Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.249
Filter
1.
Cell Rep ; 43(5): 114235, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748880

ABSTRACT

Nanoparticle vaccines displaying mosaic receptor-binding domains (RBDs) or spike (S) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or other sarbecoviruses are used in preparedness against potential zoonotic outbreaks. Here, we describe a self-assembling nanoparticle using lumazine synthase (LuS) as the scaffold to display RBDs from different sarbecoviruses. Mosaic nanoparticles induce sarbecovirus cross-neutralizing antibodies comparable to a nanoparticle cocktail. We find mosaic nanoparticles elicit a B cell receptor repertoire using an immunodominant germline gene pair of IGHV14-3:IGKV14-111. Most of the tested IGHV14-3:IGKV14-111 monoclonal antibodies (mAbs) are broadly cross-reactive to clade 1a, 1b, and 3 sarbecoviruses. Using mAb competition and cryo-electron microscopy, we determine that a representative IGHV14-3:IGKV14-111 mAb, M2-7, binds to a conserved epitope on the RBD, largely overlapping with the pan-sarbecovirus mAb S2H97. This suggests mosaic nanoparticles expand B cell recognition of the common epitopes shared by different clades of sarbecoviruses. These results provide immunological insights into the cross-reactive responses elicited by mosaic nanoparticles against sarbecoviruses.


Subject(s)
Nanoparticles , Nanoparticles/chemistry , Animals , Humans , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Mice , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Cross Reactions/immunology , Antibody Formation/immunology , COVID-19/immunology , COVID-19/virology , Protein Domains , Mice, Inbred BALB C , Multienzyme Complexes/immunology , Female , Immunodominant Epitopes/immunology
2.
Front Immunol ; 15: 1392477, 2024.
Article in English | MEDLINE | ID: mdl-38774878

ABSTRACT

Introduction: Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods: Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNÉ£ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results: Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion: Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.


Subject(s)
COVID-19 , Cross Reactions , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Humans , Cross Reactions/immunology , SARS-CoV-2/immunology , Middle Aged , Adult , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Aged , Male , T-Lymphocytes/immunology , Female , Spike Glycoprotein, Coronavirus/immunology , Age Factors , Young Adult , COVID-19 Vaccines/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Immunization, Secondary , Cytomegalovirus/immunology , BNT162 Vaccine/immunology , Vaccination , 2019-nCoV Vaccine mRNA-1273/immunology , ChAdOx1 nCoV-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Aged, 80 and over
3.
Front Cell Infect Microbiol ; 14: 1367975, 2024.
Article in English | MEDLINE | ID: mdl-38736750

ABSTRACT

The endemic outbreak of SADS-CoV has resulted in economic losses and potentially threatened the safety of China's pig industry. The molecular epidemiology of SADS-CoV in pig herds has been investigated in many provinces in China. However, there are no data over a long-time span, and there is a lack of extensive serological surveys to assess the prevalence of SADS-CoV in Chinese swine herds since the discovery of SADS-CoV. In this study, an indirect anti-SADS-CoV IgG enzyme-linked immunosorbent assay (ELISA) based on the SADS-CoV S1 protein was established to investigate the seroprevalence of SADS-CoV in Chinese swine herds. Cross-reactivity assays, indirect immunofluorescence, and western blotting assays showed that the developed ELISA had excellent SADS-CoV specificity. In total, 12,978 pig serum samples from 29 provinces/municipalities/autonomous regions in China were tested from 2022 to 2023. The results showed that the general seroprevalence of SADS-CoV in China was 59.97%, with seroprevalence ranging from 16.7% to 77.12% in different provinces and from 42.61% to 68.45% in different months. SADS-CoV is widely prevalent in China, and its seroprevalence was higher in Northeast China, North China, and Central China than in other regions. Among the four seasons, the prevalence of SADS-CoV was the highest in spring and the lowest in autumn. The results of this study provide the general seroprevalence profile of SADS-CoV in China, facilitating the understanding of the prevalence of SADS-CoV in pigs. More importantly, this study is beneficial in formulating preventive and control measures for SADS-CoV and may provide directions for vaccine development.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Swine Diseases , Animals , China/epidemiology , Seroepidemiologic Studies , Swine , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/blood , Swine Diseases/epidemiology , Swine Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology , Coronavirus Infections/diagnosis , Immunoglobulin G/blood , Alphacoronavirus/immunology , Alphacoronavirus/genetics , Cross Reactions , Sensitivity and Specificity
4.
Influenza Other Respir Viruses ; 18(5): e13309, 2024 May.
Article in English | MEDLINE | ID: mdl-38725111

ABSTRACT

BACKGROUND: The newly emerged SARS-CoV-2 possesses shared antigenic epitopes with other human coronaviruses. We investigated if COVID-19 vaccination or SARS-CoV-2 infection may boost cross-reactive antibodies to other human coronaviruses. METHODS: Prevaccination and postvaccination sera from SARS-CoV-2 naïve healthy subjects who received three doses of the mRNA vaccine (BioNTech, BNT) or the inactivated vaccine (CoronaVac, CV) were used to monitor the level of cross-reactive antibodies raised against other human coronaviruses by enzyme-linked immunosorbent assay. In comparison, convalescent sera from COVID-19 patients with or without prior vaccination history were also tested. Pseudoparticle neutralization assay was performed to detect neutralization antibody against MERS-CoV. RESULTS: Among SARS-CoV-2 infection-naïve subjects, BNT or CV significantly increased the anti-S2 antibodies against Betacoronaviruses (OC43 and MERS-CoV) but not Alphacoronaviruses (229E). The prevaccination antibody response to the common cold human coronaviruses did not negatively impact the postvaccination antibody response to SARS-CoV-2. Cross-reactive antibodies that binds to the S2 protein of MERS-CoV were similarly detected from the convalescent sera of COVID-19 patients with or without vaccination history. However, these anti-S2 antibodies do not possess neutralizing activity in MERS-CoV pseudoparticle neutralization tests. CONCLUSIONS: Our results suggest that SARS-CoV-2 infection or vaccination may potentially modulate population immune landscape against previously exposed or novel human coronaviruses. The findings have implications for future sero-epidemiological studies on MERS-CoV.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , SARS-CoV-2 , Humans , Cross Reactions/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Adult , Male , Female , Vaccination , Middle Aged , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Neutralization Tests , Middle East Respiratory Syndrome Coronavirus/immunology , Young Adult , mRNA Vaccines/immunology
5.
Front Immunol ; 15: 1381508, 2024.
Article in English | MEDLINE | ID: mdl-38690272

ABSTRACT

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Subject(s)
Antibodies, Viral , Cross Reactions , Immunity, Humoral , Influenza Vaccines , mRNA Vaccines , Influenza Vaccines/immunology , Animals , mRNA Vaccines/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Humans , Cross Reactions/immunology , Mice , Influenza, Human/prevention & control , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Female , Seasons , Immunogenicity, Vaccine , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Mice, Inbred BALB C , Influenza A Virus, H1N1 Subtype/immunology , COVID-19/prevention & control , COVID-19/immunology , Vaccination
6.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793670

ABSTRACT

The West Nile Virus (WNV), a member of the family Flaviviridae, is an emerging mosquito-borne flavivirus causing potentially severe infections in humans and animals involving the central nervous system (CNS). Due to its emerging tendency, WNV now occurs in many areas where other flaviviruses are co-occurring. Cross-reactive antibodies with flavivirus infections or vaccination (e.g., tick-borne encephalitis virus (TBEV), Usutu virus (USUV), yellow fever virus (YFV), dengue virus (DENV), Japanese encephalitis virus (JEV)) therefore remain a major challenge in diagnosing flavivirus infections. Virus neutralization tests are considered as reference tests for the detection of specific flavivirus antibodies, but are elaborate, time-consuming and need biosafety level 3 facilities. A simple and straightforward assay for the differentiation and detection of specific WNV IgG antibodies for the routine laboratory is urgently needed. In this study, we compared two commercially available enzyme-linked immunosorbent assays (anti-IgG WNV ELISA and anti-NS1-IgG WNV), a commercially available indirect immunofluorescence assay, and a newly developed in-house ELISA for the detection of WNV-NS1-IgG antibodies. All four tests were compared to an in-house NT to determine both the sensitivity and specificity of the four test systems. None of the assays could match the specificity of the NT, although the two NS1-IgG based ELISAs were very close to the specificity of the NT at 97.3% and 94.6%. The in-house WNV-NS1-IgG ELISA had the best performance regarding sensitivity and specificity. The specificities of the ELISA assays and the indirect immunofluorescence assays could not meet the necessary specificity and/or sensitivity.


Subject(s)
Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , West Nile Fever , West Nile virus , West Nile virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , West Nile Fever/diagnosis , West Nile Fever/immunology , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Immunoglobulin G/blood , Immunoglobulin G/immunology , Fluorescent Antibody Technique, Indirect/methods , Cross Reactions/immunology , Animals
7.
Front Immunol ; 15: 1343024, 2024.
Article in English | MEDLINE | ID: mdl-38784378

ABSTRACT

Background: Around 20% of the population in Northern and Central Europe is affected by birch pollen allergy, with the major birch pollen allergen Bet v 1 as the main elicitor of allergic reactions. Together with its cross-reactive allergens from related trees and foods, Bet v 1 causes an impaired quality of life. Hence, new treatment strategies were elaborated, demonstrating the effectiveness of blocking IgG antibodies on Bet v 1-induced IgE-mediated reactions. A recent study provided evidence for the first time that Bet v 1-specific nanobodies reduce patients´ IgE binding to Bet v 1. In order to increase the potential to outcompete IgE recognition of Bet v 1 and to foster cross-reactivity and cross-protection, we developed Bet v 1-specific nanobody trimers and evaluated their capacity to suppress polyclonal IgE binding to corresponding allergens and allergen-induced basophil degranulation. Methods: Nanobody trimers were engineered by adding isoleucine zippers, thus enabling trimeric formation. Trimers were analyzed for their cross-reactivity, binding kinetics to Bet v 1, and related allergens, and patients' IgE inhibition potential. Finally, their efficacy to prevent basophil degranulation was investigated. Results: Trimers showed enhanced recognition of cross-reactive allergens and increased efficiency to reduce IgE-allergen binding compared to nanobody monomers. Furthermore, trimers displayed slow dissociation rates from allergens and suppressed allergen-induced mediator release. Conclusion: We generated high-affine nanobody trimers that target Bet v 1 and related allergens. Trimers blocked IgE-allergen interaction by competing with IgE for allergen binding. They inhibited IgE-mediated release of biological mediators, demonstrating a promising potential to prevent allergic reactions caused by Bet v 1 and relatives.


Subject(s)
Allergens , Antigens, Plant , Cross Reactions , Immunoglobulin E , Single-Domain Antibodies , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Humans , Antigens, Plant/immunology , Single-Domain Antibodies/immunology , Cross Reactions/immunology , Allergens/immunology , Basophils/immunology , Basophils/metabolism , Protein Binding , Rhinitis, Allergic, Seasonal/immunology , Protein Multimerization
8.
Nat Commun ; 15(1): 4330, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773072

ABSTRACT

The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Henipavirus Infections , Viral Fusion Proteins , Animals , Antibodies, Neutralizing/immunology , Female , Antibodies, Viral/immunology , Henipavirus Infections/virology , Henipavirus Infections/immunology , Viral Fusion Proteins/immunology , Viral Fusion Proteins/chemistry , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/chemistry , Nipah Virus/immunology , Virus Internalization/drug effects , Henipavirus/immunology , Cricetinae , Cross Reactions/immunology , Hendra Virus/immunology , Macaca , Mesocricetus , Crystallography, X-Ray
9.
Sci Rep ; 14(1): 11145, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750087

ABSTRACT

The global distribution of tropical fire ants (Solenopsis geminata) raises concerns about anaphylaxis and serious medical issues in numerous countries. This investigation focused on the cross-reactivity of allergen-specific IgE antibodies between S. geminata and Myrmecia pilosula (Jack Jumper ant) venom proteins due to the potential emergence of cross-reactive allergies in the future. Antibody epitope analysis unveiled one predominant conformational epitope on Sol g 1.1 (PI score of 0.989), followed by Sol g 2.2, Sol g 4.1, and Sol g 3.1. Additionally, Pilosulin 1 showed high allergenic potential (PI score of 0.94), with Pilosulin 5a (PI score of 0.797) leading in B-cell epitopes. The sequence analysis indicated that Sol g 2.2 and Sol g 4.1 pose a high risk of cross-reactivity with Pilosulins 4.1a and 5a. Furthermore, the cross-reactivity of recombinant Sol g proteins with M. pilosula-specific IgE antibodies from 41 patients revealed high cross-reactivity for r-Sol g 3.1 (58.53%) and r-Sol g 4.1 (43.90%), followed by r-Sol g 2.2 (26.82%), and r-Sol g 1.1 (9.75%). Therefore, this study demonstrates cross-reactivity (85.36%) between S. geminata and M. pilosula, highlighting the allergenic risk. Understanding these reactions is vital for the prevention of severe allergic reactions, especially in individuals with pre-existing Jumper Jack ant allergy, informing future management strategies.


Subject(s)
Allergens , Ant Venoms , Ants , Cross Reactions , Epitopes , Immunoglobulin E , Immunoglobulin E/immunology , Cross Reactions/immunology , Animals , Humans , Ant Venoms/immunology , Ants/immunology , Allergens/immunology , Epitopes/immunology , Recombinant Proteins/immunology , Insect Proteins/immunology , Female , Adult , Male , Amino Acid Sequence , Middle Aged , Adolescent , Young Adult
10.
Front Immunol ; 15: 1382911, 2024.
Article in English | MEDLINE | ID: mdl-38807606

ABSTRACT

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Cross Reactions , Immunity, Humoral , Immunoglobulin G , Memory B Cells , Plasma Cells , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Memory B Cells/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Male , Adult , Cross Reactions/immunology , Female , Plasma Cells/immunology , Middle Aged , Immunoglobulin G/immunology , Immunoglobulin G/blood , Vaccination , Influenza Vaccines/immunology , Immunologic Memory/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Epitopes, B-Lymphocyte/immunology , B-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Kinetics
11.
Emerg Microbes Infect ; 13(1): 2356153, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38767199

ABSTRACT

Men who have sex with men and people living with HIV are disproportionately affected in the 2022 multi-country monkeypox epidemic. The smallpox vaccine can induce cross-reactive antibodies against the monkeypox virus (MPXV) and reduce the risk of infection. Data on antibodies against MPXV induced by historic smallpox vaccination in people with HIV are scarce. In this observational study, plasma samples were collected from people living with and without HIV in Shenzhen, China. We measured antibodies binding to two representative proteins of vaccinia virus (VACV; A27L and A33R) and homologous proteins of MPXV (A29L and A35R) using an enzyme-linked immunosorbent assay. We compared the levels of these antibodies between people living with and without HIV. Stratified analyses were performed based on the year of birth of 1981 when the smallpox vaccination was stopped in China. Plasma samples from 677 people living with HIV and 746 people without HIV were tested. A consistent pattern was identified among the four antibodies, regardless of HIV status. VACV antigen-reactive and MPXV antigen-reactive antibodies induced by historic smallpox vaccination were detectable in the people born before 1981, and antibody levels reached a nadir during or after 1981. The levels of smallpox vaccine-induced antibodies were comparable between people living with HIV and those without HIV. Our findings suggest that the antibody levels against MPXV decreased in both people living with and without HIV due to the cessation of smallpox vaccination.


Subject(s)
Antibodies, Viral , HIV Infections , Monkeypox virus , Smallpox Vaccine , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , Smallpox Vaccine/immunology , Smallpox Vaccine/administration & dosage , HIV Infections/immunology , HIV Infections/epidemiology , HIV Infections/virology , Adult , Female , China/epidemiology , Middle Aged , Monkeypox virus/immunology , Smallpox/immunology , Smallpox/prevention & control , Smallpox/epidemiology , Smallpox/history , Vaccination , Mpox (monkeypox)/immunology , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/history , Cross Reactions/immunology , Young Adult , Enzyme-Linked Immunosorbent Assay , Vaccinia virus/immunology
12.
Arch Virol ; 169(6): 131, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819530

ABSTRACT

Noroviruses (NoVs) are the chief cause of acute viral gastroenteritis worldwide. By employing the major capsid protein VP1 of a GII.6 NoV strain as an immunogen, we generated two monoclonal antibodies (mAbs) with wide-spectrum binding activities against NoV genogroup II (GII) VP1 proteins. One mAb (10G7) could bind to native and denatured GII-specific VP1 proteins. The other mAb (10F2) could bind to all tested native GII VP1 proteins, but not to denatured GII.3, GII.4, GII.7, or GII.17 VP1 proteins. Using GII.6/GII.4 fusion proteins, the mAb 10F2 binding region was confirmed to be located in the C-terminal P1 domain. An enzyme-linked immunosorbent assay based on peptides covering the P domain did not detect any binding. Using a panel of VP1 proteins with swapped regions, deletions, and mutations, the mAb 10F2 binding region was determined to be located between residues 496 and 513. However, the residue(s) responsible for its varied binding affinity for different denatured GII VP1 proteins remain to be identified. In summary, two NoV GII-specific cross-reactive mAbs were generated, and their binding regions were determined. Our results might facilitate the detection and immunogenic study of NoVs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Capsid Proteins , Epitopes , Norovirus , Norovirus/genetics , Norovirus/immunology , Antibodies, Monoclonal/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Epitopes/immunology , Epitopes/genetics , Antibodies, Viral/immunology , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice , Humans , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Mice, Inbred BALB C , Epitope Mapping , Cross Reactions
13.
Food Res Int ; 186: 114348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729721

ABSTRACT

During production of soy-based infant formula, soy protein undergoes heating processes. This study investigated the differential impact of heating modes on the immunogenic potential of peptides in soy protein digests. Wet or dry heating was applied, followed by in vitro gastrointestinal infant digestion. The released peptides were analyzed by LC-MS/MS. Bioinformatics tools were utilized to predict and identify potential linear B-cell and T-cell epitopes, as well as to explore cross-reactivity with other legumes. Subsequently, the peptide intensities of the same potential epitope across different experimental conditions were compared. As a result, we confirmed the previously observed enhancing effect of wet heating on infant digestion and inhibitory effect of dry heating. A total of 8,546 peptides were detected in the digests, and 6,684 peptides were with a score over 80. Among them, 29 potential T-cell epitopes and 27 potential B-cell epitopes were predicted. Cross-reactivity between soy and other legumes, including peanut, pea, chickpea, lentil, kidney bean, and lupine, was also detected. Overall, heating and digestion time could modulate the potential to trigger peptide-induced immune responses.


Subject(s)
Digestion , Hot Temperature , Peptides , Soybean Proteins , Tandem Mass Spectrometry , Humans , Soybean Proteins/immunology , Soybean Proteins/chemistry , Peptides/immunology , Peptides/chemistry , Infant , Infant Formula/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Cross Reactions , Heating , Chromatography, Liquid
14.
BMC Immunol ; 25(1): 29, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730320

ABSTRACT

BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.


Subject(s)
Cross Reactions , Immunotherapy , Programmed Cell Death 1 Receptor , Animals , Humans , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Cross Reactions/immunology , Immunotherapy/methods , Hydrogen-Ion Concentration , Neoplasms/immunology , Neoplasms/therapy , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Epitopes/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Mice, Inbred C57BL , Female
15.
PLoS One ; 19(5): e0302722, 2024.
Article in English | MEDLINE | ID: mdl-38722827

ABSTRACT

BACKGROUND: Pakistan is endemic to a diverse set of parasitic, mycobacterial and viral diseases. The recognition of BCG Trained Immunity (TI) led us to postulate that the continued presence of BCG-TI may play a protective role, previously reported for both infectious and noninfectious conditions. Most of the previous studies have addressed the issue of BCG-TI in the paediatric populations. This study addressed the key issue of maintenance of BCG-TI in a wider age range (adolescent and adults) to identify the strength and quality of the immune responses. OBJECTIVE: To assess the BCG-induced recall responses in healthy individuals by cytokines secreted from the TI network and its potential role in providing cross-protection against COVID-19 and other viral infections. STUDY DESIGN: In this cross-sectional study, healthy young adults and adolescents (n = 20) were recruited from 16-40 years of age, with no prior history of TB treatment, autoimmune, or chronic inflammatory condition. METHODS: BCG-induced cytokine responses were assessed using prototypic markers for cells of the TI network [macrophages [M1 (TNFα, IFNγ), M2 (IL10)], NK (IL2), Gamma delta (γδ) T (IL17, IL4)] and SARS CoV2 IgG antibodies against RBD using short-term (12 hrs.) cultures assay. RESULTS: Significant differences were observed in the magnitude of recall responses to BCG with macrophage cytokines showing the highest mean levels of TNFα (9148 pg/ml) followed by IL10 (488 pg/ml) and IFNγ (355 pg/ml). The ratio of unstimulated vs.BCG-stimulated cytokines was 132 fold higher for TNFα, 40 fold fo r IL10, and 27 fold for IFNγ. Furthermore, SARS-CoV-2 antibodies were also detected in unstimulated plasma which showed cross reactivity with BCG. CONCLUSION: The presence of cross reactive antibodies to SARS-CoV-2 and the relative ratio of pro- and anti-inflammatory cytokines secreted by activated TI cellular network may play a pivotal role in protection in the early stages of infection as observed during the COVID-19 pandemic in the younger age groups resulting in lower morbidity and mortality.


Subject(s)
Antibodies, Viral , BCG Vaccine , COVID-19 , Cytokines , SARS-CoV-2 , Humans , BCG Vaccine/immunology , Adult , COVID-19/immunology , COVID-19/prevention & control , Adolescent , Cross-Sectional Studies , Male , Female , SARS-CoV-2/immunology , Cytokines/immunology , Young Adult , Antibodies, Viral/immunology , Antibodies, Viral/blood , Cross Reactions/immunology , Vaccination , Pakistan/epidemiology , Trained Immunity
16.
Compr Rev Food Sci Food Saf ; 23(3): e13340, 2024 May.
Article in English | MEDLINE | ID: mdl-38778570

ABSTRACT

Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.


Subject(s)
Allergens , Epitopes , Food Hypersensitivity , Immunoglobulin E , Allergens/chemistry , Allergens/immunology , Food Hypersensitivity/immunology , Epitopes/chemistry , Epitopes/immunology , Animals , Crystallography, X-Ray , Humans , Immunoglobulin E/immunology , Immunoglobulin E/chemistry , Cross Reactions , Protein Conformation
17.
Science ; 384(6697): eadk0582, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753770

ABSTRACT

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Germinal Center , HIV Antibodies , HIV-1 , Immunization, Secondary , Nanoparticles , RNA, Messenger , Animals , Mice , HIV-1/immunology , HIV-1/genetics , AIDS Vaccines/immunology , Humans , HIV Antibodies/immunology , Germinal Center/immunology , Broadly Neutralizing Antibodies/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Gene Knock-In Techniques , Memory B Cells/immunology , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Somatic Hypermutation, Immunoglobulin , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Cross Reactions , HIV Infections/immunology , HIV Infections/prevention & control , Liposomes
20.
Mol Nutr Food Res ; 68(9): e2300911, 2024 May.
Article in English | MEDLINE | ID: mdl-38629315

ABSTRACT

SCOPE: Arginine kinase (AK) is an important enzyme for energy metabolism of invertebrate cells by participating in the maintenance of constant levels of ATP. However, AK is also recognized as a major allergen in insects and crustaceans capable of cross-reactivity with sera of patients sensitized to orthologous proteins. In the perspective of introducing insects or their derivatives in the human diet in Western world, it is of primary importance to evaluate possible risks for allergic consumers. METHODS AND RESULTS: This work reports the identification and characterization of AK from Hermetia illucens commonly known as the black soldier fly, a promising insect for human consumption. To evaluate allergenicity of AK from H. illucens, putative linear and conformational epitopes are identified by bioinformatics analyses, and Dot-Blot assays are carried out by using sera of patients allergic to shrimp or mites to validate the cross-reactivity. Gastrointestinal digestion reduces significantly the linear epitopes resulting in lower allergenicity, while the secondary structure is altered at increasing temperatures supporting the possible loss or reduction of conformational epitopes. CONCLUSION: The results indicate that the possible allergenicity of AK should be taken in consideration when dealing with novel foods containing H. illucens or its derivatives.


Subject(s)
Allergens , Arginine Kinase , Cross Reactions , Food Hypersensitivity , Arginine Kinase/immunology , Arginine Kinase/metabolism , Arginine Kinase/genetics , Animals , Allergens/immunology , Humans , Food Hypersensitivity/immunology , Edible Insects/immunology , Insect Proteins/immunology , Insect Proteins/metabolism , Insect Proteins/genetics , Epitopes/immunology , Amino Acid Sequence , Diptera/immunology , Simuliidae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...