Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.966
Filter
1.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715048

ABSTRACT

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Subject(s)
Adipose Tissue , DNA Methylation , Diabetes, Gestational , Epigenesis, Genetic , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Diabetes, Gestational/genetics , Epigenesis, Genetic/genetics , Adult , DNA Methylation/genetics , Muscle, Skeletal/metabolism , Adolescent , Adipose Tissue/metabolism , Male , Prenatal Exposure Delayed Effects/genetics , Child , Diabetes Mellitus, Type 1/genetics , RNA, Untranslated/genetics , RNA, Untranslated/blood , RNA, Long Noncoding/genetics , CpG Islands/genetics
2.
Clin Epigenetics ; 16(1): 71, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802956

ABSTRACT

BACKGROUND: Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT4) in a cohort of healthy individuals (N = 254) and, for 5-HT4, in a cohort of unmedicated patients with depression (N = 90). To do so, we quantified SLC6A4/TPH2 methylation using bisulfite pyrosequencing and estimated brain 5-HT4 and 5-HTT levels using positron emission tomography. In addition, we explored the association between SLC6A4 and TPH2 methylation and measures of early life and recent stress, depressive and anxiety symptoms on 297 healthy individuals. RESULTS: We found no statistically significant association between peripheral DNA methylation and brain markers of serotonergic neurotransmission in patients with depression or in healthy individuals. In addition, although SLC6A4 CpG2 (chr17:30,236,083) methylation was marginally associated with the parental bonding inventory overprotection score in the healthy cohort, statistical significance did not remain after accounting for blood cell heterogeneity. CONCLUSIONS: We suggest that findings on peripheral DNA methylation in the context of brain serotonin-related features should be interpreted with caution. More studies are needed to rule out a role of SLC6A4 and TPH2 methylation as biomarkers for environmental stress, depressive or anxiety symptoms.


Subject(s)
Brain , DNA Methylation , Depression , Epigenesis, Genetic , Serotonin Plasma Membrane Transport Proteins , Serotonin , Synaptic Transmission , Tryptophan Hydroxylase , Humans , DNA Methylation/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Male , Female , Adult , Tryptophan Hydroxylase/genetics , Serotonin/metabolism , Serotonin/blood , Brain/metabolism , Depression/genetics , Depression/metabolism , Epigenesis, Genetic/genetics , Synaptic Transmission/genetics , CpG Islands/genetics , Middle Aged , Young Adult , Receptors, Serotonin, 5-HT4/genetics , Receptors, Serotonin, 5-HT4/metabolism , Positron-Emission Tomography , Cohort Studies
3.
Clin Epigenetics ; 16(1): 70, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802969

ABSTRACT

BACKGROUND: Obesity is a global public health concern linked to chronic diseases such as cardiovascular disease and type 2 diabetes (T2D). Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may contribute to obesity. However, the molecular mechanism underlying the longitudinal change of BMI has not been well-explored, especially in East Asian populations. METHODS: This study performed a longitudinal epigenome-wide association analysis of DNA methylation to uncover novel loci associated with BMI change in 533 individuals across two Chinese cohorts with repeated DNA methylation and BMI measurements over four years. RESULTS: We identified three novel CpG sites (cg14671384, cg25540824, and cg10848724) significantly associated with BMI change. Two of the identified CpG sites were located in regions previously associated with body shape and basal metabolic rate. Annotation of the top 20 BMI change-associated CpGs revealed strong connections to obesity and T2D. Notably, these CpGs exhibited active regulatory roles and located in genes with high expression in the liver and digestive tract, suggesting a potential regulatory pathway from genome to phenotypes of energy metabolism and absorption via DNA methylation. Cross-sectional and longitudinal EWAS comparisons indicated different mechanisms between CpGs related to BMI and BMI change. CONCLUSION: This study enhances our understanding of the epigenetic dynamics underlying BMI change and emphasizes the value of longitudinal analyses in deciphering the complex interplay between epigenetics and obesity.


Subject(s)
Asian People , Body Mass Index , CpG Islands , DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Obesity , Humans , DNA Methylation/genetics , Longitudinal Studies , Male , Female , CpG Islands/genetics , Obesity/genetics , Middle Aged , Genome-Wide Association Study/methods , Epigenesis, Genetic/genetics , Asian People/genetics , Diabetes Mellitus, Type 2/genetics , Adult , Epigenome/genetics , China , Cross-Sectional Studies , East Asian People
4.
BMC Biol ; 22(1): 124, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807214

ABSTRACT

BACKGROUND: Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS: We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS: Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.


Subject(s)
CpG Islands , DNA Methylation , Promoter Regions, Genetic , Songbirds , Animals , Songbirds/genetics , CpG Islands/genetics , Hybridization, Genetic , Evolution, Molecular , Biological Evolution , Gene Expression Regulation
5.
Sci Transl Med ; 16(748): eadj3385, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776390

ABSTRACT

Variation in DNA methylation (DNAmet) in white blood cells and other cells/tissues has been implicated in the etiology of progressive diabetic kidney disease (DKD). However, the specific mechanisms linking DNAmet variation in blood cells with risk of kidney failure (KF) and utility of measuring blood cell DNAmet in personalized medicine are not clear. We measured blood cell DNAmet in 277 individuals with type 1 diabetes and DKD using Illumina EPIC arrays; 51% of the cohort developed KF during 7 to 20 years of follow-up. Our epigenome-wide analysis identified DNAmet at 17 CpGs (5'-cytosine-phosphate-guanine-3' loci) associated with risk of KF independent of major clinical risk factors. DNAmet at these KF-associated CpGs remained stable over a median period of 4.7 years. Furthermore, DNAmet variations at seven KF-associated CpGs were strongly associated with multiple genetic variants at seven genomic regions, suggesting a strong genetic influence on DNAmet. The effects of DNAmet variations at the KF-associated CpGs on risk of KF were partially mediated by multiple KF-associated circulating proteins and KF-associated circulating miRNAs. A prediction model for risk of KF was developed by adding blood cell DNAmet at eight selected KF-associated CpGs to the clinical model. This updated model significantly improved prediction performance (c-statistic = 0.93) versus the clinical model (c-statistic = 0.85) at P = 6.62 × 10-14. In conclusion, our multiomics study provides insights into mechanisms through which variation of DNAmet may affect KF development and shows that blood cell DNAmet at certain CpGs can improve risk prediction for KF in T1D.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 1 , Genetic Variation , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , DNA Methylation/genetics , Male , Female , Renal Insufficiency/genetics , Renal Insufficiency/blood , MicroRNAs/genetics , MicroRNAs/blood , Adult , CpG Islands/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/blood , Risk Factors
6.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783575

ABSTRACT

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Subject(s)
DNA Methylation , Nanopore Sequencing , Promoter Regions, Genetic , Humans , Nanopore Sequencing/methods , Promoter Regions, Genetic/genetics , CpG Islands/genetics , Tumor Suppressor Proteins/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Brain Neoplasms/genetics , Female , Male , Glioblastoma/genetics , Aged
7.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773655

ABSTRACT

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


Subject(s)
DNA Methylation , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , DNA Methylation/genetics , Female , Male , Prognosis , Middle Aged , Aged , Adult , Rituximab/therapeutic use , Aged, 80 and over , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Vincristine/therapeutic use , Prednisone/therapeutic use , Telomere/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Telomere Shortening/genetics , Epigenesis, Genetic/genetics , CpG Islands/genetics
8.
Sci Rep ; 14(1): 11715, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778164

ABSTRACT

Recent studies have revealed that arginine is the most favorable target of amino acid alteration in most cancer types and it has been suggested that the high preference for arginine mutations reflects the critical roles of this amino acid in the function of proteins. High rates of mutations of arginine residues in cancer, however, might also be due to increased mutability of arginine codons of the CGN family as the CpG dinucleotides of these codons may be methylated. In the present work we have analyzed spectra of single base substitutions of cancer genes (oncogenes, tumor suppressor genes) and passenger genes in cancer tissues to assess the contributions of CpG hypermutability and selection to arginine mutations. Our studies have shown that arginines encoded by the CGN codon family display higher rates of mutation in both cancer genes and passenger genes than arginine codons AGA and AGG that are devoid of CpG dinucleotide, suggesting that the predominance of arginine mutations in cancer is primarily due to CpG hypermutability, rather than selection for arginine replacement. Nevertheless, our results also suggest that CGN codons for arginines may serve as Achilles' heels of cancer genes. CpG hypermutability of key arginines of proto-oncogenes, leading to high rates of recurrence of driver mutations, contributes significantly to carcinogenesis. Similarly, our results indicate that hypermutability of the CpG dinucleotide of CGA codons (converting them to TGA stop codons) contributes significantly to recurrent truncation and inactivation of tumor suppressor genes.


Subject(s)
Arginine , Codon , CpG Islands , Neoplasms , Arginine/genetics , Arginine/chemistry , Humans , Codon/genetics , Neoplasms/genetics , CpG Islands/genetics , Mutation , Oncogenes/genetics , Genes, Tumor Suppressor
9.
BMC Med Genomics ; 17(1): 127, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730335

ABSTRACT

Colorectal cancer (CRC) is prone to metastasis and recurrence after surgery, which is one of the main causes for its poor treatment and prognosis. Therefore, it is essential to identify biomarkers associated with metastasis and recurrence in CRC. DNA methylation has a regulatory role in cancer metastasis, tumor immune microenvironment (TME), and prognosis and may be one of the most valuable biomarkers for predicting CRC metastasis and prognosis. We constructed a diagnostic model and nomogram that can effectively predict CRC metastasis based on the differential methylation CpG sites (DMCs) between metastatic and non-metastatic CRC patients. Then, we identified 17 DMCs associated with progression free survival (PFS) of CRC and constructed a prognostic model. The prognosis model based on 17 DMCs can predict the PFS of CRC with medium to high accuracy. The results of immunohistochemical analysis indicated that the protein expression levels of the genes involved in prognostic DMCs were different between normal and colorectal cancer tissues. According to the results of immune-related analysis, we found that the low-risk patients had better immunotherapy response. In addition, high risk scores were negatively correlated with high tumor mutation burden (TMB) levels, and patients with low TMB levels in the high-risk group had the worst PFS. Our work shows the clinical value of DNA methylation in predicting CRC metastasis and PFS, as well as their correlation with TME, immunotherapy, and TMB, which helps understand the changes of DNA methylation in CRC metastasis and improving the treatment and prognosis of CRC.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Neoplasm Metastasis , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , CpG Islands/genetics , Tumor Microenvironment , Female , Male , Gene Expression Regulation, Neoplastic , Nomograms
10.
Clin Epigenetics ; 16(1): 64, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730337

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (Guilak in Best Pract Res Clin Rheumatol 25:815-823, 2011). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. RESULTS: We showed that hyper-physiological loading evokes consistent changes in CpGs associated with expression changes (ML-tCpGs) in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology (OA-tCpGs), we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. CONCLUSION: Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCpGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.


Subject(s)
Cartilage, Articular , Chondrocytes , CpG Islands , DNA Methylation , Epigenesis, Genetic , Organoids , Osteoarthritis , DNA Methylation/genetics , Humans , Osteoarthritis/genetics , CpG Islands/genetics , Chondrocytes/metabolism , Organoids/metabolism , Epigenesis, Genetic/genetics , Cartilage, Articular/metabolism
11.
J Clin Immunol ; 44(6): 133, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780872

ABSTRACT

PURPOSE: A large proportion of Common variable immunodeficiency (CVID) patients has duodenal inflammation with increased intraepithelial lymphocytes (IEL) of unknown aetiology. The histologic similarities to celiac disease, lead to confusion regarding treatment (gluten-free diet) of these patients. We aimed to elucidate the role of epigenetic DNA methylation in the aetiology of duodenal inflammation in CVID and differentiate it from true celiac disease. METHODS: DNA was isolated from snap-frozen pieces of duodenal biopsies and analysed for differences in genome-wide epigenetic DNA methylation between CVID patients with increased IEL (CVID_IEL; n = 5) without IEL (CVID_N; n = 3), celiac disease (n = 3) and healthy controls (n = 3). RESULTS: The DNA methylation data of 5-methylcytosine in CpG sites separated CVID and celiac diseases from healthy controls. Differential methylation in promoters of genes were identified as potential novel mediators in CVID and celiac disease. There was limited overlap of methylation associated genes between CVID_IEL and Celiac disease. High frequency of differentially methylated CpG sites was detected in over 100 genes nearby transcription start site (TSS) in both CVID_IEL and celiac disease, compared to healthy controls. Differential methylation of genes involved in regulation of TNF/cytokine production were enriched in CVID_IEL, compared to healthy controls. CONCLUSION: This is the first study to reveal a role of epigenetic DNA methylation in the etiology of duodenal inflammation of CVID patients, distinguishing CVID_IEL from celiac disease. We identified potential biomarkers and therapeutic targets within gene promotors and in high-frequency differentially methylated CpG regions proximal to TSS in both CVID_IEL and celiac disease.


Subject(s)
Celiac Disease , Common Variable Immunodeficiency , CpG Islands , DNA Methylation , Duodenum , Epigenesis, Genetic , Humans , Common Variable Immunodeficiency/genetics , Duodenum/metabolism , Duodenum/pathology , Celiac Disease/genetics , Female , Male , Adult , Middle Aged , CpG Islands/genetics , Promoter Regions, Genetic/genetics , Intraepithelial Lymphocytes/immunology , Young Adult , Genome-Wide Association Study , 5-Methylcytosine/metabolism
12.
Mol Genet Genomics ; 299(1): 58, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789628

ABSTRACT

Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.


Subject(s)
Cardiidae , DNA Methylation , Epigenesis, Genetic , DNA Methylation/genetics , Animals , Cardiidae/genetics , CpG Islands/genetics , Genome/genetics , Neoplasms/genetics , Neoplasms/pathology
13.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791280

ABSTRACT

Synchronous colorectal cancer (sCRC) is characterized by the occurrence of more than one tumor within six months of detecting the first tumor. Evidence suggests that sCRC might be more common in the serrated neoplasia pathway, marked by the CpG island methylator phenotype (CIMP), than in the chromosomal instability pathway (CIN). An increasing number of studies propose that CIMP could serve as a potential epigenetic predictor or prognostic biomarker of sCRC. Therapeutic drugs already used for treating CIMP-positive colorectal cancers (CRCs) are reviewed and drug selections for sCRC patients are discussed.


Subject(s)
Colorectal Neoplasms , CpG Islands , DNA Methylation , Phenotype , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , CpG Islands/genetics , Prognosis , Biomarkers, Tumor/genetics , Epigenesis, Genetic , Antineoplastic Agents/therapeutic use
14.
J Transl Med ; 22(1): 428, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711158

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) has been a leading cause of cancer-related mortality worldwide. Early intervention can significantly improve prognosis. DNA methylation could occur in the early stage of tumor. Comprehensive understanding the epigenetic landscape of early-stage LUAD is crucial in understanding tumorigenesis. METHODS: Enzymatic methyl sequencing (EM-seq) was performed on 23 tumors and paired normal tissue to reveal distinct epigenetic landscape, for compared with The Cancer Genome Atlas (TCGA) 450K methylation microarray data. Then, an integrative analysis was performed combined with TCGA LUAD RNA-seq data to identify significant differential methylated and expressed genes. Subsequently, the prognostic risk model was constructed and cellular composition was analyzed. RESULTS: Methylome analysis of EM-seq comparing tumor and normal tissues identified 25 million cytosine-phosphate-guanine (CpG) sites and 30,187 differentially methylated regions (DMR) with a greater number of untraditional types. EM-seq identified a significantly higher number of CpG sites and DMRs compared to the 450K microarray. By integrating the differentially methylated genes (DMGs) with LUAD-related differentially expressed genes (DEGs) from the TCGA database, we constructed prognostic model based on six differentially methylated-expressed genes (MEGs) and verified our prognostic model in GSE13213 and GSE42127 dataset. Finally, cell deconvolution based on the in-house EM-seq methylation profile was used to estimate cellular composition of early-stage LUAD. CONCLUSIONS: This study firstly delves into novel pattern of epigenomic DNA methylation and provides a multidimensional analysis of the role of DNA methylation revealed by EM-seq in early-stage LUAD, providing distinctive insights into its potential epigenetic mechanisms.


Subject(s)
Adenocarcinoma of Lung , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Lung Neoplasms , DNA Methylation/genetics , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Gene Expression Profiling , CpG Islands/genetics , Female , Neoplasm Staging , Male , Middle Aged , Genome, Human , Aged
15.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791483

ABSTRACT

Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We performed a genome-wide DNA methylation analysis on sixty-four samples (from the prefrontal cortex and LCLs) including those taken from patients with early-onset forms of Alzheimer's disease (AD) and frontotemporal dementia (FTD) and healthy controls. A beta regression model and adjusted p-values were used to obtain differentially methylated positions (DMPs) via pairwise comparisons. A correlation analysis of DMP levels with Clariom D array gene expression data from the same cohort was also performed. The results showed hypermethylation as the most frequent finding in both tissues studied in the patient groups. Biological significance analysis revealed common pathways altered in AD and FTD patients, affecting neuron development, metabolism, signal transduction, and immune system pathways. These alterations were also found in LCL samples, suggesting the epigenetic changes might not be limited to the central nervous system. In the brain, CpG methylation presented an inverse correlation with gene expression, while in LCLs, we observed mainly a positive correlation. This study enhances our understanding of the biological pathways that are associated with neurodegeneration, describes differential methylation patterns, and suggests LCLs are a potential cell model for studying neurodegenerative diseases in earlier clinical phases than brain tissue.


Subject(s)
Alzheimer Disease , DNA Methylation , Epigenesis, Genetic , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Female , Male , Middle Aged , Brain/metabolism , Brain/pathology , Genome-Wide Association Study , Aged , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , CpG Islands/genetics , Cell Line , Lymphocytes/metabolism
16.
Clin Epigenetics ; 16(1): 60, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685121

ABSTRACT

BACKGROUND: While multiple studies have investigated the relationship between metabolic syndrome (MetS) and its related traits (fasting glucose, triglyceride, HDL cholesterol, blood pressure, waist circumference) and DNA methylation, our understanding of the epigenetic mechanisms in MetS remains limited. Therefore, we performed an epigenome-wide meta-analysis of blood DNA methylation to identify differentially methylated probes (DMPs) and differentially methylated regions (DMRs) associated with MetS and its components using two independent cohorts comprising a total of 2,334 participants. We also investigated the specific genetic effects on DNA methylation, identified methylation quantitative trait loci (meQTLs) through genome-wide association studies and further utilized Mendelian randomization (MR) to assess how these meQTLs subsequently influence MetS status. RESULTS: We identified 40 DMPs and 27 DMRs that are significantly associated with MetS. In addition, we identified many novel DMPs and DMRs underlying inflammatory and steroid hormonal processes. The most significant associations were observed in 3 DMPs (cg19693031, cg26974062, cg02988288) and a DMR (chr1:145440444-145441553) at the TXNIP, which are involved in lipid metabolism. These CpG sites were identified as coregulators of DNA methylation in MetS, TG and FAG levels. We identified a total of 144 cis-meQTLs, out of which only 13 were found to be associated with DMPs for MetS. Among these, we confirmed the identified causal mediators of genetic effects at CpG sites cg01881899 at ABCG1 and cg00021659 at the TANK genes for MetS. CONCLUSIONS: This study observed whether specific CpGs and methylated regions act independently or are influenced by genetic effects for MetS and its components in the Korean population. These associations between the identified DNA methylation and MetS, along with its individual components, may serve as promising targets for the development of preventive interventions for MetS.


Subject(s)
CpG Islands , DNA Methylation , Epigenesis, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Metabolic Syndrome , Quantitative Trait Loci , Humans , Metabolic Syndrome/genetics , DNA Methylation/genetics , CpG Islands/genetics , Genome-Wide Association Study/methods , Republic of Korea/epidemiology , Female , Male , Middle Aged , Genetic Predisposition to Disease/genetics , Epigenesis, Genetic/genetics , Mendelian Randomization Analysis/methods , Epigenome/genetics , Adult , Aged , Carrier Proteins/genetics
17.
Clin Immunol ; 263: 110196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570004

ABSTRACT

The prognosis of autoimmune thyroid diseases (AITDs), including Hashimoto's disease (HD) and Graves' disease (GD), is difficult to predict. DNA methylation regulates gene expression of immune mediating factors. Interleukin (IL)-10 is a Th2 cytokine that downregulates inflammatory cytokines produced by Th1 cells. To clarify the role of methylation of the IL10 gene in the prognosis of AITD, we evaluated the methylation levels of two CpG sites in the IL10 promoter using pyrosequencing. The methylation levels of the -185 CpG site of the IL10 gene were related to age and GD intractability in GD patients. Furthermore, the C carrier of the IL10-592 A/C polymorphism was related to low methylation levels of the -185 CpG site. The methylation levels of the IL10-185 CpG site of the IL10 gene were related to the intractability of GD and were lower in individuals with the C allele of the IL10-592 A/C polymorphism.


Subject(s)
CpG Islands , DNA Methylation , Graves Disease , Interleukin-10 , Promoter Regions, Genetic , Humans , Graves Disease/genetics , Graves Disease/immunology , Graves Disease/blood , Interleukin-10/genetics , Female , Adult , Male , Middle Aged , CpG Islands/genetics , Promoter Regions, Genetic/genetics , Polymorphism, Single Nucleotide , Aged , Young Adult , Genetic Predisposition to Disease
18.
Cell Genom ; 4(5): 100541, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38663408

ABSTRACT

To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.


Subject(s)
CpG Islands , DNA Methylation , Epigenesis, Genetic , Monocytes , Adult , Female , Humans , Male , CpG Islands/genetics , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Monocytes/immunology , Middle Aged , Aged
19.
Ann Neurol ; 95(6): 1162-1172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563317

ABSTRACT

OBJECTIVE: To characterize DNA methylation (DNAm) differences between sporadic Parkinson's disease (PD) and healthy control (HC) individuals enrolled in the Parkinson's Progression Markers Initiative (PPMI). METHODS: Using whole blood, we characterized longitudinal differences in DNAm between sporadic PD patients (n = 196) and HCs (n = 86) enrolled in PPMI. RNA sequencing (RNAseq) was used to conduct gene expression analyses for genes mapped to differentially methylated cytosine-guanine sites (CpGs). RESULTS: At the time of patient enrollment, 5,178 CpGs were differentially methylated (2,683 hypermethylated and 2,495 hypomethylated) in PD compared to HC. Of these, 579 CpGs underwent significant methylation changes over 3 years. Several differentially methylated CpGs were found near the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene. Additionally, multiple hypermethylated CpGs were associated with the N-myc downregulated gene family member 4 (NDRG4) gene. RNA-Seq analyses showed 75 differentially expressed genes in PD patients compared to controls. An integrative analysis of both differentially methylated sites and differentially expressed genes revealed 20 genes that exhibited hypomethylation concomitant with overexpression. Additionally, 1 gene, cathepsin H (CTSH), displayed hypermethylation that was associated with its decreased expression. INTERPRETATION: We provide initial evidence of alterations in DNAm in blood of PD patients that may serve as potential epigenetic biomarker of disease. To evaluate the significance of these changes throughout the progression of PD, additional profiling at longer intervals and during the prodromal stages of disease will be necessary. ANN NEUROL 2024;95:1162-1172.


Subject(s)
Biomarkers , DNA Methylation , Epigenesis, Genetic , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/blood , Male , Female , DNA Methylation/genetics , Aged , Middle Aged , Biomarkers/blood , Epigenesis, Genetic/genetics , Epigenome/genetics , CpG Islands/genetics
20.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38565301

ABSTRACT

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Cytochrome P-450 CYP1A2 , DNA Methylation , Epigenesis, Genetic , Liver Neoplasms , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Sorafenib/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , DNA Methylation/drug effects , Cell Line, Tumor , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , DNA Methyltransferase 3A , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Decitabine/pharmacology , CpG Islands/genetics , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...