial substance. Inoculated bacteria were completely killed after 1 and 10 min of contact time, respectively. An innovative and simple scheme for determination of active chlorine content was also devised, and real-time inspection of bactericidal activity could be achieved to assure antimicrobial sustainability. Moreover, this method could be utilized to evaluate hazard classification of microbial contamination in different locations, thus broadening the application scope of N-halamine-based cotton fabrics.


Subject(s)
Amines , Anti-Bacterial Agents , Cotton Fiber , Gossypium , Latex , Nanostructures , Polymerization , Amines/chemistry , Amines/radiation effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Biofilms/drug effects , Chlorine/chemistry , Coloring Agents , Cotton Fiber/microbiology , Cotton Fiber/radiation effects , Disinfectants/chemistry , Disinfectants/radiation effects , Electric Conductivity , Equipment Contamination/prevention & control , Gossypium/chemistry , Gossypium/microbiology , Graphite/chemistry , Halogenation , Hydrophobic and Hydrophilic Interactions , Latex/chemistry , Latex/radiation effects , Nanostructures/chemistry , Nanostructures/radiation effects , Particle Size , Spectroscopy, Fourier Transform Infrared , Textile Industry/methods , Ultraviolet Rays , Water/chemistry
2.
Int J Biol Macromol ; 183: 23-34, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33862078

ABSTRACT

In the present work, copper/chitosan nanocomposites (Cu/CS) were prepared in an aqueous solution in the presence of CS as stabilizer and CuSO4·5H2O precursor. The Cu/CS NPs formation was proved through transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier Transform infrared (FT-IR) spectroscopy and XRD diffraction. Cotton and cotton/polyester fabrics were gamma-radiation grafted by padding to pickup of 100%, in nanocomposites based on Cu/CS NPs loaded in polymer blends of poly(vinyl alcohol) (PVA) and plasticized starch (PLST). The grafted fabrics were characterized in terms of tensile mechanical, crease recovery and water absorption properties. The results showed that cotton fabrics displayed higher water absorption (%) than cotton/polyester fabrics for all PVA/PLST compositions and water absorption was found to decrease with increasing the ratio of PVA in the PVA/PLST blends. Cotton/polyester fabrics displays crease recovery angle (CRA) value of 147.6 upon treated with PVA/PLST (80/20%) and gamma irradiated to 30 kGy compared to CRA value of 125.0 for cotton fabrics treated under the same conditions. For cotton fabrics, the tensile strength was largely depends on the irradiation dose, in which the tensile strength of the treated fabric with the different formulations is higher than the untreated fabric. The antimicrobial activity of the fabrics against gram-positive bacteria (Staphylococcus aurous) and gram-negative bacteria (Escherichia coli) was investigated. In case of gram-positive bacteria cotton fabric showed the highest impact, for both 50/50 and 20/80 PVA/PLST of 14 and 14.5 mm inhibition zone, whilst, cotton/polyester fabric recorded 6 and 5 mm inhibition zone against gram-negative bacteria for 50/50 and 20/80 PVA/PLST, respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Copper Sulfate/pharmacology , Cotton Fiber , Gamma Rays , Nanocomposites , Polyesters/chemistry , Absorption, Physicochemical , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Chitosan/radiation effects , Copper Sulfate/chemistry , Copper Sulfate/radiation effects , Cotton Fiber/microbiology , Cotton Fiber/radiation effects , Drug Compounding , Escherichia coli/drug effects , Escherichia coli/growth & development , Polyesters/radiation effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties , Tensile Strength , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...