Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 287(1930): 20201107, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32635864

ABSTRACT

Many arthropod hosts are infected with bacterial endosymbionts that manipulate host reproduction, but few bacterial taxa have been shown to cause such manipulations. Here, we show that a bacterial strain in the genus Rickettsiella causes cytoplasmic incompatibility (CI) between infected and uninfected hosts. We first surveyed the bacterial community of the agricultural spider Mermessus fradeorum (Linyphiidae) using high throughput sequencing and found that individual spiders can be infected with up to five different strains of maternally inherited symbiont from the genera Wolbachia, Rickettsia, and Rickettsiella. The Rickettsiella strain was pervasive, found in all 23 tested spider matrilines. We used antibiotic curing to generate uninfected matrilines that we reciprocally crossed with individuals infected only with Rickettsiella. We found that only 13% of eggs hatched when uninfected females were mated with Rickettsiella-infected males; in contrast, at least 83% of eggs hatched in the other cross types. This is the first documentation of Rickettsiella, or any Gammaproteobacteria, causing CI. We speculate that induction of CI may be much more widespread among maternally inherited bacteria than previously appreciated. Further, our results reinforce the importance of thoroughly characterizing and assessing the inherited microbiome before attributing observed host phenotypes to well-characterized symbionts such as Wolbachia.


Subject(s)
Coxiellaceae/physiology , Cytoplasm/microbiology , Spiders/microbiology , Animals , Female , Host-Pathogen Interactions , Male , Symbiosis
2.
J Invertebr Pathol ; 156: 41-53, 2018 07.
Article in English | MEDLINE | ID: mdl-30017949

ABSTRACT

Invasive and non-native species can pose risks to vulnerable ecosystems by co-introducing bacterial pathogens. Alternatively, co-introduced bacterial pathogens may regulate invasive population size and invasive traits. We describe a novel candidate genus and species of bacteria ('Candidatus Aquirickettsiella gammari') found to infect Gammarus fossarum, from its native range in Poland. The bacterium develops intracellularly within the haemocytes and cells of the musculature, hepatopancreas, connective tissues, nervous system and gonad of the host. The developmental cycle of 'Candidatus Aquirickettsiella gammari' includes an elementary body (496.73 nm ±â€¯37.56 nm in length, and 176.89 nm ±â€¯36.29 nm in width), an elliptical, condensed spherical stage (737.61 nm ±â€¯44.51 nm in length and 300.07 nm ±â€¯44.02 nm in width), a divisional stage, and a spherical initial body (1397.59 nm ±â€¯21.26 nm in diameter). We provide a partial genome for 'Candidatus Aquirickettsiella gammari', which clades phylogenetically alongside environmental 16S rRNA sequences from aquatic habitats, and bacterial symbionts from aquatic isopods (Asellus aquaticus), grouping separately from the Rickettsiella, a genus that includes bacterial pathogens of terrestrial insects and isopods. Increased understanding of the diversity of symbionts carried by G. fossarum identifies those that might regulate host population size, or those that could pose a risk to native species in the invasive range. Identification of 'Candidatus Aquirickettsiella gammari' and its potential for adaptation as a biological control agent is explored.


Subject(s)
Amphipoda/microbiology , Coxiellaceae/physiology , Animals , Coxiellaceae/classification , Gammaproteobacteria/classification , Gammaproteobacteria/physiology , Phylogeny , RNA, Ribosomal, 16S/genetics
3.
mBio ; 9(3)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895637

ABSTRACT

Members of the genus Rickettsiella are bacterial pathogens of insects and other arthropods. Recently, a novel facultative endosymbiont, "Candidatus Rickettsiella viridis," was described in the pea aphid Acyrthosiphon pisum, whose infection causes a striking host phenotype: red and green genetic color morphs exist in aphid populations, and upon infection with the symbiont, red aphids become green due to increased production of green polycyclic quinone pigments. Here we determined the complete genome sequence of the symbiont. The 1.6-Mb circular genome, harboring some 1,400 protein-coding genes, was similar to the genome of entomopathogenic Rickettsiella grylli (1.6 Mb) but was smaller than the genomes of phylogenetically allied human pathogens Coxiella burnetii (2.0 Mb) and Legionella pneumophila (3.4 Mb). The symbiont's metabolic pathways exhibited little complementarity to those of the coexisting primary symbiont Buchnera aphidicola, reflecting the facultative nature of the symbiont. The symbiont genome harbored neither polyketide synthase genes nor the evolutionarily allied fatty acid synthase genes that are suspected to catalyze the polycyclic quinone synthesis, indicating that the green pigments are produced not by the symbiont but by the host aphid. The symbiont genome retained many type IV secretion system genes and presumable effector protein genes, whose homologues in L. pneumophila were reported to modulate a variety of the host's cellular processes for facilitating infection and virulence. These results suggest the possibility that the symbiont is involved in the green pigment production by affecting the host's metabolism using the secretion machineries for delivering the effector molecules into the host cells.IMPORTANCE Insect body color is relevant to a variety of biological aspects such as species recognition, sexual selection, mimicry, aposematism, and crypsis. Hence, the bacterial endosymbiont "Candidatus Rickettsiella viridis," which alters aphid body color from red to green, is of ecological interest, given that different predators preferentially exploit either red- or green-colored aphids. Here we determined the complete 1.6-Mb genome of the symbiont and uncovered that, although the red-green color transition was ascribed to upregulated production of green polycyclic quinone pigments, the symbiont genome harbored few genes involved in the polycyclic quinone biosynthesis. Meanwhile, the symbiont genome contained type IV secretion system genes and presumable effector protein genes, whose homologues modulate eukaryotic cellular processes for facilitating infection and virulence in the pathogen Legionella pneumophila We propose the hypothesis that the symbiont may upregulate the host's production of polycyclic quinone pigments via cooption of secretion machineries and effector molecules for pathogenicity.


Subject(s)
Aphids/chemistry , Aphids/microbiology , Coxiellaceae/isolation & purification , Symbiosis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Color , Coxiellaceae/classification , Coxiellaceae/genetics , Coxiellaceae/physiology , Genome, Bacterial , Genomics , Phylogeny
4.
Ticks Tick Borne Dis ; 9(2): 307-313, 2018 02.
Article in English | MEDLINE | ID: mdl-29150322

ABSTRACT

Studies on sex ratio are of fundamental importance for understanding the biology of populations and biological control of pests and pathogens. In most Ixodes tick species, only females feed in the adult stage and, hence, contribute to pathogen transmission. The tree-hole tick Ixodes arboricola infests cavity-nesting birds and has limited dispersal possibilities. It plays an important role in the maintenance of zoonotic disease cycles. Here, we quantified the sex ratio of 718 adult I. arboricola ticks obtained from a laboratory stock at nine distinct periods (cohorts) from 2008 to 2015. In addition, we screened 93 specimens, collected from four study sites in 2011 and 2012, for the presence of six maternally inherited bacterial parasites known to manipulate arthropod sex ratios. We found significantly female-biased sex ratios in seven out of nine cohorts. There were no infections with members of the Wolbachia, Arsenophonus or Cardinium bacterial genera, whereas 96.8% of the screened ticks were infected with Rickettsia vini, 22.6% with Rickettsiella sp., and 14.0% with Spiroplasma ixodetis. Male and female I. arboricola were found equally infected. Our results suggest skewed sex ratios in I. arboricola are not caused by these bacterial infections, although there may be other, untested candidates driving sex ratios. Alternatively, female-biased sex ratios may be an adaptation in females to high local densities and low dispersal, where the production of daughters has a selective advantage because a few sons can fertilise all daughters.


Subject(s)
Coxiellaceae/physiology , Ixodes/microbiology , Ixodes/physiology , Rickettsia/physiology , Sex Ratio , Spiroplasma/physiology , Animals , Bacterial Physiological Phenomena , Belgium , Songbirds/parasitology
5.
Sci Rep ; 7(1): 3394, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611430

ABSTRACT

Free-living amoebae are well known for their role in controlling microbial community composition through grazing, but some groups, namely Acanthamoeba species, also frequently serve as hosts for bacterial symbionts. Here we report the first identification of a bacterial symbiont in the testate amoeba Cochliopodium. The amoeba was isolated from a cooling tower water sample and identified as C. minus. Fluorescence in situ hybridization and transmission electron microscopy revealed intracellular symbionts located in vacuoles. 16S rRNA-based phylogenetic analysis identified the endosymbiont as member of a monophyletic group within the family Coxiellaceae (Gammaprotebacteria; Legionellales), only moderately related to known amoeba symbionts. We propose to tentatively classify these bacteria as 'Candidatus Cochliophilus cryoturris'. Our findings add both, a novel group of amoeba and a novel group of symbionts, to the growing list of bacteria-amoeba relationships.


Subject(s)
Amebiasis/microbiology , Amoebida/classification , Coxiellaceae/physiology , Phylogeny , Symbiosis , Amoebida/isolation & purification , RNA, Bacterial/analysis , RNA, Ribosomal, 16S
6.
BMC Genomics ; 18(1): 178, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28209133

ABSTRACT

BACKGROUND: Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. RESULTS: We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. CONCLUSIONS: The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in house spiders relative to black widows, along with the absence of a vertebrate-targeting α-latrotoxin gene in the house spider genome, may account for the extreme potency of black widow venom.


Subject(s)
Black Widow Spider , Evolution, Molecular , Gene Expression Profiling , Genetic Variation , Genomics , Insect Proteins/toxicity , Spider Venoms/genetics , Animals , Coxiellaceae/physiology , Female , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Protein Domains , Sex Characteristics , Symbiosis
7.
Insect Sci ; 24(5): 798-808, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27514019

ABSTRACT

Symbiotic associations between microbes and insects are widespread, and it is frequent that several symbionts share the same host individual. Hence, interactions can occur between these symbionts, influencing their respective abundance within the host with consequences on its phenotype. Here, we investigate the effects of multiple infections in the pea aphid, Acyrthosiphon pisum, which is the host of an obligatory and several facultative symbionts. In particular, we study the influence of a coinfection with 2 protective symbionts: Hamiltonella defensa, which confers protection against parasitoids, and Rickettsiella viridis, which provides protection against fungal pathogens and predators. The effects of Hamiltonella-Rickettsiella coinfection on the respective abundance of the symbionts, host fitness and efficacy of enemy protection were studied. Asymmetrical interactions between the 2 protective symbionts have been found: when they coinfect the same aphid individuals, the Rickettsiella infection affected Hamiltonella abundance within hosts but not the Hamiltonella-mediated protective phenotype while the Hamiltonella infection negatively influences the Rickettsiella-mediated protective phenotype but not its abundance. Harboring the 2 protective symbionts also reduced the survival and fecundity of host individuals. Overall, this work highlights the effects of multiple infections on symbiont abundances and host traits that are likely to impact the maintenance of the symbiotic associations in natural habitats.


Subject(s)
Aphids/microbiology , Coxiellaceae/physiology , Enterobacteriaceae/physiology , Host-Parasite Interactions , Symbiosis , Wasps/physiology , Animals , Aphids/genetics , Aphids/parasitology , Coinfection , Female , Male , Phenotype
8.
PLoS Pathog ; 11(5): e1004892, 2015 May.
Article in English | MEDLINE | ID: mdl-25978383

ABSTRACT

Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.


Subject(s)
Biological Evolution , Communicable Diseases, Emerging/transmission , Coxiella burnetii/physiology , Global Health , Q Fever/transmission , Symbiosis , Ticks/microbiology , Animals , Base Sequence , Behavior, Animal , Cell Line , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/veterinary , Coxiella burnetii/classification , Coxiella burnetii/growth & development , Coxiella burnetii/isolation & purification , Coxiellaceae/classification , Coxiellaceae/growth & development , Coxiellaceae/isolation & purification , Coxiellaceae/physiology , Female , Genome, Bacterial , Humans , Male , Maternal-Fetal Exchange , Microbial Viability , Molecular Sequence Data , Phylogeny , Pregnancy , Prevalence , Q Fever/epidemiology , Q Fever/microbiology , Q Fever/veterinary , Ticks/physiology
9.
Appl Environ Microbiol ; 80(2): 525-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24212575

ABSTRACT

A gammaproteobacterial facultative symbiont of the genus Rickettsiella was recently identified in the pea aphid, Acyrthosiphon pisum. Infection with this symbiont altered the color of the aphid body from red to green, potentially affecting the host's ecological characteristics, such as attractiveness to different natural enemies. In European populations of A. pisum, the majority of Rickettsiella-infected aphids also harbor another facultative symbiont, of the genus Hamiltonella. We investigated this Rickettsiella symbiont for its interactions with the coinfecting Hamiltonella symbiont, its phenotypic effects on A. pisum with and without Hamiltonella coinfection, and its infection prevalence in A. pisum populations. Histological analyses revealed that coinfecting Rickettsiella and Hamiltonella exhibited overlapping localizations in secondary bacteriocytes, sheath cells, and hemolymph, while Rickettsiella-specific localization was found in oenocytes. Rickettsiella infections consistently altered hosts' body color from red to green, where the greenish hue was affected by both host and symbiont genotypes. Rickettsiella-Hamiltonella coinfections also changed red aphids to green; this greenish hue tended to be enhanced by Hamiltonella coinfection. With different host genotypes, Rickettsiella infection exhibited either weakly beneficial or nearly neutral effects on host fitness, whereas Hamiltonella infection and Rickettsiella-Hamiltonella coinfection had negative effects. Despite considerable frequencies of Rickettsiella infection in European and North American A. pisum populations, no Rickettsiella infection was detected among 1,093 insects collected from 14 sites in Japan. On the basis of these results, we discuss possible mechanisms for the interaction of Rickettsiella with other facultative symbionts, their effects on their hosts' phenotypes, and their persistence in natural host populations. We propose the designation "Candidatus Rickettsiella viridis" for the symbiont.


Subject(s)
Aphids/microbiology , Coxiellaceae/physiology , Symbiosis , Animals , Aphids/physiology , Coxiellaceae/genetics , Japan , Molecular Sequence Data , Phenotype , Pigmentation , Proteobacteria/physiology
10.
Appl Environ Microbiol ; 79(14): 4246-52, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23645190

ABSTRACT

Bacteria in the genus Rickettsiella (Coxiellaceae), which are mainly known as arthropod pathogens, are emerging as excellent models to study transitions between mutualism and pathogenicity. The current report characterizes a novel Rickettsiella found in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae), a major vector of phytoplasma diseases in Europe and Asia. Denaturing gradient gel electrophoresis (DGGE) and pyrosequencing were used to survey the main symbionts of O. albicinctus, revealing the obligate symbionts Sulcia and Nasuia, and the facultative symbionts Arsenophonus and Wolbachia, in addition to Rickettsiella. The leafhopper Rickettsiella is allied with bacteria found in ticks. Screening O. albicinctus from the field showed that Rickettsiella is highly prevalent, with over 60% of individuals infected. A stable Rickettsiella infection was maintained in a leafhopper laboratory colony for at least 10 generations, and fluorescence microscopy localized bacteria to accessory glands of the female reproductive tract, suggesting that the bacterium is vertically transmitted. Future studies will be needed to examine how Rickettsiella affects host fitess and its ability to vector phytopathogens.


Subject(s)
Coxiellaceae/classification , Coxiellaceae/isolation & purification , Hemiptera/microbiology , Hemiptera/physiology , Animals , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/physiology , Coxiellaceae/genetics , Coxiellaceae/physiology , DNA, Bacterial/genetics , Denaturing Gradient Gel Electrophoresis , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/physiology , Female , In Situ Hybridization, Fluorescence , Israel , Male , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Alignment , Sequence Analysis, DNA , Symbiosis
11.
Science ; 330(6007): 1102-4, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21097935

ABSTRACT

Color variation within populations of the pea aphid influences relative susceptibility to predators and parasites. We have discovered that infection with a facultative endosymbiont of the genus Rickettsiella changes the insects' body color from red to green in natural populations. Approximately 8% of pea aphids collected in Western Europe carried the Rickettsiella infection. The infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments. The effect of the endosymbiont on body color is expected to influence prey-predator interactions, as well as interactions with other endosymbionts.


Subject(s)
Aphids/microbiology , Coxiellaceae/physiology , Symbiosis , Animals , Aphids/physiology , Carotenoids/metabolism , Color , Coxiellaceae/classification , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...