Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 427(1): 60-6, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22982673

ABSTRACT

BACKGROUND: Ubiquitous mitochondrial creatine kinase (uMtCK), a mitochondrial isoenzyme of creatine kinase (CK), is a central controller of cellular energy homeostasis. Overexpression of uMtCK has been reported to be associated with a poor prognosis for several tumors. The aim of this study was to assess its association with breast cancer (BCa) and to further investigate its underlying mechanisms. METHOD: We first detected uMtCK expression by immunohistochemistry in human BCa tissues and assessed the association with the prognosis of patients. We then evaluated uMtCK expression in crowded and normal condition cultures of several human BCa cell lines. After two stable clones of the MDA-MB-231 cell line with high expression of uMtCK were established, cell growth, apoptosis and mitochondrial apoptotic pathway protein expression were measured in these clones. Finally, tumorigenicity of the above cells was assessed using nude mice to explore the relationship between uMtCK expression and tumor progression. RESULTS: uMtCK expression was detected in 85.5% (47 of 55) of the invasive ductal carcinomas of breast tissue, not otherwise specified (IDC-NOS). Expression in BCa tissue was significantly associated with reduced progression-free survival (PFS; P=0.019) and overall survival (OS; P=0.022) of the patients. Up-regulation of uMtCK expression was identified in crowded BCa cells in culture, and the number of apoptotic cells was significantly decreased in uMtCK transfected MDA-MB-231 cell clones (P<0.01). Stabilization of the mitochondrial membrane potential (ΔΨm) and down regulation of cytochrome c (cyt c) and activated caspase 9, two components of mitochondrial apoptotic pathway proteins, were also identified in the same clones when cells were crowded in culture. In vivo studies revealed that the transfected tumor cells with uMtCK overexpression induced faster tumor growth in nude mice, along with accelerated animal body weight loss and a significantly lower tumor apoptotic index (AI) (P<0.001). CONCLUSION: The results indicated that uMtCK expression is associated with a poor prognosis in BCa and might serve as a tumor marker. In vivo and In vitro evidence suggests that uMtCK overexpression promotes tumor growth by inhibiting apoptosis of tumor cells through stabilizing ΔΨm and down regulating mitochondrial apoptotic pathway proteins. Exploration of therapeutic agents targeting the expression of uMtCK may have practical value for BCa patients.


Subject(s)
Apoptosis , Biomarkers, Tumor/biosynthesis , Breast Neoplasms/enzymology , Breast Neoplasms/mortality , Creatine Kinase, Mitochondrial Form/biosynthesis , Adult , Aged , Animals , Breast Neoplasms/pathology , Female , Humans , Mice , Middle Aged , Neoplasm Transplantation , Prognosis , Survival Analysis
2.
Mol Cell Biochem ; 306(1-2): 153-62, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17660950

ABSTRACT

The creatine kinase (CK) system is essential for cellular energetics in tissues or cells with high and fluctuating energy requirements. Creatine itself is known to protect cells from stress-induced injury. By using an siRNA approach to silence the CK isoenzymes in human keratinocyte HaCaT cells, expressing low levels of cytoplasmic CK and high levels of mitochondrial CK, as well as HeLa cancer cells, expressing high levels of cytoplasmic CK and low levels of mitochondrial CK, we successfully lowered the respective CK expression levels and studied the effects of either abolishing cytosolic brain-type BB-CK or ubiquitous mitochondrial uMi-CK in these cells. In both cell lines, targeting the dominant CK isoform by the respective siRNAs had the strongest effect on overall CK activity. However, irrespective of the expression level in both cell lines, inhibition of the mitochondrial CK isoform generally caused the strongest decline in cell viability and cell proliferation. These findings are congruent with electron microscopic data showing substantial alteration of mitochondrial morphology as well as mitochondrial membrane topology after targeting uMi-CK in both cell lines. Only for the rate of apoptosis, it was the least expressed CK present in each of the cell lines whose inhibition led to the highest proportion of apoptotic cells, i.e., downregulation of uMi-CK in case of HeLaS3 and BB-CK in case of HaCaT cells. We conclude from these data that a major phenotype is linked to reduction of mitochondrial CK alone or in combination with cytosolic CK, and that this effect is independent of the relative expression levels of Mi-CK in the cell type considered. The mitochondrial CK isoform appears to play the most crucial role in maintaining cell viability by stabilizing contact sites between inner and outer mitochondrial membranes and maintaining local metabolite channeling, thus avoiding transition pore opening which eventually results in activation of caspase cell-death pathways.


Subject(s)
Cell Survival/physiology , Creatine Kinase, BB Form/antagonists & inhibitors , Creatine Kinase, Mitochondrial Form/antagonists & inhibitors , Keratinocytes/metabolism , Mitochondria/enzymology , RNA, Small Interfering/pharmacology , Creatine Kinase, BB Form/biosynthesis , Creatine Kinase, BB Form/genetics , Creatine Kinase, Mitochondrial Form/biosynthesis , Creatine Kinase, Mitochondrial Form/genetics , Cytosol/enzymology , Gene Expression Regulation/drug effects , HeLa Cells/drug effects , HeLa Cells/enzymology , Humans , Isoenzymes , Mitochondria/drug effects , Phosphocreatine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Br J Cancer ; 94(5): 698-709, 2006 Mar 13.
Article in English | MEDLINE | ID: mdl-16479256

ABSTRACT

In this study, we performed two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of fly mass spectrometry to identify the protein(s) associated with the development of oral squamous cell carcinomas (OSCCs) by comparing patterns of OSCC-derived cell lines with normal oral keratinocytes (NOKs), and found that downregulation of ubiquitous mitochondrial creatine kinase (CKMT1) could be a good candidate. Decreased levels of CKMT1 mRNA and protein were detected in all OSCC-derived cell lines examined (n=9) when compared to those in primary normal oral keratinocytes. Although no sequence variation in the coding region of the CKMT1 gene with the exception of a nonsense mutation in exon 8 was identified in these cell lines, we found a frequent hypermethylation in the CpG island region. CKMT1 expression was restored by experimental demethylation. In addition, when we transfected CKMT1 into the cell lines, they showed an apoptotic phenotype but no invasiveness. In clinical samples, high frequencies of CKMT1 downregulation were detected by immunohistochemistry (19 of 52 (37%)) and quantitative real-time RT-PCR (21 of 50 (42%)). Furthermore, the CKMT1 expression status was significantly correlated with tumour differentiation (P<0.0001). These results suggest that the CKMT1 gene is frequently inactivated during oral carcinogenesis and that an epigenetic mechanism may regulate loss of expression, which may lead to block apoptosis.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/genetics , Creatine Kinase, Mitochondrial Form/biosynthesis , Gene Expression Regulation, Neoplastic , Mouth Neoplasms/enzymology , Mouth Neoplasms/genetics , Apoptosis , Cell Line, Tumor , CpG Islands , Creatine Kinase, Mitochondrial Form/genetics , DNA Methylation , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Exons , Gene Expression Profiling , Humans , Immunohistochemistry , Keratinocytes/enzymology , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...