Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 771
Filter
1.
Food Funct ; 15(10): 5627-5640, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38722076

ABSTRACT

Hawthorn fruits have a sweet and sour taste, besides having beneficial therapeutic effects on hyperlipidemia, hypertension, and coronary heart disease, making them widely used in food and clinical medicine. However, their hypotensive effects and potential mechanisms of anti-hypertension still need to be elucidated. This study aims to explore the antihypertensive effect of hawthorn and its monomer hyperoside on spontaneously hypertensive rats through pharmacodynamics, serum metabolomics, and in vivo mechanism studies. After 7 weeks of intervention with hawthorn extract and hyperoside, the blood pressure was significantly reduced. Aortic vascular staining results showed that the injury was significantly improved after intervention with hawthorn extract and hyperoside. According to the serum metabolomics study, the main metabolic pathway regulating blood pressure in hawthorn extract and hyperoside groups was the primary bile acid biosynthesis pathway. Quantitative experiments confirmed that the level of bile acid in the model group was significantly different from that in the normal group, while that in the hawthorn group and the hyperoside group was close to that in the normal group. Based on the prediction of bile acid-hypertension related targets and the literature, nine genes involved in bile acid metabolism and inflammatory pathways were selected for further study. The FXR, TGR5, ET-1, NOS3, Akt1, TNF-α, Ptgs2, ACE2 and Kdr mRNA expression levels in the hawthorn extract and hyperoside groups were significantly different from those in the model groups. In summary, hawthorn extract and hyperoside have a hypotensive effect on spontaneously hypertensive rats through bile acid and inflammation related targets. Hence, hawthorn extract has the potential to become a functional food or an alternative therapy for hypertension.


Subject(s)
Antihypertensive Agents , Blood Pressure , Crataegus , Fruit , Hypertension , Plant Extracts , Quercetin , Rats, Inbred SHR , Animals , Crataegus/chemistry , Rats , Male , Antihypertensive Agents/pharmacology , Fruit/chemistry , Hypertension/drug therapy , Hypertension/metabolism , Plant Extracts/pharmacology , Blood Pressure/drug effects , Quercetin/pharmacology , Quercetin/analogs & derivatives , Humans
2.
Nutrients ; 16(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732560

ABSTRACT

Cardiovascular diseases are a broadly understood concept focusing on vascular and heart dysfunction. Lack of physical exercise, type 2 diabetes, obesity, hypertension, dyslipidemia, thromboembolism, and kidney and lung diseases all contribute to the development of heart and blood vessel dysfunction. Although effective and important, traditional treatment with diuretics, statins, beta blockers, calcium inhibitors, ACE inhibitors, and anti-platelet drugs remains a second-line treatment after dietary interventions and lifestyle changes. Scientists worldwide are still looking for an herbal product that would be effective and free from side effects, either taken together with or before the standard pharmacological intervention. Such herbal-originated medication therapy may include Morus alba L. (white mulberry), Elaeagnus rhamnoides (L.) A. Nelson (sea-buckthorn), Allium sativum L. (garlic), Convallaria majalis L. (lily of the valley), Leonurus cardiaca L. (motherwort), and Crataegus spp. (hawthorn). Valuable herbal raw materials include leaves, fruits, seeds, and even thorns. This short review focuses on six herbs that can constitute an interesting and potential therapeutic option in the management of cardiovascular disorders.


Subject(s)
Cardiovascular Diseases , Crataegus , Garlic , Hippophae , Morus , Plant Extracts , Crataegus/chemistry , Morus/chemistry , Animals , Hippophae/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Leonurus/chemistry , Elaeagnaceae/chemistry , Humans , Phytotherapy
3.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732582

ABSTRACT

Recent studies have highlighted the lipid-lowering ability of hawthorn ethanol extract (HEE) and the role played by gut flora in the efficacy of HEE. Our study sought to explore the effects of HEE on non-alcoholic fatty liver disease (NAFLD) in normal flora and pseudo germ-free mice. The results showed that HEE effectively diminished hepatic lipid accumulation, ameliorated liver function, reduced inflammatory cytokine levels and blood lipid profiles, and regulated blood glucose levels. HEE facilitated triglyceride breakdown, suppressed fatty acid synthesis, and enhanced intestinal health by modulating the diversity of the gut microbiota and the production of short-chain fatty acids in the gut. In addition, HEE apparently helps to increase the presence of beneficial genera of bacteria, thereby influencing the composition of the gut microbiota, and the absence of gut flora affects the efficacy of HEE. These findings reveal the potential of hawthorn for the prevention and treatment of NAFLD and provide new perspectives on the study of functional plants to improve liver health.


Subject(s)
Crataegus , Gastrointestinal Microbiome , Lipid Metabolism , Liver , Non-alcoholic Fatty Liver Disease , Plant Extracts , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/microbiology , Plant Extracts/pharmacology , Animals , Crataegus/chemistry , Liver/metabolism , Liver/drug effects , Mice , Male , Lipid Metabolism/drug effects , Mice, Inbred C57BL , Ethanol , Disease Models, Animal , Triglycerides/blood , Triglycerides/metabolism , Cytokines/metabolism , Fatty Acids, Volatile/metabolism
4.
Meat Sci ; 214: 109535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759327

ABSTRACT

In this study, the inhibitory effects of homemade hawthorn vinegar-based marinade on the formation of Nε-(carboxymethyl) lysine (CML) and Nε-(carboxyethyl) lysine (CEL) during the cooking of beef tenderloins investigated. Additionally, the goal was to determine the bioactive compounds present in hawthorn vinegar that could contribute to these effects, both quantitatively and qualitatively. For this purpose, hawthorn vinegar was first produced from hawthorn fruit and characterized. Then, beef tenderloins were marinated at two different concentrations (25% and 50%) and three different marination times (2, 6 and 24 h) and cooked in a airfryer at 200 °C for 12 min. After the cooking process, analyses were conducted for CML, CEL, thiobarbituric acid reactive substances (TBARS), sensory and color. Hawthorn vinegar was found to have high phytochemical and bioactivity properties. It was found that hawthorn vinegar significantly altered the color properties (L*, a*, and b*) of raw beef tenderloin samples (P < 0.05). The marinating process did not adversely affect the sensory properties of the beef tenderloin, other than odour, and even improved its texture and appearance. Increasing the marination concentration and time significantly inhibited CML and CEL formation (P < 0.05), marinating the meat for 24 h reduced CML formation from 13.75 µg/g to 2.5 µg/g, while CEL formation decreased from 17.58 µg/g to 16.63 µg/g. Although CEL was inhibited at low levels during marination, it remained stable. In conclusion, this study showed that hawthorn vinegar contains bioactive compounds that significantly inhibit the formation of CML and stabilize the formation of CEL.


Subject(s)
Acetic Acid , Color , Cooking , Crataegus , Lysine , Animals , Lysine/analogs & derivatives , Cattle , Crataegus/chemistry , Humans , Red Meat/analysis , Thiobarbituric Acid Reactive Substances/analysis , Taste , Fruit/chemistry
5.
Georgian Med News ; (347): 6-10, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38609104

ABSTRACT

Studies have substantiated the anti-inflammatory and anti-thrombotic effects of (C. pinnatifida); however, research on its antibacterial activity using organic solvent remains limited. Therefore, in this study, we aimed to validate the antibacterial activity of C. pinnatifida as a natural extract against Enterococcus faecalis (E. faecalis), a multidrug-resistant bacterium. E. faecalis was treated with different concentrations of C. pinnatifida to determine the optimal concentration for the most effective antibacterial effect. Fifteen different concentrations were applied for 6 and 24 h. The experimental method centered on confirming antibacterial activity using colony-forming units. The experimental results demonstrated a proportional increase in antibacterial activity with elevated C. pinnatifida concentration. Notably, 99.99% and 100% antibacterial activity were observed at 10 mg/mL and 40 mg/mL concentrations, respectively. Our results suggest that C. pinnatifida holds potential as an antibacterial agent against the multidrug-resistant E. faecalis.


Subject(s)
Crataegus , Dental Pulp Cavity , Anti-Bacterial Agents/pharmacology , Bacteria , Research Design
6.
Phytochemistry ; 222: 114067, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583852

ABSTRACT

1,2-diarylpropanes are a kind of abundant natural products formed by radical coupling. On account of molecular flexibility, it was challenged in the identifications of relative and absolute configurations of the 1,2-diarylpropanes. In this research, fourteen pairs of enantiomeric 1,2-diarylpropanes (1a/1b-14a/14b), comprising twelve previously undescribed pairs (1a/1b-4a/4b, 6a/6b-10a/10b, and 12a/12b-14a/14b), were isolated from the fruit of Crataegus pinnatifida. Their structures were determined through multiple NMR spectral analyses, empirical NMR rules, X-ray crystallography, and the comparison of experimental ECD spectra with calculated data. In addition, the analysis of ECD spectra revealed that substituent effects could generate an inverted chiroptical response, exhibiting in mirror-image ECD signals. This phenomenon was investigated by conformational analysis, molecular orbital analysis, the transition density matrix and hole/electron distributions. Moreover, a potential experimental rule was proposed for the rapid determination of the absolute configurations of the 1,2-diarylpropanes.


Subject(s)
Crataegus , Fruit , Crataegus/chemistry , Fruit/chemistry , Molecular Structure , Stereoisomerism , Molecular Conformation , Crystallography, X-Ray , Circular Dichroism , Models, Molecular , Magnetic Resonance Spectroscopy
7.
Int J Biol Macromol ; 267(Pt 1): 131278, 2024 May.
Article in English | MEDLINE | ID: mdl-38582459

ABSTRACT

Four modified hawthorn pectin fractions (MHPs), named MHP-30, MHP-50, MHP-70 and MHP-90, were obtained by ultrasonic-assisted pectin methyl esterase modification and gradient ethanol precipitation. The results indicated that all four MHPs were composed of galacturonic acid, galactose, xylose, arabinose, glucose and mannose in different proportions. With the increase of the ethanol concentration, the molecular weight, esterification degree and galacturonic acid content of MHPs all decreased, whereas the arabinose content and branching degree increased. The structural characterization from XRD, SEM, and FT-IR showed that four MHPs exhibited amorphous structure, similar functional groups, diverse surface morphologies. Besides, in vitro antioxidant assays confirmed that MHP-70 and MHP-90 exhibited stronger total antioxidant activities than MHP-30 and MHP-50. The results of simulated saliva-gastrointestinal digestion showed that the molecular weight of MHP-70 and MHP-90 remained stable, yielded small amounts of reducing sugars, and were resistant to digestion in the human upper digestive tract. Overall, MHP-70 and MHP-90 shown great potential as novel natural antioxidants, which are expected to be good carbon sources for the utilization of intestinal microorganisms.


Subject(s)
Antioxidants , Crataegus , Ethanol , Pectins , Pectins/chemistry , Pectins/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Ethanol/chemistry , Crataegus/chemistry , Digestion , Molecular Weight , Humans , Chemical Precipitation , Spectroscopy, Fourier Transform Infrared
8.
Colloids Surf B Biointerfaces ; 237: 113867, 2024 May.
Article in English | MEDLINE | ID: mdl-38522284

ABSTRACT

In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.


Subject(s)
Crataegus , Hydrogels , Hydrogels/chemistry , Pectins/chemistry , Soybean Proteins/chemistry , Glycine max , Iron , Water , Ions
9.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38442806

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Subject(s)
Atherosclerosis , Crataegus , Phospholipases A2, Secretory , Plaque, Atherosclerotic , Mice , Animals , Crataegus/chemistry , Quercetin/therapeutic use , Phospholipases A2, Secretory/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tandem Mass Spectrometry , Atherosclerosis/metabolism , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Flavonoids/therapeutic use , Lipoproteins, LDL/metabolism , Signal Transduction , Cholesterol/metabolism , Mice, Knockout , Apolipoproteins E/genetics
10.
Vet Med Sci ; 10(3): e1414, 2024 05.
Article in English | MEDLINE | ID: mdl-38504617

ABSTRACT

BACKGROUND: One of the main problems in the poultry industry is excess body fat, and the anti-fat effect of Cratagus extract has been confirmed in several studies. OBJECTIVES: The present study was carried out to investigate the effects of hawthorn extract (Crataegus oxyacantha) on growth performance, haematological variables and hepatic gene expression in broiler chickens reared at high altitude (2100 m). METHODS: A total of 225-day-old chicks (Ross 308) were randomly distributed into three treatments. Experimental treatments were prepared by adding 0.0, 0.2 and 0.4 mL of hawthorn extract per litre of consumption of water. RESULTS: The results showed that weight gain and feed conversion ratio were significantly improved and abdominal fat decreased by consumption of two levels of Crateagus extract when compared to the control (p < 0.05). Consumption of hawthorn extract decreased circulatory levels of malondialdehyde, triacylglycerol, total cholesterol and low-density lipoproteins cholesterol but increased ferric reducing antioxidant power and high-density lipoproteins cholesterol (p < 0.05). Hawthorn extract caused an up-regulation of catalase, superoxide dismutase1, glutathione peroxidase1 and peroxisome proliferator-activated receptor alpha but reduced the expression of key lipogenic enzymes (p < 0.05). CONCLUSIONS: Overall, consumption of 0.4 mL hawthorn extract per litre of drinking water, improved growth performance, suppressed lipogenesis and enhanced antioxidant response.


Subject(s)
Antioxidants , Crataegus , Animals , Hypolipidemic Agents , Chickens , Plant Extracts/pharmacology , Cholesterol
11.
Virology ; 594: 110037, 2024 06.
Article in English | MEDLINE | ID: mdl-38498965

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.


Subject(s)
Coronavirus Infections , Crataegus , Porcine epidemic diarrhea virus , Quercetin/analogs & derivatives , Swine Diseases , Animals , Swine , Diarrhea , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Swine Diseases/drug therapy
12.
BMC Complement Med Ther ; 24(1): 126, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504297

ABSTRACT

BACKGROUND: The hawthorn has recently been used as a popular herbal medicine in food applications and phytotherapy, especially for the cardiovascular system. METHODS: In this study, phytochemicals were evaluated by LC-ESI-MS, GC-MS, and biological activity, including antioxidant (DPPH test) and antibacterial (broth dilution assay), in different extracts of Crataegus pentagyna fruit, leaf, and root. RESULTS: Globally, 49 phenolics were tentatively identified using HPLC-ESI-MS/MS in the hydro-methanolic extract of the fruit (major apigenin, caffeoylquinic acid derivative, and 4-O-(3'-O-glucopyranosyl)-caffeoyl quinic acid), 42 in the leaf (major salicylic acid, naringenin-6-C-glucoside, and naringin), and 33 in the root (major naringenin-7-O-neohesperidoside, isovitexin-2″-O-rhamnoside, and 4-O-(3'-O-glucopyranosyl)-caffeoyl quinic acid). The major group compounds analyzed by GC-MS in petroleum ether extracts were hydrocarbons (63.80%) and fatty acids and their derivatives (11.77%) in fruit, hydrocarbons (49.20%) and fatty acids and their derivatives (13.85%) in leaf, and hydrocarbons (53.96%) and terpenes (13.06%) in root. All samples exhibited promising phytochemical profile (total phenol, flavonoid, phenolic acid, and anthocyanin), antioxidant and antibacterial capacities, especially in hydro-methanolic extract of fruit (210.22 ± 0.44 mg GAE/g DE; 79.93 ± 0.54 mg QE/g DE; 194.64 ± 0.32 mg CAE/g DE; 85.37 ± 0.13 mg cyanidin 3-glucoside/100 g FW; DPPH: 15.43 ± 0.65 µg/mL; MIC: 0.15-0.62 µg/mL; and MBC: 0.62-1.25 mg/mL), followed by the leaf and root extracts, respectively. The PCA and heatmap analysis results distinguished metabolite profile differences for samples. CONCLUSION: The results of the present work provide scientific support for C. pentagyna as antimicrobial agents and natural antioxidants in human health and food preservation.


Subject(s)
Anti-Infective Agents , Crataegus , Quinic Acid/analogs & derivatives , Humans , Antioxidants/chemistry , Crataegus/chemistry , Fruit/chemistry , Tandem Mass Spectrometry , Quinic Acid/analysis , Anti-Infective Agents/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Phenols/analysis , Plant Leaves/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Plant Extracts/chemistry , Fatty Acids
13.
Mycotoxin Res ; 40(2): 235-244, 2024 May.
Article in English | MEDLINE | ID: mdl-38363483

ABSTRACT

This study aimed to establish a high-performance liquid chromatography (HPLC) method to investigate the residues of patulin in apples, hawthorns, and their products. A total of 400 samples were collected from online shopping plats and supermarkets in China, including apples (n = 50), hawthorns (n = 50), and their products (apple juice, apple puree, apple jam, hawthorn juice, hawthorn chips, and hawthorn rolls, n = 300). In this experiment, this method had good linearity and a recovery of 82.3-94.4% for patulin. The limit of detection (LOD) was 0.2 µg/kg for liquid samples, while it was 0.3 µg/kg for solid and semi-fluid samples. The frequencies of patulin were 79.8% in 400 samples, and the patulin concentration is from 0.6 to 126.0 µg/kg. Two samples (0.5%) for patulin exceeded the regulatory limit (50 µg/kg) in 400 samples. The frequencies of patulin in kinds of samples were 32.0-98.0% (p < 0.05), and the percentage of samples exceeding the limit was not more than 2.0%. The frequencies of patulin in domestic samples were 83.0%, while they were 57.7% in imported samples. Two domestic samples (0.6%) contained patulin above the regulatory limit, while none of the imported samples exceeded the limit. Among the online and offline samples, the frequencies of patulin were 76.4 and 82.1%. Two online samples (1.0%) for patulin exceeded the regulatory limit, whereas none of the offline samples exceeded the limit. These results showed it is important to monitor regularly the content of patulin in apples, hawthorns, and their products to ensure consumer food safety.


Subject(s)
Crataegus , Food Contamination , Malus , Patulin , Patulin/analysis , Malus/chemistry , Chromatography, High Pressure Liquid/methods , China , Food Contamination/analysis , Crataegus/chemistry , Limit of Detection
14.
Cardiovasc Toxicol ; 24(2): 171-183, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38376772

ABSTRACT

Hawthorn leaf has shown therapeutic effects in the patients with myocardial ischemia. Our study combines network pharmacology, molecular docking techniques, and in vitro experiment with the aim of revealing the mechanism of hawthorn leaves in the treatment of myocardial ischemia. The active ingredients and corresponding targets of hawthorn leaf through Traditional Chinese Medicine System Pharmacology and Swiss Target Prediction databases. Targets related to myocardial ischemia were retrieved by Gene Card, Online Mendelian Inheritance in Man, Disgenet, and Therapeutic Targets Database databases. Cytoscape software was used to construct an ingredient-target-organ network and enrichment analysis of common targets was analyzed. Molecular docking verification of the core compound and target interactions was performed using MOE software. In vitro cell experiment was performed to verify the findings from bioinformatics analysis. Six active components and 107 potential therapeutic targets were screened. The protein-protein interaction network analysis indicated that 10 targets, including AKT1 and EGFR, were hub genes. Quercetin, kaempferol and isorhamnetin were taken as core active components. Through pathway enrichment analysis, nearly 455 Gene Ontology entries and 77 Kyoto Encyclopedia of Genes and Genomes pathways were obtained, mainly including PI3K/Akt, estrogen and other signaling pathways. Molecular docking prediction showed that three main active ingredients were firmly combined with the core targets. Cellular experiments showed that quercetin alleviated oxidative damage in cells and regulated the expression of PI3K, P-AKT/AKT and Bax/Bcl-2 proteins. This study identified the potential targets of Hawthorn leaf against myocardial ischemia using network pharmacology and in vitro verification, which provided a new understanding of the pharmacological mechanisms of Hawthorn leaf in treatment of myocardial ischemia.


Subject(s)
Coronary Artery Disease , Crataegus , Drugs, Chinese Herbal , Myocardial Ischemia , Humans , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin/pharmacology , Myocardial Ischemia/drug therapy , Myocardial Ischemia/genetics , Databases, Genetic , Drugs, Chinese Herbal/pharmacology
15.
J Food Prot ; 87(4): 100244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378071

ABSTRACT

Strawberries rapidly deteriorate postharvest, necessitating effective measures to extend their shelf life. This study focused on developing an eco-friendly chitosan-based protective film for strawberry preservation. Strawberries were treated with a coating solution containing varying concentrations of hawthorn leaf extract (HLE) (0.4%, 0.7%, and 1.0%), 1.5% chitosan (CH), and 1% acetic acid. The results demonstrated that coating strawberry fruit with 1% CH-HLE notably delayed fruit spoilage. In-depth analysis revealed that, compared with the uncoated strawberry fruits, the 1% CH-HLE coating effectively reduced weight loss, the respiration intensity, malondialdehyde (MDA) levels, and superoxide anion (O2·-) production. Additionally, the coated strawberries exhibited improved firmness, total soluble solids (TSS), vitamin C (Vc) content, titratable acidity (TA), and total phenolic compound (TPC) content. The enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in the CH-HLE-coated strawberries were greater than those in their uncoated counterparts. The application of a 1% CH-HLE coating successfully delayed spoilage and extend the shelf life of the strawberries by approximately 4-5 days. These findings suggest that CH-HLE has significant potential as a resource for protecting fruits and vegetables, offering an environmentally sustainable solution for postharvest preservation.


Subject(s)
Chitosan , Crataegus , Fragaria , Food Preservation/methods , Chitosan/pharmacology , Fruit , Plant Extracts/pharmacology
16.
Food Chem ; 446: 138774, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38401297

ABSTRACT

In order to explore the effects of ultrasonic pretreatment on the fermentation performance and quality characteristics of fermented hawthorn pulp. Five types of fermented hawthorn pulp were obtained using 0 W for 5 min, 300 W for 5 min, 360 W for 5 min, 420 W for 5 min, 540 W for 5 min. The fermentation performance and quality of fermented hawthorn pulp were characterized. The results indicated Low power ultrasound (360 W) could improve the fermentation performance and quality of FHP, and high power ultrasound (540 W) could reduce the fermentation performance and quality. Under the ultrasonic condition of 360 W for 5 min; the cell membrane of lactic acid bacteria produced repairable damage and the morphology did not change significantly, the consumption of reducing sugar, total acid, soluble solids, amino nitrogen, conductivity, and sensory quality of the fermented hawthorn pulp reached the highest. The fermentation performance and quality of fermented hawthorn pulp were improved by the optimum ultrasonic treatment, which could be used as an effective and alternative method for producing FHP with good flavor, high bioactivity and good quality.


Subject(s)
Crataegus , Lactobacillales , Fermentation , Ultrasonics , Lactobacillus/metabolism
17.
Zhongguo Zhong Yao Za Zhi ; 49(1): 100-109, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403343

ABSTRACT

Hawthorn has the efficacy of eliminating turbidity and lowering the blood lipid level, and it is used for treating hyperlipidemia in clinic. However, the bioactive components of hawthorn are still unclear. In this study, the spectrum-effect relationship was employed to screen the bioactive components of hawthorn in the treatment of hyperlipidemia, and then the bioactive components screened out were verified in vivo. Furthermore, the quality control method for hawthorn was developed based on liquid chromatography-mass spectrometry(LC-MS). The hyperlipidemia model of rats was built, and different polar fractions of hawthorn extracts and their combinations were administrated by gavage. The effects of different hawthorn extract fractions on the total cholesterol(TC), triglycerides(TG), and low-density lipoprotein-cholesterol(LDL-C) in the serum of model rats were studied. The orthogonal projections to latent structures(OPLS) algorithm was used to establish the spectrum-effect relationship model between the 24 chemical components of hawthorn and the pharmacodynamic indexes, and the bioactive components were screened out and verified in vivo. Finally, 10 chemical components of hawthorn, including citric acid and quinic acid, were selected to establish the method for evaluating hawthorn quality based on LC-MS. The results showed that different polar fractions of hawthorn extracts and their combinations regulated the TG, TC, and LDL-C levels in the serum of the model rats. The bioactive components of hawthorn screened by the OPLS model were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, and quinic acid. The 10 chemical components of hawthorn, i.e., citric acid, quinic acid, rutin, gallic acid, vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, malic acid, vanillic acid, neochlorogenic acid, and fumaric acid were determined, with the average content of 38, 11, 0.018, 0.009 5, 0.037, 0.017, 8.1, 0.009 5, 0.073, and 0.98 mg·g~(-1), respectively. This study provided a scientific basis for elucidating the material basis of hawthorn in treating hyperlipidemia and developed a content determination method for evaluating the quality of hawthorn.


Subject(s)
Crataegus , Hyperlipidemias , Rats , Animals , Crataegus/chemistry , Cholesterol, LDL , Quinic Acid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rutin/chemistry , Lipids , Hyperlipidemias/drug therapy , Quality Control , Glucosides , Citric Acid
18.
Nutrients ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398818

ABSTRACT

A Crataegus Extract Mixture (CEM) is a combination of extracts from Crataegus pinnatifida leaves and Citrus unshiu peels, well-known herbs used for treating obesity and dyslipidemia. We aimed to investigate the efficacy and safety of a CEM on the body fat and lipid profiles in overweight adults. A 12-week, randomized, double-blind, placebo-controlled, parallel-group trial was conducted on 105 subjects aged 20-60 years with body mass indexes between 25 and 30 kg/m2. Eligible subjects were randomly assigned in a 1:1:1 ratio to receive either a high dose of the CEM (400 mg tid), a low dose of the CEM (280 mg tid), or a placebo. Body fat was evaluated using dual-energy X-ray absorptiometry (DXA), bioelectrical impedance analysis (BIA), and anthropometric measurements. The blood lipid and adipokine profiles were measured before and after the administration. After 12 weeks, the reductions in the fat percentages measured by DXA and BIA were significantly greater in the CEM groups than in the placebo group. The CEM also significantly decreased the body weights, body mass indexes, and blood leptin levels. An additional per-protocol analysis revealed that the high dose of the CEM also lowered the blood levels of triglycerides and very low-density lipoprotein cholesterol. No adverse events occurred after the CEM treatment. Our results suggest that CEMs are safe and effective for reducing the body fat and body weight and regulating the blood lipid and leptin levels in overweight or mildly obese individuals.


Subject(s)
Crataegus , Overweight , Plant Extracts , Adult , Humans , Overweight/drug therapy , Leptin/pharmacology , Body Weight , Obesity/drug therapy , Adipose Tissue , Body Mass Index , Lipids , Double-Blind Method
19.
Plant Foods Hum Nutr ; 79(1): 209-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340238

ABSTRACT

The active ingredient group is a prominent feature reflecting the inherent characteristics of plant-based functional foods. Chinese hawthorn leaf (CHL), a tea substitute possessing intrinsic nutritional properties in anti-hyperlipidemia, was first found to be adulterated with Malus doumeri leaf (MDL) owing to similar commercial labels. In this context, the above-mentioned two contrasting species were explored through phytochemical profiling and activity assessment. The amelioration effect of CHL on free fatty acids-elicited lipid deposition in HepG2 cells was significantly better than that of MDL. Molecular networking-based metabolic profiles identified 68 and 67 components in CHL and MDL, with 33 shared components. Extreme gradient boosting (XGBoost) algorithm with outstanding performance was selected to screen candidate components contributing to hypolipidemic activity, and the output was later interpreted by Shapley additive explanations (SHAP) method. Twelve and eight components were separately screened as hyperlipidemic inhibitors in CHL and MDL, while only four constituents were shared. The bioactivity evaluation of selected ingredients and combinations further confirmed their anti-hyperlipidemia capacity. These findings emphasized the feasibility of filtering bioactivity-related compounds using interpretable machine learning approaches and illustrated that related species may contain different hypolipidemic contributors, even if shared constituents existed.


Subject(s)
Crataegus , Malus , Functional Food , Plant Leaves , China
20.
J Sci Food Agric ; 104(6): 3767-3775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284463

ABSTRACT

BACKGROUND: Crataegus orientalis Pall. ex M. Bieb fruit (COPMB) is extensively used as a source of various products in the medicinal-aromatic field and holds the potential for erosion control, ornamental purposes, food source, and economic benefits for forest villagers from its fruits. This study aims to determine the chemical components and biological activities of extracts prepared from COPMB using different solvents. RESULTS: The present work was designed to define the antioxidant activity [phosphomolybdenum (total antioxidant capacity), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric ion-reducing antioxidant capacity (CUPRAC) and metal chelating activity (MCA)], phytochemical screening analysis, enzyme inhibitor (α-amylase, α-glucosidase and tyrosinase) potential, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) secondary metabolite profiling in different extracts of COPMB. The results of LC-HRMS revealed that fumaric acid was the main phenolic compound in all extracts. Among the extracts, ethyl acetate extract has the highest phytochemical and antioxidant properties [total phenolic content (TPC): 32.5 mg GAE/g, total flavonoid content (TFC): 12.2 mg QE/g, ABTS: 213.0 mg TE/g; CUPRAC: 126.0 mg TE/g, MCA: 145.0 mg EDTA/g; FRAP: 122.8 mg TE/g; TAC: 2.8 mmol TE/g]. Ethyl acetate and methanol extracts are more effective in α-amylase (0.27 ± 0.01 mg/mL; 0.12 ± 0.00 mg/mL), α-glucosidase (0.63 ± 0.02 mg/mL; 0.77 ± 0.02 mg/mL) and tyrosinase (0.03 ± 0.00 mg/mL; 0.03 ± 0.00 mg/mL) enzyme inhibition potentials compared to standard acarbose (0.75 ± 0.02 mg/mL for α-amylase; 1.11 ± 0.03 mg/mL for α-glucosidase) and kojic acid (0.04 ± 0.00 mg/mL). CONCLUSION: The findings from this study suggest that COPMB could serve as a valuable source of natural agents for the food and pharmaceutical industry. © 2024 Society of Chemical Industry.


Subject(s)
Acetates , Benzothiazoles , Crataegus , Fruit , Sulfonic Acids , Solvents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Monophenol Monooxygenase , alpha-Glucosidases/chemistry , Spectroscopy, Fourier Transform Infrared , alpha-Amylases , Phytochemicals/pharmacology , Phytochemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...