Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.577
Filter
1.
Wiad Lek ; 77(3): 514-525, 2024.
Article in English | MEDLINE | ID: mdl-38691794

ABSTRACT

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Coumarin as cap groups. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group and Coumarin as cap groups known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. The synthesized compound assessed for their cytotoxic activity against hepatoblastoma HepG2 (IC50, I=0.094, II=0.040, III=0.032, IV=0.046, SAHA=0.141) and human colon adenocarcinoma MCF-7 (IC50, I=0.135, II=0.050, III= 0.065, IV=0.059, SAHA=0.107). The binding mode to the active site of [HDAC6] were determined by docking study which give results that they might be good inhibitors for [HDAC6]. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed a comparable cytotoxic result with FDA approved drug (SAHA) toward HepG2 and MCF-7 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Subject(s)
Antineoplastic Agents , Coumarins , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Sulfonamides , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Hep G2 Cells , MCF-7 Cells
2.
J Med Chem ; 67(10): 8271-8295, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717088

ABSTRACT

A series of heterocyclic ring-fused derivatives of bisnoralcohol (BA) were synthesized and evaluated for their inhibitory effects on RANKL-induced osteoclastogenesis. Most of these derivatives possessed potent antiosteoporosis activities in a dose-dependent manner. Among these compounds, 31 (SH442, IC50 = 0.052 µM) exhibited the highest potency, displaying 100% inhibition at 1.0 µM and 82.8% inhibition at an even lower concentration of 0.1 µM, which was much more potent than the lead compound BA (IC50 = 2.325 µM). Cytotoxicity tests suggested that the inhibitory effect of these compounds on RANKL-induced osteoclast differentiation did not result from their cytotoxicity. Mechanistic studies revealed that SH442 inhibited the expression of osteoclastogenesis-related marker genes and proteins, including TRAP, TRAF6, c-Fos, CTSK, and MMP9. Especially, SH442 could significantly attenuate bone loss of ovariectomy mouse in vivo. Therefore, these BA derivatives could be used as promising leads for the development of a new type of antiosteoporosis agent.


Subject(s)
Osteoclasts , Osteoporosis , Animals , Female , Mice , Bone Resorption/drug therapy , Cell Differentiation/drug effects , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteoporosis/drug therapy , Ovariectomy , RANK Ligand/metabolism , RANK Ligand/antagonists & inhibitors , RAW 264.7 Cells , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
3.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691893

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Subject(s)
Anti-Bacterial Agents , Coumarins , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Molecular Structure , Structure-Activity Relationship , Humans , Dose-Response Relationship, Drug , Mice , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis
4.
J Agric Food Chem ; 72(21): 11938-11948, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752540

ABSTRACT

The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 µg/mL), 6ae (0.32 µg/mL), and 6ah (0.48 µg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 µg/mL). Furthermore, compounds 4ak (0.88 µg/mL), 6ae (0.61 µg/mL), 6ah (0.65 µg/mL), and 6ak (1.11 µg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 µg/mL) and the broad-spectrum fungicide carbendazim (2.15 µg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.


Subject(s)
Coumarins , Fungicides, Industrial , Quantitative Structure-Activity Relationship , Rhizoctonia , Succinate Dehydrogenase , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Colletotrichum/drug effects , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Molecular Docking Simulation , Halogenation , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124415, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733918

ABSTRACT

SO2 derivatives play an important role in many metabolic processes, excessive ingestion of them can lead to serious complications of various diseases. In this work, a novel dual ratiometric NIR fluorescent probe XT-CHO based on ICT effect was synthesized for detecting SO2 derivative. In the design of the probe, the α, ß-unsaturated bond formed between benzopyran and coumarin was used as the reaction site for SO2, meanwhile, the extended π-conjugate system promoted maximum emission wavelength of the probe up to 708 nm. Notably, the probe exhibited high selectivity and sensitivity for detecting SO2, the limit of detection reached 2.13 nM and 58.5 nM in fluorescence spectra and UV-Vis absorption spectra, respectively. The reaction mechanism of SO2 and XT-CHO had been verified by 1H NMR, ESI-MS spectra and DFT calculation. Moreover, the probe was successfully applied in detecting endogenous and exogenous SO2 in living cells and proved possessed the mitochondrial targeted ability.


Subject(s)
Fluorescent Dyes , Mitochondria , Sulfur Dioxide , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Sulfur Dioxide/analysis , Humans , Mitochondria/chemistry , Mitochondria/metabolism , Spectrometry, Fluorescence , HeLa Cells , Spectroscopy, Near-Infrared/methods , Coumarins/chemistry , Coumarins/chemical synthesis , Limit of Detection , Density Functional Theory , Optical Imaging
6.
Bioorg Chem ; 148: 107451, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759357

ABSTRACT

Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.


Subject(s)
Anti-Bacterial Agents , Coumarins , Enterococcus faecalis , Microbial Sensitivity Tests , Enterococcus faecalis/drug effects , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , DNA, Bacterial/metabolism , A549 Cells , Hemolysis/drug effects
7.
Bioorg Chem ; 148: 107467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772290

ABSTRACT

KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 µM and 1.50 µM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coumarins , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Discovery , Apoptosis/drug effects , Molecular Docking Simulation , Drug Evaluation, Preclinical
8.
J Org Chem ; 89(11): 8084-8098, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38810000

ABSTRACT

A facile and novel synthetic method for the synthesis of functionalized polycyclic coumarins at the C-4 and C-5 positions is proposed for the first time, which employs copper-catalyzed addition reactions of undiscovered alkenes with difluoromethyl radicals to construct polycyclic coumarins. This strategy is characterized by high regioselectivity, easy availability of raw materials, and simple operation. Additionally, such undiscovered coumarin alkenes can be reacted with a variety of difluoromethyl precursors to obtain a wide range of valuable C-4 and C-5 position functionalized/difluoromethylated polycyclic coumarins. More importantly, some of the products showed significant inhibition of proliferation in vitro against melanoma B16-F10 and lung cancer A549 cell lines with optimal IC50 values of 8.57 and 16.04 µM, respectively.


Subject(s)
Copper , Coumarins , Coumarins/chemistry , Coumarins/chemical synthesis , Catalysis , Copper/chemistry , Humans , Molecular Structure , Cell Proliferation/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Polycyclic Compounds/chemistry , Polycyclic Compounds/chemical synthesis
9.
Top Curr Chem (Cham) ; 382(2): 16, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722386

ABSTRACT

Coumarins are secondary metabolites made up of benzene and α-pyrone rings fused together that can potentially treat various ailments, including cancer, metabolic, and degenerative disorders. Coumarins are a diverse category of both naturally occurring as well as synthesized compounds with numerous biological and therapeutic properties. Coumarins as fluorophores play a key role in fluorescent labeling of biomolecules, metal ion detection, microenvironment polarity detection, and pH detection. This review provides a detailed insight into the characteristics of coumarins as well as their biosynthesis in plants and metabolic pathways. Various synthetic strategies for coumarin core involving both conventional and green methods have been discussed comparing advantages and disadvantages of each method. Conventional methods discussed are Pechmann, Knoevenagel, Perkin, Wittig, Kostanecki, Buchwald-Hartwig, and metal-induced coupling reactions such as Heck and Suzuki, as well as green approaches involving microwave or ultrasound energy. Various pharmacological applications of coumarin derivatives are discussed in detail. The structural features and conditions responsible for influencing the fluorescence of coumarin core are also elaborated.


Subject(s)
Coumarins , Fluorescent Dyes , Coumarins/chemistry , Coumarins/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Molecular Structure , Biological Products/chemistry , Biological Products/chemical synthesis
10.
Org Biomol Chem ; 22(17): 3425-3438, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38590227

ABSTRACT

We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.


Subject(s)
Antineoplastic Agents , Butyrylcholinesterase , Cell Proliferation , Cholinesterase Inhibitors , Coumarins , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Butyrylcholinesterase/metabolism , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Cell Line, Tumor , Structure-Activity Relationship , Molecular Structure , Drug Screening Assays, Antitumor , Aza Compounds/chemistry , Aza Compounds/pharmacology , Aza Compounds/chemical synthesis , Dose-Response Relationship, Drug , Neurons/drug effects
11.
J Med Chem ; 67(9): 7406-7430, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38642371

ABSTRACT

A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Coumarins , Molecular Docking Simulation , Thiazoles , Vascular Endothelial Growth Factor Receptor-2 , Humans , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship , Mice , Crystallography, X-Ray , Apoptosis/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , Neoplasms/drug therapy , Neoplasms/pathology , Male , Antigens, Neoplasm/metabolism
12.
Chem Commun (Camb) ; 60(41): 5423-5426, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38683668

ABSTRACT

The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.


Subject(s)
Alkynes , Amino Acids , Coumarins , Fluorescent Dyes , Manganese , Peptides , Coumarins/chemistry , Coumarins/chemical synthesis , Catalysis , Manganese/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Peptides/chemistry , Alkynes/chemistry , Amino Acids/chemistry , Molecular Structure
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124312, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38688210

ABSTRACT

The ubiquity of diverse material entities in environmental matrices renders the deployment of unifunctional fluorescent indicators inadequate. Consequently, this study introduces a ratiometric dual-emission fluorescent sensor (Probe CP), synthesized by conjugating phenothiazine coumarin to hydroxycoumarin through a piperazine linker for concurrent detection of HClO and H2S. Upon interaction with HClO, the phenothiazine unit's sulfur atom undergoes oxidation to sulfoxide, facilitating a shift from red to green fluorescence in a ratiometric manner. Concurrently, at the opposite terminus of Probe CP, 2,4-dinitroanisole serves as the reactive moiety for H2S recognition; it restores the blue emission characteristic of 7-hydroxycoumarin while maintaining the red fluorescence emanating from phenothiazine coumarin as an internal standard for ratio-based assessment. Exhibiting elevated specificity and sensitivity coupled with minimal detection thresholds (0.0506 µM for HClO and 1.7292 µM for H2S) alongside rapid equilibration periods (3 min for HClO and half an hour for H2S), this sensor was efficaciously employed in cellular environments and within zebrafish models as well as imaging applications pertaining to alcohol-induced hepatic injury in murine subjects.


Subject(s)
Coumarins , Fluorescent Dyes , Hydrogen Sulfide , Phenothiazines , Zebrafish , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Coumarins/chemistry , Coumarins/chemical synthesis , Hydrogen Sulfide/analysis , Mice , Spectrometry, Fluorescence/methods , Humans
14.
Int J Biol Macromol ; 268(Pt 1): 131548, 2024 May.
Article in English | MEDLINE | ID: mdl-38642682

ABSTRACT

The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.


Subject(s)
Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Coumarins , Drug Design , Thiazoles , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Humans , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrases/metabolism , Structure-Activity Relationship , Antigens, Neoplasm/metabolism
15.
Talanta ; 275: 126141, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677168

ABSTRACT

The crucial cellular activities for maintaining normal cell functions heavily rely on the polarity of the endoplasmic reticulum (ER). Understanding how the polarity shifts, particularly in the context of ER autophagy (ER-phagy), holds significant promise for advancing knowledge of disorders associated with ER stress. Herein, a polarity-sensitive fluorescent probe CDI was easily synthesized from the condensation reaction of coumarin and dicyanoisophorone. CDI was composed of coumarin as the electron-donating moiety (D), ethylene and phenyl ring as the π-conjugation bridge, and malononitrile as the electron-accepting moiety (A), forming a typical D-π-A molecular configuration that recognition in the near-infrared (NIR) region. The findings suggested that as the polarity increased, the fluorescence intensity of CDI decreased, and it was accompanied by a redshift of emission wavelength at the excitation wavelength of 524 nm, shifting from 641 nm to 721 nm. Significantly, CDI exhibited a notable ability to effectively target ER and enabled real-time monitoring of ER-phagy induced by starvation or drugs. Most importantly, alterations in polarity can be discerned through in vivo imaging in mice model of rheumatoid arthritis (RA). CDI has been proven effective in evaluating the therapeutic efficacy of drugs for RA. ER fluorescent probe CDI can be optically activated in lysosomes, providing a sensitive tool for studying ER-phagy in biology and diseases.


Subject(s)
Arthritis, Rheumatoid , Autophagy , Endoplasmic Reticulum , Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Endoplasmic Reticulum/metabolism , Autophagy/drug effects , Mice , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Optical Imaging , Humans , Coumarins/chemistry , Coumarins/chemical synthesis , Infrared Rays
16.
Chem Biodivers ; 21(5): e202400311, 2024 May.
Article in English | MEDLINE | ID: mdl-38494946

ABSTRACT

Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.


Subject(s)
Coumarins , Drug Design , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Structure-Activity Relationship , Molecular Docking Simulation , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Quantitative Structure-Activity Relationship , Botrytis/drug effects
17.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38518997

ABSTRACT

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Subject(s)
Antineoplastic Agents , Coumarins , Heterocyclic Compounds, 4 or More Rings , Isoquinolines , Topoisomerase I Inhibitors , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/metabolism , Drug Screening Assays, Antitumor , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacology , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Drug Design , Coumarins/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology
18.
J Enzyme Inhib Med Chem ; 37(1): 680-685, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35139744

ABSTRACT

Coumarins were discovered to act as inhibitors of α-carbonic anhydrases (CAs, EC 4.2.1.1) after undergoing hydrolysis mediated by the esterase activity of the enzyme to the corresponding 2-hydroxycinnamic acids. Other classes of CAs among the eight currently known do not possess esterase activity or this activity was poorly investigated. Hence, we decided to look at the potential of coumarins as inhibitors of the η-CA from the malaria-producing protozoan Plasmodium falciparum, PfaCA. A panel of simple coumarins incorporating hydroxyl, amino, ketone or carboxylic acid ester moieties in various positions of the ring system acted as low to medium micromolar PfaCA inhibitors, whereas their affinities for the cytosolic off-target human isoforms hCA I and II were in a much higher range. Thus, we confirm that η-CAs possess esterase activity and that coumarins effectively inhibit this enzyme. Elaboration of the simple coumarin scaffolds investigated here may probably lead to more effective PfaCA inhibitors.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Coumarins/pharmacology , Plasmodium falciparum/enzymology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
19.
Dalton Trans ; 51(8): 3198-3212, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35118482

ABSTRACT

Multi-responsive and selective sensor design is one of the stimulating research areas in the sensors field. We have designed a pyrazolyl-hydroxy-coumarin scaffold, 7-hydroxy-4-methyl-8-(((5-phenyl-1H-pyrazol-3-yl)imino)methyl)-2H-chromen-2-one (H2L) and characterized it by spectroscopic techniques (1H NMR, 13C NMR, ESI-MS, IR). The single crystal X-ray diffraction measurement confirms the molecular structure of the probe. It shows the selective sensing of Zn2+ in the presence of sixteen other cations with 'Turn On' approach through the enhancement of green florescence ((λem = 499 nm; λex = 390 nm) in CH3CN/H2O (99 : 1, v/v; HEPES buffer, pH 7.5) medium with the limit of detection (LOD) of 34.76 nM. The structural depiction of the isolated Zn2+ complex reveals cage like metallocryptand cyclic hexamer, [Zn6L6] with 30.9% void of cavity along the crystallographic c axis of approximate dimension of 7.502 × 7.050 × 7.068 Å3. The diffusion NMR study reveals only one type of complex in the solution, having 1 : 1 composition, i.e., Zn2+ : H2L, which affirms the isolated form of the complex. On the other hand, the receptor, H2L, recognizes the very noxious anion CN- out of sixteen anions. The product identification using spectroscopic techniques supports the nucleophilic addition of CN- across the exocyclic imine (CN) bond, which shows blue emission ((λem = 447 nm; λex = 390 nm), and the LOD was 19.91 nM. The composition of [H2L-Zn2+] and [H2L-CN-] was established by 1H NMR titration, Job's method, ESI-MS, and FTIR spectra. The efficacy of the probe was further studied using MTT assay in MDA-MB 231 and WI-38 cell line as well as for the intracellular imaging of Zn2+ and CN- using a fluorescence microscope. Flow Cytometry was further performed for the quantitative analysis of Zn2+ distribution in MDA-MB 231 cells.


Subject(s)
Coumarins/chemical synthesis , Cyanides/chemistry , Molecular Imaging/methods , Zinc/chemistry , Cell Line , Cell Survival , Coumarins/chemistry , Density Functional Theory , Fluorescent Dyes , Humans , Luminescent Measurements , Models, Molecular , Molecular Structure
20.
Int J Mol Sci ; 23(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055142

ABSTRACT

Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson's disease, and Alzheimer's disease. Clinical studies demonstrate a reduction of the mentioned diseases' symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Coumarins/chemical synthesis , Microglia/cytology , Neurons/cytology , Receptors, Cannabinoid/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Coumarins/chemistry , Coumarins/pharmacology , Dinoprostone/metabolism , Humans , Mice , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Organ Specificity , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL
...