Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 52(6-7): 336-43, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23608502

ABSTRACT

In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, glucose-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the -NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of "X-spacer-X" were used, differing by the reactive functional groups (X=aldehyde: -CHO, isothiocyanate: -NCS, isocyanate: -NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is ~16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30°C against no loss for PDC and DIC). These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers.


Subject(s)
Cross-Linking Reagents/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Silanes/chemistry , Silicon/chemistry , Catalysis , Cross-Linking Reagents/classification , Cross-Linking Reagents/metabolism , Enzyme Stability , Models, Molecular , Protein Multimerization , Temperature , Thermodynamics
2.
Chemistry ; 10(7): 1705-10, 2004 Apr 02.
Article in English | MEDLINE | ID: mdl-15054757

ABSTRACT

A new series of photocleavable protein cross-linking reagents based on bis(maleimide) derivatives of diaryl disulfides have been synthesised. They have been functionalised with cysteine and transient absorption spectra for the photolysis reaction have been recorded by using the pump-probe technique with a time resolution of 100 femtoseconds. Photolysis of the disulfide bond yields the corresponding thiyl radicals in less than a picosecond. There is a significant amount of geminate recombination, but some of the radicals escape the solvent cage and the quantum yield for photocleavage is 30 % in water.


Subject(s)
Cross-Linking Reagents/classification , Cross-Linking Reagents/chemical synthesis , Proteins/chemistry , Sulfhydryl Compounds/classification , Sulfhydryl Compounds/chemical synthesis , Cross-Linking Reagents/radiation effects , Free Radicals/chemical synthesis , Free Radicals/classification , Free Radicals/radiation effects , Models, Molecular , Molecular Structure , Oxidation-Reduction , Photochemistry , Sulfhydryl Compounds/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...