Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
J Zhejiang Univ Sci B ; 25(5): 422-437, 2024 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-38725341

ABSTRACT

Viral myocarditis (VMC) is one of the most common acquired heart diseases in children and teenagers. However, its pathogenesis is still unclear, and effective treatments are lacking. This study aimed to investigate the regulatory pathway by which exosomes alleviate ferroptosis in cardiomyocytes (CMCs) induced by coxsackievirus B3 (CVB3). CVB3 was utilized for inducing the VMC mouse model and cellular model. Cardiac echocardiography, left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS) were implemented to assess the cardiac function. In CVB3-induced VMC mice, cardiac insufficiency was observed, as well as the altered levels of ferroptosis-related indicators (glutathione peroxidase 4 (GPX4), glutathione (GSH), and malondialdehyde (MDA)). However, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) could restore the changes caused by CVB3 stimulation. Let-7a-5p was enriched in hucMSCs-exo, and the inhibitory effect of hucMSCs-exolet-7a-5p mimic on CVB3-induced ferroptosis was higher than that of hucMSCs-exomimic NC (NC: negative control). Mothers against decapentaplegic homolog 2 (SMAD2) increased in the VMC group, while the expression of zinc-finger protein 36 (ZFP36) decreased. Let-7a-5p was confirmed to interact with SMAD2 messenger RNA (mRNA), and the SMAD2 protein interacted directly with the ZFP36 protein. Silencing SMAD2 and overexpressing ZFP36 inhibited the expression of ferroptosis-related indicators. Meanwhile, the levels of GPX4, solute carrier family 7, member 11 (SLC7A11), and GSH were lower in the SMAD2 overexpression plasmid (oe-SMAD2)+let-7a-5p mimic group than in the oe-NC+let-7a-5p mimic group, while those of MDA, reactive oxygen species (ROS), and Fe2+ increased. In conclusion, these data showed that ferroptosis could be regulated by mediating SMAD2 expression. Exo-let-7a-5p derived from hucMSCs could mediate SMAD2 to promote the expression of ZFP36, which further inhibited the ferroptosis of CMCs to alleviate CVB3-induced VMC.


Subject(s)
Enterovirus B, Human , Exosomes , Ferroptosis , Mesenchymal Stem Cells , MicroRNAs , Myocytes, Cardiac , Signal Transduction , Smad2 Protein , Umbilical Cord , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , Animals , Humans , Mice , Smad2 Protein/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Enterovirus B, Human/physiology , Myocytes, Cardiac/metabolism , Umbilical Cord/cytology , Coxsackievirus Infections/metabolism , Male , Myocarditis/metabolism , Myocarditis/virology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
2.
Cardiovasc Res ; 120(6): 644-657, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38309955

ABSTRACT

AIMS: Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signalling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS: Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modelling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced up-regulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modelling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSION: Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.


Subject(s)
Coxsackievirus Infections , Cytokines , Disease Models, Animal , Energy Metabolism , Enterovirus B, Human , Glycolysis , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart , Myocytes, Cardiac , Ubiquitins , Animals , Ubiquitins/metabolism , Ubiquitins/genetics , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Coxsackievirus Infections/genetics , Cytokines/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/pathology , Enterovirus B, Human/pathogenicity , Enterovirus B, Human/metabolism , Humans , Host-Pathogen Interactions , Male , Signal Transduction , Protein Processing, Post-Translational
3.
Free Radic Biol Med ; 212: 349-359, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38169212

ABSTRACT

BACKGROUND: Dysregulated cell death machinery and an excessive inflammatory response in Coxsackievirus B3(CVB3)-infected myocarditis are hallmarks of an abnormal host response. Complement C4 and C3 are considered the central components of the classical activation pathway and often participate in the response process in the early stages of virus infection. METHODS: In our study, we constructed a mouse model of CVB3-related viral myocarditis via intraperitoneal injection of Fer-1 and detected myocarditis and ferroptosis markers in the mouse myocardium. Then, we performed co-IP and protein mass spectrometry analyses to explore which components interact with the ferroptosis gene transferrin receptor (TFRC). Finally, functional experiments were conducted to verify the role of complement components in regulating ferroptosis in CVB3 infection. RESULTS: It showed that the ferroptosis inhibitor Fer-1 could alleviate the inflammation in viral myocarditis as well as ferroptosis. Mechanistically, during CVB3 infection, the key factor TFRC was activated and inhibited by Fer-1. Fer-1 effectively prevented the consumption of complement C3 and overload of the complement product C4b. Interestingly, we found that TFRC directly interacts with complement C4, leading to an increase in the product of C4b and a decrease in the downstream complement C3. Functional experiments have also confirmed that regulating the complement C4/C3 pathway can effectively rescue cell ferroptosis caused by CVB3 infection. CONCLUSIONS: In this study, we found that ferroptosis occurs through crosstalk with complement C4 in viral myocarditis through interaction with TFRC and that regulating the complement C4/C3 pathway may rescue ferroptosis in CVB3-infected cardiomyocytes.


Subject(s)
Coxsackievirus Infections , Ferroptosis , Myocarditis , Virus Diseases , Animals , Mice , Myocarditis/metabolism , Complement C3/genetics , Complement C3/metabolism , Complement C3/pharmacology , Coxsackievirus Infections/genetics , Coxsackievirus Infections/metabolism , Enterovirus B, Human/metabolism , Myocardium/metabolism , Immunologic Factors/pharmacology , Complement C4/metabolism , Complement C4/pharmacology , Receptors, Transferrin
4.
J Virol ; 97(11): e0107523, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37847581

ABSTRACT

IMPORTANCE: Coxsackievirus A6 (CV-A6) is a major emerging pathogen associated with atypical hand, foot, and mouth disease and can cause serious complications such as encephalitis, acute flaccid paralysis, and neurorespiratory syndrome. Therefore, revealing the associated pathogenic mechanisms could benefit the control of CV-A6 infections. In this study, we demonstrate that the nonstructural 2CCV-A6 suppresses IFN-ß production, which supports CV-A6 infection. This is achieved by depleting RNA sensors such as melanoma differentiation-associated gene 5 and retinoic acid-inducible gene I (RIG-I) through the lysosomal pathway. Such a function is shared by 2CEV-A71 and 2CCV-B3 but not 2CCV-A16, suggesting the latter might have an alternative way to promote viral replication. This study broadens our understanding of enterovirus 2C protein regulation of the RIG-I-like receptor signaling pathway and reveals a novel mechanism by which CV-A6 and other enteroviruses evade the host innate immune response. These findings on 2C may provide new therapeutic targets for the development of effective inhibitors against CV-A6 and other enterovirus infections.


Subject(s)
Coxsackievirus Infections , Humans , Enterovirus A, Human/genetics , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Hand, Foot and Mouth Disease/virology , Immunity, Innate , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Interferon-beta/metabolism
5.
Free Radic Biol Med ; 208: 430-444, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37660839

ABSTRACT

Exploring the immune mechanism of coxsackievirus B3 (CVB3)-induced myocarditis may provide a promising therapeutic strategy. Here, we investigated the regulatory role of macrophage CAPN4 in the phenotypic transformation of macrophages and NOD-like receptor protein 3 (NLRP3) inflammasome activation. We found that CAPN4 was the most upregulated subtype of the calpain family in CVB3-infected bone marrow-derived macrophages (BMDMs) and Raw 264.7 cells after CVB3 infection and was upregulated in cardiac macrophages from CVB3-infected mice. Conditional knockout of CAPN4 (CAPN4flox/flox; LYZ2-Cre, CAPN4-cKO mice) ameliorated inflammation and myocardial injury and improved cardiac function and survival after CVB3 infection. Enrichment analysis revealed that macrophage differentiation and the interleukin signaling pathway were the most predominant biological processes in macrophages after CVB3 infection. We further found that CVB3 infection and the overexpression of CAPN4 promoted macrophage M1 polarization and NLRP3 inflammasome activation, while CAPN4 knockdown reversed these changes. Correspondingly, CAPN4-cKO alleviated CVB3-induced M1 macrophage transformation and NLRP3 expression and moderately increased M2 transformation in vivo. The culture supernatant of CAPN4-overexpressing or CVB3-infected macrophages impaired cardiac fibroblast function and viability. Moreover, macrophage CAPN4 could upregulate C/EBP-homologous protein (chop) expression, which increased proinflammatory cytokine release by activating the phosphorylation of transducer of activator of transcription 1 (STAT1) and 3 (STAT3). Overall, these results suggest that CAPN4 increases M1-type and inhibits M2-type macrophage polarization through the chop-STAT1/STAT3 signaling pathway to mediate CVB3-induced myocardial inflammation and injury. CAPN4 may be a novel target for viral myocarditis treatment.


Subject(s)
Coxsackievirus Infections , Inflammasomes , Myocarditis , Animals , Mice , Coxsackievirus Infections/genetics , Coxsackievirus Infections/metabolism , Enterovirus B, Human/metabolism , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Myocarditis/genetics , Myocarditis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism
6.
Int Heart J ; 64(4): 732-740, 2023.
Article in English | MEDLINE | ID: mdl-37518354

ABSTRACT

To investigate the possible effect of FoxO on coxsackievirus B3 (CVB3) -induced cardiomyocyte inflammation and apoptosis via modulation of the TLR4/NF-κB signaling pathway.Viral myocarditis (VMC) models were establied via CVB3 infection both in vivo and in vitro. Western blotting was adopted to detect FoxO1 and TLR4 expressions in myocardial tissues and cells. Cardiomyocytes of suckling mouse were divided into the control, CVB3, CVB3 + pcDNA, CVB3 + pcDNA-FoxO1, CVB3 + TLR4 siRNA, and CVB3 + pcDNA-FoxO1 + TLR4 siRNA groups. Flow cytometry was employed to evaluate cell apoptosis. The expressions of inflammatory factors including TNF-α, IL-1ß, and IL-6 were detected via quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Then, TLR4/NF-κB pathway-related proteins were determined via Western blotting.VMC mice had increased FoxO1 and TLR4 expressions in myocardial tissues. Cardiomyocytes with CVB3 infection also had upregulated protein expressions of p-FoxO1/FoxO1 and TLR4. Compared with those in the control group, the cardiomyocytes in the CVB3 group were increased in LDH and CK-MB levels, cell apoptosis rate and inflammatory factors (TNF-α, IL-1ß and IL-6), as well as protein expressions of TLR4 and p-p65/p65. Compared with those in the CVB3 group, the cardiomyocytes in the CVB3 + pcDNA-FoxO1 group were further upregulated whereas those in the CVB3 +TLR4 siRNA group were downregulated in the aforementioned indicators. Furthermore, TLR4 siRNA can reverse the effect of pcDNA-FoxO1 on the aggravation of cardiomyocyte injury induced by CVB3 infection.FoxO1 can upregulate the TLR4/NF-κB signaling pathway to promote cardiomyocyte apoptosis and inflammatory injury in CVB3-induced VMC.


Subject(s)
Coxsackievirus Infections , Myocarditis , Mice , Animals , Myocarditis/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Toll-Like Receptor 4/metabolism , Inflammation/metabolism , Signal Transduction , Apoptosis , Coxsackievirus Infections/metabolism , RNA, Small Interfering
7.
Viruses ; 15(5)2023 05 10.
Article in English | MEDLINE | ID: mdl-37243223

ABSTRACT

Viral myocarditis (VMC) is a common disease characterized by cardiac inflammation. AC-73, an inhibitor of CD147, disrupts the dimerization of CD147, which participates in the regulation of inflammation. To explore whether AC-73 could alleviate cardiac inflammation induced by CVB3, mice were injected intraperitoneally with AC-73 on the fourth day post-infection (dpi) and sacrificed on the seventh dpi. Pathological changes in the myocardium, T cell activation or differentiation, and expression of cytokines were analyzed using H&E staining, flow cytometry, fluorescence staining and multiplex immunoassay. The results showed that AC-73 alleviated cardiac pathological injury and downregulated the percentage of CD45+CD3+ T cells in the CVB3-infected mice. The administration of AC-73 reduced the percentage of activated CD4+ and CD8+ T cells (CD69+ and/or CD38+) in the spleen, while the percentage of CD4+ T cell subsets in the spleen was not changed in the CVB3-infected mice. In addition, the infiltration of activated T cells (CD69+) and macrophages (F4/80+) in the myocardium also decreased after the AC-73 treatment. The results also showed that AC-73 inhibited the release of many cytokines and chemokines in the plasma of the CVB3-infected mice. In conclusion, AC-73 mitigated CVB3-induced myocarditis by inhibiting the activation of T cells and the recruitment of immune cells to the heart. Thus, CD147 may be a therapeutic target for virus-induced cardiac inflammation.


Subject(s)
Coxsackievirus Infections , Myocarditis , Mice , Animals , CD8-Positive T-Lymphocytes/metabolism , Coxsackievirus Infections/metabolism , Cytokines/metabolism , Inflammation , Enterovirus B, Human/physiology , Mice, Inbred BALB C
8.
mSphere ; 8(3): e0003623, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37097178

ABSTRACT

Picornaviruses infect a wide variety of cell types in vitro, with rapid replication kinetics and pronounced cytopathic effect. Coxsackievirus B3 (CVB3) can also establish a persistent infection in vivo that can lead to pathology, including dilated cardiomyopathy and myocarditis. One model system to study persistent infection is the pancreatic ductal cell line PANC-1, which CVB3 infects and is maintained indefinitely. We have characterized this model for CVB3 infection to study persistent infection for over 6 months. We find that CVB3 rapidly replicates within PANC-1 cells without robust cytopathic effect, and after 1 month in culture, titers stabilize. We find that infection does not significantly affect cellular viability. Persistent virus reverts to lytic infection when transferred to Huh7 or Vero cells. We find that persistent CVB3 adapts to PANC-1 cells via mutation of its capsid proteins and, curiously, the viral polymerase (3Dpol) to generate a high-fidelity polymerase. Persistent infection is associated with reduced cleavage of eIF4G, reduced plaque size, and decreasing particle infectivity. We further find that polyamine metabolism is altered in persistently infected cells, with the rate-limiting enzyme ornithine decarboxylase (ODC1) reduced in translation. We further find that targeting polyamine synthesis reduces persistent infection without affecting the viability of the PANC-1 cells. Finally, we find that viral fidelity is essential to maintaining CVB3 infection, and targeting viral fidelity reduces persistent virus infection. Together, these data highlight a novel role for polyamines and fidelity in persistent CVB3 infection and suggest avenues for therapeutic development to target persistent infection. IMPORTANCE Enteroviruses are significant human pathogens that can cause severe disease, including cardiomyopathies. Viruses like coxsackievirus B3 (CVB3) can cause tissue damage by lytically infecting cells; however, CVB3 can also persistently infect, which has been associated with several pathologies. Studying persistent infection in vitro is challenging, as CVB3 lytically infects most cellular model systems. Here, we show that CVB3 establishes persistent infection in pancreatic ductal cells in vitro, similar to prior studies on other coxsackieviruses. We also show that this infection results in adaptation of the virus to these cells, as well as changes to cellular metabolism of polyamines.


Subject(s)
Coxsackievirus Infections , Enterovirus , Animals , Chlorocebus aethiops , Humans , Vero Cells , Enterovirus B, Human/genetics , Persistent Infection , Polyamines/metabolism , Enterovirus/physiology , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/pathology
9.
Environ Toxicol ; 38(6): 1305-1317, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36880403

ABSTRACT

Viral myocarditis (VMC) is a common myocardial inflammatory disease characterized by inflammatory cell infiltration and cardiomyocyte necrosis. Sema3A was reported to reduce cardiac inflammation and improve cardiac function after myocardial infarction, but its role in VMC remains to be explored. Here, a VMC mouse model was established by infection with CVB3, and Sema3A was overexpressed in vivo by intraventricular injection of an adenovirus-mediated Sema3A expression vector (Ad-Sema3A). We found that Sema3A overexpression attenuated CVB3-induced cardiac dysfunction and tissue inflammation. And Sema3A also reduced macrophage accumulation and NLRP3 inflammasome activation in the myocardium of VMC mice. In vitro, LPS was used to stimulate primary splenic macrophages to mimic the macrophage activation state in vivo. Activated macrophages were co-cultured with primary mouse cardiomyocytes to evaluate macrophage infiltration-induced cardiomyocyte damage. Ectopic expression of Sema3A in cardiomyocytes effectively protected cardiomyocytes from activated macrophage-induced inflammation, apoptosis, and ROS accumulation. Mechanistically, cardiomyocyte-expressed Sema3A mitigated macrophage infiltration-caused cardiomyocyte dysfunction by promoting cardiomyocyte mitophagy and hindering NLRP3 inflammasome activation. Furthermore, NAM (a SIRT1 inhibitor) reversed the protective effect of Sema3A against activated macrophage-induced cardiomyocyte dysfunction by suppressing cardiomyocyte mitophagy. In conclusion, Sema3A promoted cardiomyocyte mitophagy and suppressed inflammasome activation by regulating SIRT1, thereby attenuating macrophage infiltration-induced cardiomyocyte injury in VMC.


Subject(s)
Coxsackievirus Infections , Myocarditis , Animals , Mice , Myocytes, Cardiac/metabolism , Semaphorin-3A/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Mitophagy , Coxsackievirus Infections/metabolism , Inflammation/metabolism
10.
Microbiol Spectr ; 11(1): e0424822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36541788

ABSTRACT

Umifenovir, a broad-spectrum nonnucleoside antiviral drug, has a promising efficacy against coxsackievirus B4 (CVB4) infection, but its mechanism remains unclear. CVB4 is a common human single-stranded RNA virus that belongs to the Picornaviridae family and the Enterovirus genus. Enterovirus can cause severe diseases, such as meningitis, myocarditis, pancreatitis, insulin-dependent diabetes, and several other diseases, in both adults and children. We have previously demonstrated the critical role of interleukin 10 (IL-10) in promoting CVB4 infection and the downregulation of IL-10 by umifenovir. To further explore the underlying mechanisms of umifenovir, we characterized the epigenetic regulation of IL-10 in IL-10 knockout RAW264.7 cells and a BALB/c mouse splenocyte model. Mechanistically, we found that umifenovir inhibited CVB4-activated IL-10 by enhancing the methylation level of the repressive histones H3K9me3 and H3K27me3 while reducing the acetylation level of the activating histone H3K9ac in the promoter region of the IL-10 gene. Furthermore, using a chromosome conformation capture approach, we discovered that CVB4 infection activated the IL-10 gene by forming an intrachromosomal interaction between the IL-10 gene promoter and an intronic enhancer of the downstream MK2 (mitogen-activated protein kinase [MAPK]-activated protein kinase 2 [MAPKAPK2]) gene, a critical component of the p38-MAPK signaling pathway, which is required for IL-10 gene expression. However, umifenovir treatment abolished this spatial conformation and chromatin interaction, thus reducing the continuous expression of IL-10 and subsequent CVB4 replication. In conclusion, this study reveals a novel epigenetic mechanism by which umifenovir controls CVB4 infections, thus laying a theoretical foundation for therapeutic use of umifenovir. IMPORTANCE Viral infections are major threats to human health because of their strong association with a variety of inflammation-related diseases, especially cancer. Many antiviral drugs are performing poorly in treating viral infections. This is probably due to the immunosuppressive effect of highly expressed IL-10, which is caused by viral infection. Umifenovir is a broad-spectrum antiviral drug. Our recent studies showed that umifenovir has a significant inhibitory effect on CVB4 infection and can reduce IL-10 expression caused by CVB4. However, another antiviral drug, rupintrivir, showed good antiviral activity but had no effect on the expression of IL-10. This suggests that the regulation of IL-10 expression is a key part of the antiviral mechanism of umifenovir. Therefore, due to the dual function of the inhibition of CVB4 replication and the regulation of immune antiviral pathway, the mechanism of umifenovir is of great value to study.


Subject(s)
Coxsackievirus Infections , Enterovirus B, Human , Interleukin-10 , Animals , Child , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coxsackievirus Infections/drug therapy , Coxsackievirus Infections/metabolism , Enterovirus Infections/drug therapy , Enterovirus Infections/metabolism , Epigenesis, Genetic , Interleukin-10/metabolism , Interleukin-10/pharmacology , Enterovirus B, Human/drug effects
11.
Inflamm Res ; 71(12): 1559-1576, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36301340

ABSTRACT

BACKGROUND: Myocardial inflammation and apoptosis are key processes in coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC). Accumulating evidence reveals the essential roles of long noncoding RNAs (lncRNAs) in the pathogenesis of AVMC. Here, we aimed to evaluate the biological functions of a novel lncRNA guanylate-binding protein 9 (lncGBP9) in AVMC progression and further explore its underlying mechanisms. METHODS: Initially, mouse models of AVMC were constructed by CVB3 infection. The expression and localization of lncGBP9 in heart tissues were analyzed using RT-qPCR and FISH. Adeno-associated virus serotype 9 (AAV9)-mediated lncGBP9 knockdown was then employed to clarify its roles in survival, cardiac function, and myocardial inflammation and apoptosis. Moreover, the mRNA and protein levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) were detected by RT-qPCR and ELISA, and the regulation of lncGBP9 knockdown on the NF-κB signaling pathway was investigated by Western blotting. Using an in vitro model of HL-1 cardiomyocytes exposed to CVB3 infection, the effects of lncGBP9 knockdown on cell viability, inflammation, and apoptosis were further evaluated in vitro. RESULTS: Increased lncGBP9 expression was detected in the heart tissues of AVMC mice and CVB3-infected HL-1 cells, and was mainly located in the cytoplasm. Knockdown of lncGBP9 remarkably alleviated the severity of AVMC in CVB3-infected mice, as verified by improved cardiac function, and reduced myocardial inflammation and apoptosis. Additionally, lncGBP9 knockdown suppressed the NF-κB signaling pathway and consequently reduced productions of pro-inflammatory cytokines in vivo. In vitro functional assays further confirmed that lncGBP9 knockdown promoted cell viability, inhibited cell apoptosis, and reduced pro-inflammatory cytokines release in CVB3-infected HL-1 cells through suppressing NF-κB activation. CONCLUSIONS: Collectively, lncGBP9 knockdown exerts anti-inflammatory and anti-apoptotic effects in CVB3-induced AVMC, which may be mediated in part via NF-κB signaling pathway. These findings highlight lncGBP9 as an attractive target for therapeutic interventions.


Subject(s)
Coxsackievirus Infections , Myocarditis , Mice , Animals , Myocarditis/genetics , NF-kappa B/metabolism , Enterovirus B, Human/metabolism , Coxsackievirus Infections/genetics , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/pathology , Signal Transduction , Inflammation/metabolism , Apoptosis , Cytokines/metabolism , Mice, Inbred BALB C
12.
Molecules ; 27(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36144851

ABSTRACT

Viral myocarditis (VMC), which is defined as inflammation of the myocardium with consequent myocardial injury, may develop chronic disease eventually leading to dilated cardiomyopathy (DCM). Molecular mechanisms underlying the progression from acute VMC (aVMC), to chronic VMC (cVMC) and finally to DCM, are still unclear. Here, we established mouse models of VMC and DCM with Coxsackievirus B3 infection and conducted NMR-based metabolomic analysis of aqueous metabolites extracted from cardiac tissues of three histologically classified groups including aVMC, cVMC and DCM. We showed that these three pathological groups were metabolically distinct from their normal counterparts and identified three impaired metabolic pathways shared by these pathological groups relative to normal controls, including nicotinate and nicotinamide metabolism; alanine, aspartate and glutamate metabolism; and D-glutamine and D-glutamate metabolism. We also identified two extra impaired metabolic pathways in the aVMC group, including glycine, serine and threonine metabolism; and taurine and hypotaurine metabolism Furthermore, we identified potential cardiac biomarkers for metabolically distinguishing these three pathological stages from normal controls. Our results indicate that the metabolomic analysis of cardiac tissues can provide valuable insights into the molecular mechanisms underlying the progression from acute VMC to DCM.


Subject(s)
Cardiomyopathy, Dilated , Coxsackievirus Infections , Myocarditis , Niacin , Alanine , Animals , Aspartic Acid , Biomarkers , Cardiomyopathy, Dilated/metabolism , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/pathology , Enterovirus B, Human , Glutamic Acid , Glutamine , Glycine , Mice , Mice, Inbred BALB C , Myocarditis/metabolism , Myocarditis/pathology , Niacinamide , Serine , Taurine , Threonine
13.
J Virol ; 96(17): e0123222, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36037480

ABSTRACT

Enteroviruses initiate infection in the gastrointestinal tract, and sex is often a biological variable that impacts pathogenesis. Previous data suggest that sex hormones can influence the intestinal replication of Coxsackievirus B3 (CVB3), an enterovirus in the Picornaviridae family. However, the specific sex hormone(s) that regulates intestinal CVB3 replication is poorly understood. To determine if testosterone promotes intestinal CVB3 replication, we orally inoculated male and female Ifnar-/- mice that were treated with either placebo or testosterone-filled capsules. Following oral inoculation, we found that the testosterone-treated male and female mice shed significantly more CVB3 in their feces than did the placebo-treated mice, indicating that testosterone enhances intestinal replication. Similarly, testosterone enhanced viral dissemination in both sexes, as we observed higher viral loads in peripheral tissues following infection. Further, the testosterone-treated male mice also had a higher mortality rate than did the testosterone-depleted male mice. Finally, we observed that testosterone significantly affected the immune response to CVB3. We found that testosterone broadly increased proinflammatory cytokines and chemokines while decreasing the number of splenic B cells and dendritic cells following CVB3 infection. Moreover, while testosterone did not affect the early CD4 T cell response to CVB3, testosterone reduced the activation of CD8 T cells. These data indicate that testosterone can promote intestinal CVB3 replication and dissemination while also impacting the subsequent viral immune response. IMPORTANCE Biological sex plays a significant role in the outcomes of various infections and diseases. The impact of sex hormones on the intestinal replication and dissemination of Coxsackievirus B3 remains poorly understood. Using an oral inoculation model, we found that testosterone enhances CVB3 shedding and dissemination in male and female mice. Further, testosterone can alter the immune response to CVB3. This work highlights the role of testosterone in CVB3 pathogenesis and suggests that sex hormones can impact the replication and dissemination of enteric viruses.


Subject(s)
Coxsackievirus Infections/immunology , Testosterone/metabolism , Animals , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Disease Models, Animal , Female , Host-Pathogen Interactions , Male , Mice , Virus Replication
14.
Basic Res Cardiol ; 117(1): 40, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35997820

ABSTRACT

Treatment options for myocarditis are currently limited. Inhibition of calpains has been shown to prevent Coxsackievirus B3 (CVB3)-induced cardiac injuries, but the underlying mechanism of action of calpains has not been elucidated. We investigated whether NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome participated in CVB3-induced myocarditis, and investigated the effects of calpain-1 on CVB3-induced cardiac injury. NLRP3 inflammasome was activated in CVB3-infected hearts, evidenced by elevated protein levels of NLRP3, N-terminal domain of Gasdermin D, and cleaved caspase-1, and the increased co-localization of NLRP3 and apoptosis-associated speck-like protein. The intraperitoneal administration of MCC950, a selective inhibitor of the NLRP3 inflammasome, led to decreased levels of serum creatine kinase-MB, cardiac troponin I, lactate dehydrogenase, interleukin-18, interleukin-1ß, prevention of the infiltration of inflammatory cells, and improvement of cardiac function under CVB3 infection. Transgenic mice overexpressing the endogenous calpain inhibitor calpastatin (Tg-CAST mice) exhibited not only decreased apoptosis, inflammation, fibrosis, and enhanced cardiac function but also inhibition of NLRP3 inflammasome and pyroptosis. The selective inhibition of calpain-1 using PD151746 protected cardiomyocytes in vitro from CVB3 infection by downregulating NLRP3 inflammasome and, thus, preserved cell viability. Mechanistically, we showed that mitochondrial dysfunction preceded inflammatory response after CVB3 treatment and elimination of mitochondrial reactive oxygen species (ROS) using mitochondria-targeted antioxidants (mito-TEMPO) recapitalized the phenotype observed in Tg-CAST mice. Furthermore, the promotion or inhibition of calpain-1 activation in vitro regulated the mitochondrial respiration chain. Mito-TEMPO reversed calpain-1-mediated NLRP3 inflammation activation and cell death. We also found that mitochondrial calpain-1, which was increased after CVB3 stimulation, activated the NLRP3 inflammasome and resulted in cell death. Furthermore, ATP synthase-α (ATP5A1) was revealed to be the cleaving target of calpain-1 after CVB3 treatment. Downregulating ATP5A1 using ATP5A1-small interfering RNA impaired mitochondrial function, decreased cell viability, and induced NLRP3 inflammasome activation. In conclusion, CVB3 infection induced calpain-1 accumulation in mitochondria, and led to subsequent ATP5A1 cleavage, mitochondrial ROS overproduction, and impaired mitochondrial function, eventually causing NLRP3 inflammasome activation and inducing pyroptosis. Therefore, our findings established the role of calpain in viral myocarditis and unveiled its underlying mechanism of its action. Calpain appears as a promising target for the treatment of viral myocarditis.


Subject(s)
Coxsackievirus Infections , Myocarditis , Animals , Calpain/metabolism , Coxsackievirus Infections/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Mice , Mice, Inbred NOD , Mitochondria/metabolism , Myocarditis/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism
15.
Cell Death Dis ; 13(7): 592, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35821227

ABSTRACT

CVB3 is a single positive-strand enterovirus, and a common pathogen in myocarditis etiology. Although a number of antiviral candidates are under development, specific targeted therapy is not available for CVB3. Ferroptosis is a new type of regulatory cell death discovered in recent years. In this study, our team provided the first evidence that ferroptosis existed in CVB3 infection in vivo and in vitro by iron overload, and massive accumulation of lipid peroxides. Mechanistically, we construct a classical model of HeLa cells following a time-course infection (6, 12, 24, 36, 48 h) with CVB3 (MOI = 10). We demonstrated that the TFRC gene plays an important role in promoting ferroptosis in CVB3 infection and downregulation of TFRC attenuated the ferroptosis. Interestingly, we observed that TFRC was nuclear translocation induced by the CVB3, which was predominantly localized in the cell membrane, but redistributed to the nucleus during CVB3 infection. Moreover, we found that the transcription factor Sp1 was an essential factor that could bind to the TFRC promoter and upregulate the TFRC transcription. Collectively, these results suggest that the Sp1/TFRC/Fe axis may provide a new target for the development of therapies against CVB3 infection.


Subject(s)
Coxsackievirus Infections , Enterovirus B, Human , Ferroptosis , Sp1 Transcription Factor , Antigens, CD/genetics , Antigens, CD/metabolism , Cell Nucleus/metabolism , Coxsackievirus Infections/genetics , Coxsackievirus Infections/metabolism , HeLa Cells , Humans , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Transcriptional Activation , Up-Regulation
16.
Inflammation ; 45(5): 2078-2090, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35676606

ABSTRACT

Viral myocarditis (VMC), which is most prevalently caused by Coxsackievirus B3 (CVB3) infection, is a serious clinical condition characterized by cardiac inflammation. Dapagliflozin, a kind of sodium glucose co-transporters 2(SGLT-2) inhibitor, exhibited protective effects on plenty of inflammatory diseases, while its effect on viral myocarditis has not been studied. Recently, we found the protective effect of dapagliflozin on VMC. After CVB3 infection, dapagliflozin and STATTIC (a kind of stat3 inhibitor) were given to Balb/c male mice for 8 days, and then the severity of myocarditis was assessed. Our results indicated that dapagliflozin significantly alleviated the severity of viral myocarditis, elevated the survival rate, and ameliorated cardiac function. Besides, dapagliflozin can decrease the level of pro-inflammatory cytokines including IL-1ß, IL-6, and TNF-α. Furthermore, dapagliflozin can inhibit macrophages differentiate to classically activated macrophages (M1) in cardiac tissue and activate the Stat3 signal pathway which is reported to promote polarization of the alternatively activated macrophage (M2). And STATTIC can reverse these changes caused by dapagliflozin. In conclusion, we found that dapagliflozin treatment increased anti-inflammatory macrophage polarization and reduced cardiac injury following VMC via activating Stat3 signal pathway.


Subject(s)
Coxsackievirus Infections , Myocarditis , Symporters , Animals , Benzhydryl Compounds , Coxsackievirus Infections/metabolism , Cyclic S-Oxides , Cytokines/metabolism , Enterovirus B, Human , Glucose/metabolism , Glucosides , Interleukin-6/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Sodium/metabolism , Symporters/metabolism , Tumor Necrosis Factor-alpha/metabolism
17.
Int J Biochem Cell Biol ; 146: 106208, 2022 05.
Article in English | MEDLINE | ID: mdl-35381374

ABSTRACT

Viral myocarditis (VMC) is the main cause of sudden acute heart failure and cardiac death in adolescents; however, treatment for VMC is limited. Trehalose is a natural non-reductive disaccharide that protects against cardiovascular diseases by inducing autophagy. The protective effect of trehalose on VMC and the specific mechanism remains unclear. In this study, we established a VMC mouse model, treated with trehalose in vivo, and cultured B cells from VMC mice with trehalose in vitro to elucidate the effect of trehalose on B cells in acute VMC. Trehalose alleviated myocardial injury in VMC mice and increased the number of autophagosomes, LC3II/LC3I ratio, and expression level of LAMP2, whereas it decreased the expression of p62 in VMC-B cells. Bafilomycin A1 suppressed VMC-B cell autophagy induced by trehalose. At the mechanistic level, trehalose treatment significantly upregulated the phosphorylation of AMPK and ULK1 in VMC-B cells. Dorsomorphin and SBI-0206965 abolished the increased phosphorylation level and altered the expression levels of autophagy-related proteins. In conclusion, trehalose alleviates myocardial inflammatory damage of VMC by inducing B cell autophagy, mediated by the AMPK/ULK1 signalling pathway. Thus, trehalose may be a potentially useful molecule for alleviating myocardial injury in VMC.


Subject(s)
Coxsackievirus Infections , Myocarditis , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy , Autophagy-Related Protein-1 Homolog , Coxsackievirus Infections/complications , Coxsackievirus Infections/drug therapy , Coxsackievirus Infections/metabolism , Mice , Mice, Inbred BALB C , Myocarditis/drug therapy , Trehalose/pharmacology , Trehalose/therapeutic use
18.
Biomolecules ; 12(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-35053260

ABSTRACT

Viral myocarditis (VMC) is an inflammatory heart condition which can induce dilated cardiomyopathy (DCM). However, molecular mechanisms underlying the progression of VMC into DCM remain exclusive. Here, we established mouse models of VMC and DCM by infecting male BALB/c mice with Coxsackievirus B3 (CVB3), and performed NMR-based metabonomic analyses of mouse sera. The mouse models covered three pathological stages including: acute VMC (aVMC), chronic VMC (cVMC) and DCM. We recorded 1D 1H-NMR spectra on serum samples and conducted multivariate statistical analysis on the NMR data. We found that metabolic profiles of these three pathological stages were distinct from their normal controls (CON), and identified significant metabolites primarily responsible for the metabolic distinctions. We identified significantly disturbed metabolic pathways in the aVMC, cVMC and DCM stages relative to CON, including: taurine and hypotaurine metabolism; pyruvate metabolism; glycine, serine and threonine metabolism; glycerolipid metabolism. Additionally, we identified potential biomarkers for discriminating a VMC, cVMC and DCM from CON including: taurine, valine and acetate for aVMC; glycerol, valine and leucine for cVMC; citrate, glycine and isoleucine for DCM. This work lays the basis for mechanistically understanding the progression from acute VMC to DCM, and is beneficial to exploitation of potential biomarkers for prognosis and diagnosis of heart diseases.


Subject(s)
Cardiomyopathy, Dilated , Coxsackievirus Infections , Myocarditis , Animals , Cardiomyopathy, Dilated/metabolism , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/pathology , Enterovirus B, Human , Male , Mice , Mice, Inbred BALB C
19.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046043

ABSTRACT

Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.


Subject(s)
CD55 Antigens/metabolism , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Enterovirus B, Human/physiology , Host-Pathogen Interactions , Receptors, Virus/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Enterovirus B, Human/ultrastructure , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, Virus/chemistry , Structure-Activity Relationship , Virus Attachment
20.
Inflammation ; 45(3): 1186-1198, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35088199

ABSTRACT

Acute viral myocarditis (AVMC), most often caused by coxsackievirus B3 (CVB3) infection, is characterized by myocardial inflammation associated with high morbidity and mortality. A pathogenic role for T helper (Th) 17 cells in AVMC is well established. Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to play a key role in various inflammatory diseases. However, the expression of MALAT1 and its impact on Th17 cells differentiation in AVMC remain unclear. In the present study, we found that MALAT1 was highly expressed in mice with AVMC, and the expression was correlated positively with cardiac pathological scores, cardiac IL-17 mRNA expression, and the percentages of splenic Th17 cells. We further demonstrated that MALAT1 knockdown could significantly alleviate the severity of disease and inhibit the differentiation of Th17 cells, accompanying the reduced mRNA expression of RORγt and productions of Th17-related pro-inflammatory cytokines in vivo. Additionally, in vitro analysis showed that MALAT1 knockdown suppressed naïve CD4+ T cells differentiation towards Th17 cells. In conclusion, our results suggest that MALAT1 knockdown alleviates CVB3-induced AVMC in mice, which may be partially attributable to the decline in Th17 cells responses. MALAT1 may serve as a novel therapeutic option in AVMC.


Subject(s)
Coxsackievirus Infections , Myocarditis , RNA, Long Noncoding , Animals , Coxsackievirus Infections/metabolism , Enterovirus B, Human , Mice , Mice, Inbred BALB C , Myocarditis/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...