Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
2.
Cell Host Microbe ; 29(10): 1545-1557.e4, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34525331

ABSTRACT

Ticks are obligate hematophagous arthropods. Blood feeding ensures that ticks obtain nutrients essential for their survival, development, and reproduction while providing routes for pathogen transmission. However, the effectors that determine tick feeding activities remain poorly understood. Here, we demonstrate that reduced abundance of the symbiont Coxiella (CHI) in Haemaphysalis longicornis decreases blood intake. Providing tetracycline-treated ticks with the CHI-derived tryptophan precursor chorismate, tryptophan, or 5-hydroxytryptamine (5-HT; serotonin) restores the feeding defect. Mechanistically, CHI-derived chorismate increases tick 5-HT biosynthesis by stimulating the expression of aromatic amino acid decarboxylase (AAAD), which catalyzes the decarboxylation of 5-hydroxytryptophan (5-HTP) to 5-HT. The increased level of 5-HT in the synganglion and midgut promotes tick feeding. Inhibition of CHI chorismate biosynthesis by treating the colonized tick with the herbicide glyphosate suppresses blood-feeding behavior. Taken together, our results demonstrate an important function of the endosymbiont Coxiella in the regulation of tick 5-HT biosynthesis and feeding.


Subject(s)
Coxiella/physiology , Serotonin/biosynthesis , Symbiosis , Ticks/microbiology , Ticks/physiology , Animals , Blood/parasitology , Feeding Behavior , Humans , Tryptophan/metabolism
3.
Microb Pathog ; 139: 103902, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31790790

ABSTRACT

BACKGROUND: Coxiella burnetii and non-C. burnetii bacteria or endosymbiotic Coxiella-like were reported in various tick species. We aimed to detect C. burnetii within soft tick species, Argas persicus and Alveonasus canestrinii. METHODS: Argasid ticks were collected from different counties of Lorestan province, west of Iran. Partial fragments of 16S rRNA, IS1111 insertion sequence, com1, htpB, and icd genes related to Coxiella genus were sequenced. RESULTS: A partial 16S rRNA and com1 gene fragment as well as IS1111 was detected in four Ar. persicus and twelve Al. canestrinii pools. Moreover, partial htpB and icd gene was only detected in one pool of Ar. persicus. CONCLUSIONS: Detection of C. burnetii in tick samples was failed due to the occurrence of Coxiella-like endosymbionts and leads to misidentification. Thus, the house-keeping genes should be designated to distinguish C. burnetii within Coxiella-like endosymbionts.


Subject(s)
Acari/microbiology , Argas/microbiology , Coxiella/genetics , Coxiella/isolation & purification , Acari/physiology , Animals , Argas/physiology , Coxiella/classification , Coxiella/physiology , DNA Transposable Elements , DNA, Bacterial/genetics , Iran , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis
4.
Ticks Tick Borne Dis ; 10(4): 798-804, 2019 06.
Article in English | MEDLINE | ID: mdl-30922601

ABSTRACT

Ticks are commonly infected by Coxiella-like endosymbionts (Coxiella-LE) which are thought to supply missing B vitamin nutrients required for blood digestion.While this nutritional symbiosis is essential for the survival and reproduction of infected tick species, our knowledge of where Coxiella-LE is localized in tick tissues is partial at best since previous studies have focused on a limited number of Asian or American tick species. To fill this gap, we investigated the tissue localization of Coxiella-LE in three European tick species, Ornithodoros maritimus, Dermacentor marginatus and Ixodes hexagonus, using a diagnostic fluorescence in situ hybridization (FISH) assay, combined with PCR-based detection. Specific fluorescent foci were observed in several tick tissues. We visualized a pronounced tissue tropism of Coxiella-LE for tick ovaries and Malpighian tubules, a pattern suggestive of a high degree of lifestyle specialization toward mutualism: infection of the ovaries is indicative of transovarial transmission, whereas infection of the Malpighian tubules suggests a nutritional function. We postulate that Malpighian tubules are key organs for the nutritional symbiosis, notably the synthesis of B vitamins by Coxiella-LE, whereas the infection of the ovaries ensures vertical transmission of the symbionts to future generations. We also detected occasional infections in other organs, such as salivary glands and the midgut. Finally, we discuss the potential significance of the different tissue tropism for tick biology.


Subject(s)
Coxiella/isolation & purification , Symbiosis , Ticks/microbiology , Animals , Coxiella/physiology , DNA, Bacterial , Dermacentor/anatomy & histology , Dermacentor/microbiology , Europe , Female , In Situ Hybridization, Fluorescence , Ixodidae/anatomy & histology , Ixodidae/microbiology , Malpighian Tubules/microbiology , Ovary/microbiology , Phylogeny , Salivary Glands/microbiology , Ticks/anatomy & histology
6.
Microbiol Spectr ; 6(2)2018 04.
Article in English | MEDLINE | ID: mdl-29651977

ABSTRACT

This article will provide current insights into antimicrobial susceptibilities and resistance of an important group of bacterial pathogens that are not phylogenetically related but share lifestyle similarities in that they are generally considered to be obligate intracellular microbes. As such, there are shared challenges regarding methods for their detection and subsequent clinical management. Similarly, from the laboratory perspective, susceptibility testing is rarely undertaken, though molecular approaches might provide new insights. One should also bear in mind that the highly specialized microbial lifestyle restricts the opportunity for lateral gene transfer and, consequently, acquisition of resistance.


Subject(s)
Chlamydiales/physiology , Coxiella/physiology , Drug Resistance, Bacterial/physiology , Rickettsia/physiology , Animal Diseases/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Bacteriological Techniques/methods , Cell Culture Techniques/methods , Chlamydiales/drug effects , Chlamydiales/pathogenicity , Coxiella/drug effects , Coxiella/pathogenicity , Cytoplasm/microbiology , Gene Transfer, Horizontal , Humans , Microbial Sensitivity Tests/methods , Rickettsia/drug effects , Rickettsia/pathogenicity , Zoonoses/microbiology
7.
Appl Environ Microbiol ; 84(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29523550

ABSTRACT

Ticks are important disease vectors, as they transmit a variety of human and animal pathogens worldwide. Symbionts that coevolved with ticks confer crucial benefits to their host in nutrition metabolism, fecundity, and vector competence. Although over 100 tick species have been identified in China, general information on tick symbiosis is limited. Here, we visualized the tissue distribution of Coxiella sp. and Rickettsia sp. in lab-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides by fluorescent in situ hybridization. We found that Coxiella sp. colonized exclusively the Malpighian tubules and ovaries of H. longicornis, while Rickettsia sp. additionally colonized the midgut of R. haemaphysaloides We also investigated the population structure of microbiota in Dermacentor silvarum ticks collected from Inner Mongolia, China, and found that Coxiella, Rickettsia, and Pseudomonas are the three dominant genera. No significant difference in microbiota composition was found between male and female D. silvarum ticks. We again analyzed the tissue localization of Coxiella sp. and Rickettsia sp. and found that they displayed tissue tropisms similar to those in R. haemaphysaloides, except that Rickettsia sp. colonized the nuclei of spermatids instead of ovaries in D. silvarum Altogether, our results suggest that Coxiella sp. and Rickettsia sp. are the main symbionts in the three ticks and reside primarily in midgut, Malpighian tubules, and reproductive tissues, but their tissue distribution varies in association with species and sexes.IMPORTANCE Tick-borne diseases constitute a major public health burden, as they are increasing in frequency and severity worldwide. The presence of symbionts helps ticks to metabolize nutrients, promotes fecundity, and influences pathogen infections. Increasing numbers of tick-borne pathogens have been identified in China; however, knowledge of native ticks, especially tick symbiosis, is limited. In this study, we analyze the distribution of Coxiella sp. and Rickettsia sp. in tissues of laboratory-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides and field-collected Dermacentor silvarum We found that the localization patterns of Coxiella sp. in three Chinese tick species were similar to those of other tick species. We also found a previously undefined intracellular localization of Rickettsia sp. in tick midgut and spermatids. In addition, we demonstrate that tissue tropisms of symbionts vary between species and sexes. Our findings provide new insights into the tissue localization of symbionts in native Chinese ticks and pave the way for further understanding of their functional capabilities and symbiotic interactions with ticks.


Subject(s)
Coxiella/physiology , Dermacentor/microbiology , Ixodidae/microbiology , Rhipicephalus/microbiology , Rickettsia/physiology , Symbiosis , Animals , China , Coxiella/classification , Coxiella/genetics , Coxiella/isolation & purification , Dermacentor/physiology , Female , Gastrointestinal Tract/microbiology , Host Specificity , Ixodidae/physiology , Male , Microbiota , Ovary/microbiology , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/physiology , Rhipicephalus/physiology , Rickettsia/classification , Rickettsia/genetics , Rickettsia/isolation & purification
8.
Environ Microbiol ; 20(5): 1751-1764, 2018 05.
Article in English | MEDLINE | ID: mdl-29575448

ABSTRACT

Understanding the symbiotic interaction between Coxiella-like endosymbionts (CLE) and their tick hosts is challenging due to lack of isolates and difficulties in tick functional assays. Here we sequenced the metagenome of a CLE population from wild Rhipicephalus sanguineus ticks (CRs) and compared it to the previously published genome of its close relative, CLE of R. turanicus (CRt). The tick hosts are closely related sympatric species, and their two endosymbiont genomes are highly similar with only minor differences in gene content. Both genomes encode numerous pseudogenes, consistent with an ongoing genome reduction process. In silico flux balance metabolic analysis (FBA) revealed the excess production of L-proline for both genomes, indicating a possible proline transport from Coxiella to the tick. Additionally, both CR genomes encode multiple copies of the proline/betaine transporter, proP gene. Modelling additional Coxiellaceae members including other tick CLE, did not identify proline as an excreted metabolite. Although both CRs and CRt genomes encode intact B vitamin synthesis pathway genes, which are presumed to underlay the mechanism of CLE-tick symbiosis, the FBA analysis indicated no changes for their products. Therefore, this study provides new testable hypotheses for the symbiosis mechanism and a better understanding of CLE genome evolution and diversity.


Subject(s)
Coxiella/genetics , Coxiella/physiology , Genome, Bacterial , Phylogeny , Symbiosis/physiology , Ticks/microbiology , Animals , Base Sequence , Metagenomics
9.
Sci Rep ; 7(1): 17554, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29242567

ABSTRACT

The cattle tick Rhipicephalus microplus is a hematophagous ectoparasite that causes important economic losses in livestock. Different species of ticks harbor a symbiont bacterium of the genus Coxiella. It was showed that a Coxiella endosymbiont from R. microplus (CERM) is a vertically transmitted mutualist symbiont, comprising 98% of the 16S rRNA sequences in both eggs and larvae. Sequencing of the bacterial genome revealed genes for biosynthetic pathways for several vitamins and key metabolic cofactors that may provide a nutritional complement to the tick host. The CERM was abundant in ovary and Malpighian tubule of fully engorged female. Tetracycline treatment of either the tick or the vertebrate host reduced levels of bacteria in progeny in 74% for eggs and 90% for larvae without major impact neither on the reproductive fitness of the adult female or on embryo development. However, CERM proved to be essential for the tick to reach the adult life stage, as under antibiotic treatment no tick was able to progress beyond the metanymph stage. Data presented here suggest that interference in the symbiotic CERM-R. microplus relationship may be useful to the development of alternative control methods, highlighting the interdependence between ticks and their endosymbionts.


Subject(s)
Coxiella/physiology , Rhipicephalus/microbiology , Symbiosis , Animals , Coxiella/drug effects , Coxiella/genetics , Female , Genome, Bacterial/genetics , Larva/drug effects , Larva/growth & development , Larva/microbiology , Nymph/drug effects , Nymph/growth & development , Nymph/microbiology , Ovum/drug effects , Ovum/growth & development , Ovum/microbiology , Rhipicephalus/growth & development , Symbiosis/drug effects , Tetracycline/pharmacology
10.
Exp Appl Acarol ; 73(3-4): 429-438, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29197022

ABSTRACT

Coxiella-like endosymbiont (CLS-Hl) is a primary endosymbiont of Haemaphysalis longicornis. CLS-Hl infects tick special tissues and its prevalence is 100% in ovaries and Malpighian tubules. Tetracycline was injected into females, which then fed on rabbits also treated with tetracycline. The densities of CLS-Hl were measured by semi-quantitative PCR. CLS-Hl densities in ovaries and Malpighian tubes of H. longicornis had significant effects on engorged weight, feeding time, number of eggs, oviposition period, and hatching period. These findings suggested that CLS-Hl plays a role in the reproduction and development of H. longicornis.


Subject(s)
Coxiella/physiology , Ixodidae/microbiology , Ixodidae/physiology , Oviposition , Symbiosis , Animals , Feeding Behavior , Female , Ixodidae/growth & development , Malpighian Tubules/microbiology , Ovary/microbiology , Reproduction
11.
Parasit Vectors ; 10(1): 259, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28545568

ABSTRACT

BACKGROUND: Characterization of the microbial diversity and symbiont dynamics of ticks may help to understand the development of ticks and reveal new strategies to control tick-transmitted pathogens, which has not yet been explored in the Tibetan tick Haemaphysalis tibetensis. This tick species is widely distributed in the Tibetan Plateau, and is recognized as one of the primary parasites affecting domestic and wild animals. METHODS: In the present study, the endosymbionts of H. tibetensis were characterized using diagnostic polymerase chain reaction (diagnostic PCR), and further evaluated for tissue distribution and population dynamics at each developmental stage of ticks and in tissues at different reproductive statuses by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: Two symbionts were found in H. tibetensis, and named as CLS-Ht (Coxiella-like symbiont in H. tibetensis) and RLS-Ht (Rickettsia-like symbiont in H. tibetensis). They showed 100% infection rate in both females and males of H. tibetensis. CLS-Ht and RLS-Ht can be observed within eggs, larvae, nymphs and adults, which indicates vertical transmission in H. tibetensis. CLS-Ht was specifically distributed in the female ovaries and Malpighian tubules, whereas RLS-Ht was detected within ovaries, Malpighian tubules, salivary glands and midguts of the ticks. Real-time qPCR suggested that adult ticks carried the largest amount of CLS-Ht and RLS-Ht with CLS-Ht having a significantly higher presence in females than in males (P < 0.05), whereas the presence of RLS-Ht showed no significant differences between sexes. In the ovaries, CLS-Ht distribution reached a peak at one day post-engorgement, and then gradually declined to a lower level, whereas no change was observed in RLS-Ht. In Malpighian tubules, the amount of both symbionts displayed an increasing trend with time post-engorgement. In midguts and salivary glands, the amount of RLS-Ht showed no significant differences. CONCLUSION: Two novel endosymbionts (CLS-Ht and RLS-Ht) were characterized in H. tibetensis both showing a high prevalence and stable vertical transmission. The described tissue distribution and population dynamics might imply the important functions of these symbionts during the development and reproduction of ticks.


Subject(s)
Coxiella/physiology , Ixodidae/microbiology , Rickettsia/physiology , Symbiosis , Animals , Coxiella/genetics , Coxiella/isolation & purification , Female , Ixodidae/physiology , Male , Nymph/microbiology , Phylogeny , Rickettsia/genetics , Rickettsia/isolation & purification , Salivary Glands/microbiology , Tibet
12.
PLoS One ; 11(10): e0165784, 2016.
Article in English | MEDLINE | ID: mdl-27792764

ABSTRACT

Members of the genus Coxiella can be transmitted from ticks to humans during contact with animals; Coxiella may thus spread from the infected horses or ticks to humans. In this study, the presence of Coxiella burnetii and Coxiella-like endosymbionts (CLE) in ticks found on infested horses was determined using PCR and genotyping. A total of 213 ticks were randomly collected from 51 horses (4-5 ticks per horse) raised on Jeju Island, Korea, between 2009 and 2013. All ticks were morphologically identified as adult Haemaphysalis longicornis, a predominant tick species widespread in Korea. Based on the results of nested PCR and 16S rRNA sequencing, CLE were detected in 121 (52.4%, 95% CI: 45.9-58.8) ticks. CLE 16S rRNA sequences from 9 randomly selected ticks were 100% identical. Phylogenetic analysis showed that these 9 sequences were highly similar (97.9-100%) to the sequences of clade B species, like the CLE previously described to be found in Haemaphysalis spp. This study showed that CLE are prevalent in ticks that infest horses reared on Jeju Island, and this is, to the best of our knowledge, the first study to describe CLE occurrence in ticks infesting animals reared in Korea. Because of the high prevalence of CLE in ticks found on horses, CLE transmission from ticks to other animals and humans remains a possibility. This warrants a detailed study of other hosts and regions. Considering the zoonotic potential of Coxiella, further strategic surveillance of Coxiella transmission is necessary.


Subject(s)
Coxiella/genetics , Coxiella/physiology , Genotyping Techniques , Horses/microbiology , Symbiosis , Ticks/physiology , Animals , Coxiella/classification , Phylogeny , Republic of Korea , Sequence Analysis, DNA
13.
Microbiol Spectr ; 4(1)2016 Feb.
Article in English | MEDLINE | ID: mdl-26999394

ABSTRACT

Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without their hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH and contains degradative enzymes and reactive oxygen species, resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, such as Shigella, Listeria, Francisella, and Rickettsia, escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche.


Subject(s)
Bacterial Physiological Phenomena , Eukaryotic Cells/microbiology , Adaptation, Psychological , Animals , Bacteria , Bacterial Infections/microbiology , Brucella/physiology , Chlamydia/physiology , Coxiella/physiology , Humans , Lysosomes/microbiology , Mycobacterium/physiology
14.
Trends Microbiol ; 24(6): 450-462, 2016 06.
Article in English | MEDLINE | ID: mdl-26924068

ABSTRACT

Intracellular bacterial pathogens subvert the endocytic bactericidal pathway to form specific replication-permissive compartments termed pathogen vacuoles or inclusions. To this end, the pathogens employ type III or type IV secretion systems, which translocate dozens, if not hundreds, of different effector proteins into their host cells, where they manipulate vesicle trafficking and signaling pathways in favor of the intruders. While the distinct cocktail of effectors defines the specific processes by which a pathogen vacuole is formed, the different pathogens commonly target certain vesicle trafficking routes, including the endocytic or secretory pathway. Recently, the retrograde transport pathway from endosomal compartments to the trans-Golgi network emerged as an important route affecting pathogen vacuole formation. Here, we review current insight into the host cell's retrograde trafficking pathway and how vacuolar pathogens of the genera Legionella, Coxiella, Salmonella, Chlamydia, and Simkania employ mechanistically distinct strategies to subvert this pathway, thus promoting intracellular survival and replication.


Subject(s)
Bacterial Secretion Systems/physiology , Host-Pathogen Interactions/physiology , Protein Transport/physiology , Bacterial Proteins/metabolism , Chlamydia/pathogenicity , Chlamydia/physiology , Chlamydiales/pathogenicity , Chlamydiales/physiology , Coxiella/pathogenicity , Coxiella/physiology , Endocytosis , Endosomes/metabolism , Golgi Apparatus/physiology , Legionella/pathogenicity , Legionella/physiology , Salmonella/pathogenicity , Salmonella/physiology , Type III Secretion Systems , Type IV Secretion Systems , Vacuoles/microbiology
15.
Ticks Tick Borne Dis ; 7(1): 166-171, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26515059

ABSTRACT

Coxiella burnetii is a pathogen causing Q fever in domestic animals and humans. Seabirds have been implicated as possible reservoirs of this bacterium in the Arabian Gulf and in the Western Indian Ocean. Recently, Coxiella species closely related to C. burnetii was detected from ticks collected from oil rigs used as roosting areas by Socotra Cormorants (Phalacrocorax nigrogularis) in the western Arabian Gulf. We collected ticks from the largest breeding colony of Socotra Cormorants in the United Arab Emirates on the eastern extreme of the species' breeding range to determine the prevalence of C. burnetii and evaluate its role as a wild reservoir. All ticks were identified as Ornithodoros muesebecki and genomic DNA was extracted from larval and nymph/adult tick pools. Multiplex PCR tests were performed targeting three C. burnetii specific genes. C. burnetii was not detected although a Coxiella-like endosymbiont was identified that was closely related to Coxiella symbionts from Ornithodoros capensis ticks. Because domestic and wild ungulates are the primary source of C. burnetii, we suggest that the presence of free-ranging, native and non-native ungulates in some off-shore islands in the Arabian Gulf could disseminate C. burnetii to seabirds. More comprehensive studies on seabird colonies are needed to better understand the diversity and prevalence of Coxiella symbionts and to establish if C. burnetii is endemic on some of these islands.


Subject(s)
Bird Diseases/parasitology , Coxiella/physiology , Ornithodoros/microbiology , Animals , Birds , DNA, Bacterial/genetics , Host-Pathogen Interactions , Islands , Polymerase Chain Reaction , United Arab Emirates
16.
Microbes Infect ; 17(10): 680-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297854

ABSTRACT

The European Society for the study of Chlamydia, Coxiella, Anaplasma and Rickettsia (ESCCAR) held his triennial international meeting in Lausanne. This meeting gathered 165 scientists from 28 countries and all 5 continents, allowing efficient networking and major scientific exchanges. Topics covered include molecular and cellular microbiology, genomics, as well as epidemiology, veterinary and human medicine. Several breakthroughs have been revealed at the meeting, such as (i) the presence of CRISPR (the "prokaryotic immune system") in chlamydiae, (ii) an Anaplasma effector involved in host chromatin remodelling, (iii) the polarity of the type III secretion system of chlamydiae during the entry process revealed by cryo-electron tomography. Moreover, the ESCCAR meeting was a unique opportunity to be exposed to cutting-edge science and to listen to comprehensive talks on current hot topics.


Subject(s)
Alphaproteobacteria/genetics , Alphaproteobacteria/physiology , Chlamydia/genetics , Chlamydia/physiology , Coxiella/genetics , Coxiella/physiology , Microbiology/trends , Animals , Biomedical Research/trends , Humans
17.
Environ Microbiol ; 16(12): 3657-68, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24650112

ABSTRACT

Arthropod symbionts present tissue tropism that corresponds to the nature of the association and the mode of transmission between host generations. In ticks, however, our knowledge of symbiont tissue tropism and function is limited. Here, we quantified and localized previously described Coxiella-like symbionts in several organs of the tick Rhipicephalus turanicus. Quantitative polymerase chain reaction revealed high densities of Coxiella in the female gonads, and both male and female Malpighian tubules. Using fluorescence in situ hybridization and transmission electron microscopy, we further showed that in the gonads of both Rh. turanicus and Rh. sanguineus, Coxiella does not colonize the primary oocytes but is found later in young and mature oocytes in a specific distribution, suggesting controlled vertical transmission. This method revealed the presence Coxiella in the distal part of the Malpighian tubules, suggesting a possible role in nitrogen metabolism. While testing Rickettsia symbionts, no specific tissue tropism was found, but a slightly higher densities in the tick gut. The low density of Rickettsia in the female ovaries suggests competition between Rickettsia and Coxiella for vertical transmission. The described tissue distribution supports an obligatory role for Coxiella in ticks.


Subject(s)
Coxiella/physiology , Malpighian Tubules/microbiology , Rhipicephalus sanguineus/microbiology , Rhipicephalus/microbiology , Symbiosis , Animals , Bacterial Load , Coxiella/growth & development , Female , Gonads/microbiology , In Situ Hybridization, Fluorescence , Male , Oocytes/microbiology , Rickettsia/physiology
18.
Cell Microbiol ; 15(9): 1473-83, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23795643

ABSTRACT

Dendritic cells (DCs) serve as the primers of adaptive immunity, which is indispensable for the control of the majority of infections. Interestingly, some pathogenic intracellular bacteria can subvert DC function and gain the advantage of an ineffective host immune reaction. This scenario appears to be the case particularly with so-called stealth pathogens, which are the causative agents of several under-diagnosed chronic diseases. However, there is no consensus how less explored stealth bacteria like Coxiella, Brucella and Francisella cross-talk with DCs. Therefore, the aim of this review was to explore the issue and to summarize the current knowledge regarding the interaction of above mentioned pathogens with DCs as crucial hosts from an infection strategy view. Evidence indicates that infected DCs are not sufficiently activated, do not undergo maturation and do not produce expected proinflammatory cytokines. In some cases, the infected DCs even display immunosuppressive behaviour that may be directly linked to the induction of tolerogenicity favouring pathogen survival and persistence.


Subject(s)
Brucella/physiology , Coxiella/physiology , Dendritic Cells/immunology , Dendritic Cells/microbiology , Francisella/physiology , Host-Pathogen Interactions , Animals , Brucella/immunology , Coxiella/immunology , Francisella/immunology , Humans , Immune Evasion , Immune Tolerance
19.
Parasit Vectors ; 6(1): 310, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24499619

ABSTRACT

BACKGROUND: Close relationships between ticks and microbial communities are important for tick fitness and pathogen colonization and transmission. Haemaphysalis longicornis, distributed widely in China, can carry and transmit various pathogens and pose serious damages to public health and economics. However, little is known about the broader array of microbial communities and symbionts in H. longicornis under natural conditions. In the present study, we investigated the composition of bacterial communities associated with H. longicornis and evaluated the putative symbionts. METHODS: The eubacterial 16S rRNA gene clone libraries of H. longicornis were constructed and analyzed by restriction fragment length polymorphism (RFLP) and DNA sequencing. In addition, diagnostic PCR was performed to assess the prevalence, vertical transmission and infection sites of the symbionts in H. longicornis. RESULTS: Vertically-transmitted symbionts, potential pathogens and allochthonous nonpathogenic bacteria were identified from the field-collected H. longicornis. Three types of symbionts (Coxiella-like, Arsenophonus-like and Rickettsia-like symbionts) were identified in a single host simultaneously. A series of analyses revealed the vertical transmission, prevalence, and infection sites of these symbionts. However, only Coxiella-like bacteria were transmitted stably in the laboratory-reared ticks. In addition, we identified a novel Coxiella-like agent with 95.31% sequence similarity to the taxon described previously. CONCLUSIONS: The present study demonstrated that natural H. longicornis harboured a diverse array of microbial communities. Three types of symbionts were identified in a single host simultaneously. Moreover, high prevalence, vertical transmission and the infection sites supported an obligate symbiotic association between Coxiella symbiont and its host. The role of Coxiella symbiont in the host fitness and the interaction among microbial communities remained to be elucidated. Our investigation of microbial communities in the ticks revealed the complexity of ecological interactions between host and microbe and provided insight for the biological control of ticks.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biota , Coxiella/physiology , Ixodidae/microbiology , Symbiosis , Animals , China , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Male , Molecular Sequence Data , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Ticks Tick Borne Dis ; 3(4): 203-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22480930

ABSTRACT

In the present study, the presence of tick-associated bacteria and protozoa in Ornithodoros rostratus ticks (adults, nymphs, and eggs) from the Pantanal region of Brazil were determined by molecular detection. In these ticks, DNA from protozoa in the genera Babesia and Hepatozoon, and bacteria from the genera Rickettsia, Borrelia, Anaplasma, and Ehrlichia were not detected. Conversely, all tested ticks (100%) yielded PCR products for 3 Coxiella genes (16S rRNA, pyrG, cap). PCR and phylogenetic analysis of 3 amplified genes (16S rRNA, pyrG, cap) demonstrated that the agent infecting O. rostratus ticks was a member of the genus Coxiella. This organism grouped with Coxiella symbionts of other soft tick species (Argasidae), having different isolates of C. burnetii as a sister group, and these 2 groups formed a clade that grouped with another clade containing Coxiella symbionts of hard tick species (Ixodidae). Analysis of tick mitochondrial 16S rRNA gene database composed mostly of tick species previously shown to harbor Coxiella symbionts suggests a phylogenetic congruence of ticks and their Coxiella symbionts. Furthermore, these results suggest a very long period of coevolution between ticks and Coxiella symbionts and indicates that the original infection may have occurred in an ancestor common to the 2 main tick families, Argasidae (soft ticks) and Ixodidae (hard ticks). However, this evolutionary relationship must be confirmed by more extensive testing of additional tick species and expanded populations.


Subject(s)
Coxiella/isolation & purification , Coxiella/physiology , Ornithodoros/microbiology , Symbiosis , Animals , Coxiella/genetics , Female , Gene Expression Regulation, Bacterial/physiology , Male , Ovum/microbiology , Phylogeny , RNA, Bacterial/genetics , RNA, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...