Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Sci Rep ; 14(1): 10295, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704415

ABSTRACT

Lysine crotonylation (Kcr) is a recently discovered histone acylation modification that is closely associated with gene expression, cell proliferation, and the maintenance of stem cell pluripotency and indicates the transcriptional activity of genes and the regulation of various biological processes. During cell culture, the introduction of exogenous croconic acid disodium salt (Nacr) has been shown to modulate intracellular Kcr levels. Although research on Kcr has increased, its role in cell growth and proliferation and its potential regulatory mechanisms remain unclear compared to those of histone methylation and acetylation. Our investigation demonstrated that the addition of 5 mM Nacr to cultured bovine fibroblasts increased the expression of genes associated with Kcr modification, ultimately promoting cell growth and stimulating cell proliferation. Somatic cell nuclear transfer of donor cells cultured in 5 mM Nacr resulted in 38.1% blastocyst development, which was significantly greater than that in the control group (25.2%). This research is important for elucidating the crotonylation modification mechanism in fibroblast proliferation to promote the efficacy of somatic cell nuclear transfer.


Subject(s)
Cell Proliferation , Fibroblasts , Histones , Nuclear Transfer Techniques , Animals , Cattle , Fibroblasts/metabolism , Fibroblasts/cytology , Cell Proliferation/drug effects , Histones/metabolism , Embryonic Development , Blastocyst/metabolism , Blastocyst/cytology , Lysine/metabolism , Crotonates/metabolism , Cells, Cultured , Protein Processing, Post-Translational , Female
2.
Metab Eng ; 79: 49-65, 2023 09.
Article in English | MEDLINE | ID: mdl-37414134

ABSTRACT

To advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO2 and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples. In this work, we engineered the natural formatotrophic bacterium C. necator as cell factory to enable biological conversion of formate into crotonate, a platform short-chain unsaturated carboxylic acid of biotechnological relevance. First, we developed a small-scale (150-mL working volume) cultivation setup for growing C. necator in minimal medium using formate as only carbon and energy source. By using a fed-batch strategy with automatic feeding of formic acid, we could increase final biomass concentrations 15-fold compared to batch cultivations in flasks. Then, we engineered a heterologous crotonate pathway in the bacterium via a modular approach, where each pathway section was assessed using multiple candidates. The best performing modules included a malonyl-CoA bypass for increasing the thermodynamic drive towards the intermediate acetoacetyl-CoA and subsequent conversion to crotonyl-CoA through partial reverse ß-oxidation. This pathway architecture was then tested for formate-based biosynthesis in our fed-batch setup, resulting in a two-fold higher titer, three-fold higher productivity, and five-fold higher yield compared to the strain not harboring the bypass. Eventually, we reached a maximum product titer of 148.0 ± 6.8 mg/L. Altogether, this work consists in a proof-of-principle integrating bioprocess and metabolic engineering approaches for the biological upgrading of formate into a value-added platform chemical.


Subject(s)
Cupriavidus necator , Cupriavidus necator/genetics , Crotonates/metabolism , Metabolic Engineering/methods , Formates/metabolism , Carbon/metabolism
3.
Stem Cell Res Ther ; 14(1): 63, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013624

ABSTRACT

BACKGROUND: Post-translational modifications of proteins are crucial to the regulation of their activity and function. As a newly discovered acylation modification, crotonylation of non-histone proteins remains largely unexplored, particularly in human embryonic stem cells (hESCs). METHODS: We investigated the role of crotonylation in hESC differentiation by introduce crotonate into the culture medium of GFP tagged LTR7 primed H9 cell and extended pluripotent stem cell lines. RNA-seq assay was used to determine the hESC transcriptional features. Through morphological changes, qPCR of pluripotent and germ layer-specific gene markers and flow cytometry analysis, we determined that the induced crotonylation resulted in hESC differentiating into the endodermal lineage. We performed targeted metabolomic analysis and seahorse metabolic measurement to investigate the metabolism features after crotonate induction. Then high-resolution tandem mass spectrometry (LC-MS/MS) revealed the target proteins in hESCs. In addition, the role of crotonylated glycolytic enzymes (GAPDH and ENOA) was evaluated by in vitro crotonylation and enzymatic activity assays. Finally, we used knocked-down hESCs by shRNA, wild GAPDH and GAPDH mutants to explore potential role of GAPDH crotonylation in regulating human embryonic stem cell differentiation and metabolic switch. RESULT: We found that induced crotonylation in hESCs resulted in hESCs of different pluripotency states differentiating into the endodermal lineage. Increased protein crotonylation in hESCs was accompanied by transcriptomic shifts and decreased glycolysis. Large-scale crotonylation profiling of non-histone proteins revealed that metabolic enzymes were major targets of inducible crotonylation in hESCs. We further discovered GAPDH as a key glycolytic enzyme regulated by crotonylation during endodermal differentiation from hESCs. CONCLUSIONS: Crotonylation of GAPDH decreased its enzymatic activity thereby leading to reduced glycolysis during endodermal differentiation from hESCs.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases , Human Embryonic Stem Cells , Humans , Cell Differentiation/genetics , Cell Lineage , Chromatography, Liquid , Crotonates/metabolism , Human Embryonic Stem Cells/metabolism , Proteins/metabolism , Tandem Mass Spectrometry , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
4.
BMC Nephrol ; 22(1): 310, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34517817

ABSTRACT

BACKGROUND: Post-translational modifications (PTMs) are at the heart of many cellular signaling events, which changes the function of protein. Crotonylation, one of the most important and common PTMs, plays a crucial role in the regulation of various biological processes. However, no study has evaluated the role of lysine crotonylation modification in chronic renal failure (CRF) patients. METHODS: Here, we comparatively evaluated the crotonylation proteome of normal controls and chronic renal failure patients using liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with highly sensitive immune-affinity purification. RESULTS: A total of 1109 lysine modification sites were identified, of which 772 sites were up-regulated and 69 sites were down-regulated. This suggested that crotonylation modification maintains high levels in the patients with chronic renal failure. Gene ontology(GO) enrichment analysis showed that the crotonylated proteins were significantly enriched in the platelet alpha granule lumen, platelet degradulation, and cell adhesion molecule binding. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG)-based functional enrichment analysis in the Kyoto encyclopedia showed that crotonylated protein was enriched in CD36, which is closely linked to renal failure. CONCLUSIONS: This is the first report of the global crotonylation proteome in chronic renal failure patients. Crotonylation of histone and non-histone may play important roles in delaying the continuous deterioration of renal function in patients with chronic renal failure.


Subject(s)
Histones/metabolism , Kidney Failure, Chronic/metabolism , Lysine/metabolism , Acetylation , Adult , Case-Control Studies , Chromatography, Liquid , Crotonates/metabolism , Epigenesis, Genetic , Female , Humans , Kidney Failure, Chronic/genetics , Lysine Acetyltransferases/metabolism , Male , Tandem Mass Spectrometry
5.
Nat Commun ; 12(1): 5300, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489427

ABSTRACT

Isobutene is a high value gaseous alkene used as fuel additive and a chemical building block. As an alternative to fossil fuel derived isobutene, we here develop a modified mevalonate pathway for the production of isobutene from glucose in vivo. The final step in the pathway consists of the decarboxylation of 3-methylcrotonic acid, catalysed by an evolved ferulic acid decarboxylase (Fdc) enzyme. Fdc belongs to the prFMN-dependent UbiD enzyme family that catalyses reversible decarboxylation of (hetero)aromatic acids or acrylic acids with extended conjugation. Following a screen of an Fdc library for inherent 3-methylcrotonic acid decarboxylase activity, directed evolution yields variants with up to an 80-fold increase in activity. Crystal structures of the evolved variants reveal that changes in the substrate binding pocket are responsible for increased selectivity. Solution and computational studies suggest that isobutene cycloelimination is rate limiting and strictly dependent on presence of the 3-methyl group.


Subject(s)
Alkenes/metabolism , Carboxy-Lyases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Flavin Mononucleotide/chemistry , Glucose/metabolism , Alkenes/chemistry , Biocatalysis , Carboxy-Lyases/genetics , Crotonates/metabolism , Directed Molecular Evolution/methods , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fermentation , Flavin Mononucleotide/metabolism , Glucose/chemistry , Hypocreales/enzymology , Hypocreales/genetics , Mevalonic Acid/metabolism , Prenylation
6.
Front Immunol ; 12: 696061, 2021.
Article in English | MEDLINE | ID: mdl-34322124

ABSTRACT

Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that can infect almost all warm-blooded animals, causing serious public health problems. Lysine crotonylation (Kcr) is a newly discovered posttranslational modification (PTM), which is first identified on histones and has been proved relevant to procreation regulation, transcription activation, and cell signaling pathway. However, the biological functions of histone crotonylation have not yet been reported in macrophages infected with T. gondii. As a result, a total of 1,286 Kcr sites distributed in 414 proteins were identified and quantified, demonstrating the existence of crotonylation in porcine alveolar macrophages. According to our results, identified histones were overall downregulated. HDAC2, a histone decrotonylase, was found to be significantly increased, which might be the executor of histone Kcr after parasite infection. In addition, T. gondii infection inhibited the crotonylation of H2B on K12, contributing on the suppression of epigenetic regulation and NF-κB activation. Nevertheless, the reduction of histone crotonylation induced by parasite infection could promote macrophage proliferation via activating PI3K/Akt signaling pathway. The present findings point to a comprehensive understanding of the biological functions of histone crotonylation in porcine alveolar macrophages, thereby providing a certain research basis for the mechanism research on the immune response of host cells against T. gondii infection.


Subject(s)
Crotonates/metabolism , Histones/metabolism , Macrophage Activation , Macrophages, Alveolar/parasitology , Toxoplasma/parasitology , Toxoplasmosis/parasitology , Animals , Cell Line , Cell Proliferation , Epigenesis, Genetic , Host-Parasite Interactions , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , NF-kappa B/metabolism , Protein Processing, Post-Translational , Signal Transduction , Sus scrofa , Toxoplasma/immunology , Toxoplasmosis/immunology , Toxoplasmosis/metabolism
7.
Theranostics ; 11(6): 2490-2504, 2021.
Article in English | MEDLINE | ID: mdl-33456555

ABSTRACT

Background: Magnetic resonance imaging (MRI) is indispensable for diagnosing neurological conditions such as multiple sclerosis (MS). MRI also supports decisions regarding the choice of disease-modifying drugs (DMDs). Determining in vivo tissue concentrations of DMDs has the potential to become an essential clinical tool for therapeutic drug monitoring (TDM). The aim here was to examine the feasibility of fluorine-19 (19F) MR methods to detect the fluorinated DMD teriflunomide (TF) during normal and pathological conditions. Methods: We used 19F MR spectroscopy to detect TF in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) in vivo. Prior to the in vivo investigations we characterized the MR properties of TF in vitro. We studied the impact of pH and protein binding as well as MR contrast agents. Results: We could detect TF in vivo and could follow the 19F MR signal over different time points of disease. We quantified TF concentrations in different tissues using HPLC/MS and showed a significant correlation between ex vivo TF levels in serum and the ex vivo19F MR signal. Conclusion: This study demonstrates the feasibility of 19F MR methods to detect TF during neuroinflammation in vivo. It also highlights the need for further technological developments in this field. The ultimate goal is to add 19F MR protocols to conventional 1H MRI protocols in clinical practice to guide therapy decisions.


Subject(s)
Crotonates/metabolism , Fluorine Radioisotopes/metabolism , Fluorine/metabolism , Hydroxybutyrates/metabolism , Inflammation/diagnosis , Nitriles/metabolism , Toluidines/metabolism , Animals , Contrast Media/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Fluorine-19 Magnetic Resonance Imaging/methods , Inflammation/metabolism , Magnetic Resonance Spectroscopy/methods , Mice , Mice, Inbred C57BL , Multiple Sclerosis/diagnosis , Multiple Sclerosis/metabolism , Rats
8.
mBio ; 13(1): e0374021, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35100874

ABSTRACT

Syntrophic bacteria play a key role in the anaerobic conversion of biological matter to methane. They convert short-chain fatty acids or alcohols to H2, formate, and acetate that serve as substrates for methanogenic archaea. Many syntrophic bacteria can also grow with unsaturated fatty acids such as crotonate without a syntrophic partner, and the reducing equivalents derived from the oxidation of one crotonate to two acetate are regenerated by the reduction of a second crotonate. However, it has remained unresolved how the oxidative and reductive catabolic branches are interconnected and how energy may be conserved in the reductive branch. Here, we provide evidence that during axenic growth of the syntrophic model organism Syntrophus aciditrophicus with crotonate, the NAD+-dependent oxidation of 3-hydroxybutyryl-CoA to acetoacetyl-CoA is coupled to the reduction of crotonyl-CoA via formate cycling. In this process, the intracellular formate generated by a NAD+-regenerating CO2 reductase is taken up by a periplasmic, membrane-bound formate dehydrogenase that in concert with a membrane-bound electron-transferring flavoprotein (ETF):methylmenaquinone oxidoreductase, ETF, and an acyl-CoA dehydrogenase reduces intracellular enoyl-CoA to acyl-CoA. This novel type of energy metabolism, referred to as enoyl-CoA respiration, generates a proton motive force via a methylmenaquinone-dependent redox-loop. As a result, the beneficial syntrophic cooperation of fermenting bacteria and methanogenic archaea during growth with saturated fatty acids appears to turn into a competition for formate and/or H2 during growth with unsaturated fatty acids. IMPORTANCE The syntrophic interaction of fermenting bacteria and methanogenic archaea is important for the global carbon cycle. As an example, it accomplishes the conversion of biomass-derived saturated fatty acid fermentation intermediates into methane. In contrast, unsaturated fatty acid intermediates such as crotonate may serve as growth substrate for the fermenting partner alone. Thereby, the reducing equivalents generated during the oxidation of one crotonate to two acetate are regenerated by reduction of a second crotonate to butyrate. Here, we show that the oxidative and reductive branches of this pathway are connected via formate cycling involving an energy-conserving redox-loop. We refer to this previously unknown type of energy metabolism as to enoyl-CoA respiration with acyl-CoA dehydrogenases serving as cytoplasmic terminal reductases.


Subject(s)
Coenzyme A , Crotonates , Coenzyme A/metabolism , Crotonates/metabolism , NAD/metabolism , Bacteria/metabolism , Oxidation-Reduction , Acetates/metabolism , Formates/metabolism , Respiration , Methane/metabolism
9.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33099604

ABSTRACT

As a newly discovered protein posttranslational modification, histone lysine crotonylation (Kcr) involved in cellular regulation and human diseases. Various proteomics technologies have been developed to detect Kcr sites. However, experimental approaches for identifying Kcr sites are often time-consuming and labor-intensive, which is difficult to widely popularize in large-scale species. Computational approaches are cost-effective and can be used in a high-throughput manner to generate relatively precise identification. In this study, we develop a deep learning-based method termed as Deep-Kcr for Kcr sites prediction by combining sequence-based features, physicochemical property-based features and numerical space-derived information with information gain feature selection. We investigate the performances of convolutional neural network (CNN) and five commonly used classifiers (long short-term memory network, random forest, LogitBoost, naive Bayes and logistic regression) using 10-fold cross-validation and independent set test. Results show that CNN could always display the best performance with high computational efficiency on large dataset. We also compare the Deep-Kcr with other existing tools to demonstrate the excellent predictive power and robustness of our method. Based on the proposed model, a webserver called Deep-Kcr was established and is freely accessible at http://lin-group.cn/server/Deep-Kcr.


Subject(s)
Crotonates/metabolism , Databases, Protein , Deep Learning , Protein Processing, Post-Translational , Sequence Analysis, Protein , Acylation , Humans , Lysine/metabolism
10.
Cell Rep ; 31(3): 107528, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32320659

ABSTRACT

Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress. Crotonate regulates stress-responsive transcription and rescues C. albicans from cell wall stress, indicating broad impact on cell biology. The YEATS domain crotonylation readers Taf14 and Yaf9 are required for C. albicans virulence, and Taf14 controls gene expression, stress resistance, and invasive growth via its chromatin reader function. Blocking the Taf14 C terminus with a tag reduced virulence, suggesting that inhibiting Taf14 interactions with chromatin regulators impairs function. Our findings shed light on the regulation of histone crotonylation and the functions of the YEATS proteins in eukaryotic pathogen biology and fungal infections.


Subject(s)
Candida albicans/metabolism , Fungal Proteins/metabolism , Histones/metabolism , Animals , Candida albicans/pathogenicity , Chromatin/metabolism , Crotonates/metabolism , Female , Histone Acetyltransferases/metabolism , Humans , Mice , Protein Domains , Transcription Factor TFIID , Virulence
11.
Nucleic Acids Res ; 48(8): 4115-4138, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32182340

ABSTRACT

Epigenetic regulation of gene expression is tightly controlled by the dynamic modification of histones by chemical groups, the diversity of which has largely expanded over the past decade with the discovery of lysine acylations, catalyzed from acyl-coenzymes A. We investigated the dynamics of lysine acetylation and crotonylation on histones H3 and H4 during mouse spermatogenesis. Lysine crotonylation appeared to be of significant abundance compared to acetylation, particularly on Lys27 of histone H3 (H3K27cr) that accumulates in sperm in a cleaved form of H3. We identified the genomic localization of H3K27cr and studied its effects on transcription compared to the classical active mark H3K27ac at promoters and distal enhancers. The presence of both marks was strongly associated with highest gene expression. Assessment of their co-localization with transcription regulators (SLY, SOX30) and chromatin-binding proteins (BRD4, BRDT, BORIS and CTCF) indicated systematic highest binding when both active marks were present and different selective binding when present alone at chromatin. H3K27cr and H3K27ac finally mark the building of some sperm super-enhancers. This integrated analysis of omics data provides an unprecedented level of understanding of gene expression regulation by H3K27cr in comparison to H3K27ac, and reveals both synergistic and specific actions of each histone modification.


Subject(s)
Enhancer Elements, Genetic , Epigenesis, Genetic , Histone Code , Promoter Regions, Genetic , Spermatogenesis/genetics , Acetyl Coenzyme A/metabolism , Acetylation , Acyl Coenzyme A/metabolism , Animals , Biological Evolution , Crotonates/metabolism , Genomics , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Male , Metabolomics , Mice, Inbred C57BL , Proteomics , Transcription, Genetic , Yeasts/metabolism , Yeasts/physiology
12.
Biochem Biophys Res Commun ; 524(3): 730-735, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32035620

ABSTRACT

Post-translational modifications (PTMs) play pivotal roles in controlling the stability and activity of the tumor suppressor p53 in response to distinct stressors. Here we report an unexpected finding of a short chain fatty acid modification of p53 in human cells. Crotonic acid (CA) treatment induces p53 crotonylation, but surprisingly reduces its protein, but not mRNA level, leading to inhibition of p53 activity in a dose dependent fashion. Surprisingly this crotonylation targets serine 46, instead of any predicted lysine residues, of p53, as detected in TCEP-probe labeled crotonylation and anti-crotonylated peptide antibody reaction assays. This is further confirmed by substitution of serine 46 with alanine, which abolishes p53 crotonylation in vitro and in cells. CA increases p53-dependent glycolytic activity, and augments cancer cell proliferation in response to metabolic or DNA damage stress. Since serine 46 is only found in human p53, our studies unveil an unconventional PTM unique for human p53, impairing its activity in response to CA. Because CA is likely produced by the gut microbiome, our results also predict that this type of PTM might play a role in early human colorectal neoplasia development by negating p53 activity without mutation of this tumor suppressor gene.


Subject(s)
Crotonates/metabolism , Protein Processing, Post-Translational , Serine/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Proliferation , Crotonates/chemistry , Glucose/deficiency , Glycolysis , Humans , Lysine/metabolism , Mitochondria/metabolism , Tumor Suppressor Protein p53/chemistry
13.
Acta Pharmacol Sin ; 41(1): 129-137, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31341258

ABSTRACT

Rheumatoid arthritis patients can be prescribed a combination of immunosuppressive drug leflunomide (LEF) and the antiviral drug acyclovir to reduce the high risk of infection. Acyclovir is a substrate of organic anion transporter (OAT) 1/3 and multidrug resistance-associated protein (MRP) 2. Considering the extraordinarily long half-life of LEF's active metabolite teriflunomide (TER) and the kidney injury risk of acyclovir, it is necessary to elucidate the potential impact of LEF on the disposition of acyclovir. Here we used a specific MRP inhibitor MK571 and probenecid (OAT1/3 and MRP2 inhibitor) to assess the effects of MRP2 and OAT1/3 on the pharmacokinetics and tissue distribution of acyclovir in rats. We showed that LEF and probenecid, but not MK571 significantly increased the plasma concentration of acyclovir. However, kidney and liver exposures of acyclovir were increased when coadministered with LEF, probenecid or MK571. The kidney/plasma ratio of acyclovir was increased to approximately 2-fold by LEF or probenecid, whereas it was increased to as much as 14.5-fold by MK571. Consistently, these drugs markedly decreased the urinary excretion of acyclovir. TER (0.5-100 µmol/L) dose-dependently increased the accumulation of acyclovir in MRP2-MDCK cells with an IC50 value of 4.91 µmol/L. TER (5 µmol/L) significantly inhibited the uptake of acyclovir in hOAT1/3-HEK293 cells. These results suggest that LEF/TER increased the kidney accumulation of acyclovir by inhibiting the efflux transporter MRP2, which increased its kidney/plasma ratio and renal injury risk. However, the inhibitory effects of LEF/TER on OAT1/3 reduced the tubular cells' uptake of acyclovir and increased the plasma concentration.


Subject(s)
Acyclovir/pharmacokinetics , Kidney/metabolism , Leflunomide/pharmacology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Acyclovir/administration & dosage , Acyclovir/metabolism , Administration, Intravenous , Animals , Cells, Cultured , Crotonates/administration & dosage , Crotonates/metabolism , Crotonates/pharmacology , Dogs , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Hydroxybutyrates , Leflunomide/administration & dosage , Leflunomide/metabolism , Madin Darby Canine Kidney Cells/drug effects , Madin Darby Canine Kidney Cells/metabolism , Male , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Nitriles , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Probenecid/administration & dosage , Probenecid/metabolism , Probenecid/pharmacology , Propionates/administration & dosage , Propionates/metabolism , Propionates/pharmacology , Quinolines/administration & dosage , Quinolines/metabolism , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Tissue Distribution , Toluidines/administration & dosage , Toluidines/metabolism , Toluidines/pharmacology
14.
Appl Microbiol Biotechnol ; 103(23-24): 9593-9606, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31713669

ABSTRACT

FK520 (ascomycin), a 23-membered macrolide with immunosuppressive activity, is produced by Streptomyces hygroscopicus. The problem of low yield and high impurities (mainly FK523) limits the industrialized production of FK520. In this study, the FK520 yield was significantly improved by strain mutagenesis and genetic engineering. First, a FK520 high-producing strain SFK-6-33 (2432.2 mg/L) was obtained from SFK-36 (1588.4 mg/L) through ultraviolet radiation mutation coupled with streptomycin resistance screening. The endogenous crotonyl-CoA carboxylase/reductase (FkbS) was found to play an important role in FK520 biosynthesis, identified with CRISPR/dCas9 inhibition system. FkbS was overexpressed in SFK-6-33 to obtain the engineered strain SFK-OfkbS, which produced 2817.0 mg/L of FK520 resulting from an increase in intracellular ethylmalonyl-CoA levels. In addition, the FK520 levels could be further increased with supplementation of crotonic acid in SFK-OfkbS. Overexpression of acetyl-CoA carboxylase (ACCase), used for the synthesis of malonyl-CoA, was also investigated in SFK-6-33, which improved the FK520 yield to 3320.1 mg/L but showed no significant inhibition in FK523 production. To further enhance FK520 production, FkbS and ACCase combinatorial overexpression strain SFK-OASN was constructed; the FK520 production increased by 44.4% to 3511.4 mg/L, and the FK523/FK520 ratio was reduced from 9.6 to 5.6% compared with that in SFK-6-33. Finally, a fed-batch culture was carried out in a 5-L fermenter, and the FK520 yield reached 3913.9 mg/L at 168 h by feeding glycerol, representing the highest FK520 yield reported thus far. These results demonstrated that traditional mutagenesis combined with metabolic engineering was an effective strategy to improve FK520 production.


Subject(s)
Metabolic Engineering/methods , Streptomyces/genetics , Streptomyces/metabolism , Tacrolimus/analogs & derivatives , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Acyl Coenzyme A/metabolism , Acyl-CoA Dehydrogenases/genetics , Acyl-CoA Dehydrogenases/metabolism , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Cas Systems , Crotonates/metabolism , Gene Expression , Immunosuppressive Agents/metabolism , Mutagenesis , Tacrolimus/metabolism , Ultraviolet Rays
15.
Int J Dev Neurosci ; 76: 61-64, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31255717

ABSTRACT

The BTBR T + Itpr3tf/J (BTBR) mouse has developmental disorders in the central nervous system and many aberrant neuroanatomical structures. However, identification of the pathological mechanisms underlying these abnormal neuroanatomical structures in the brains of BTBR mice is still lacking. Posttranslational modifications (PTMs) are known to be involved in the regulation of diverse cellular processes, and evidence shows that some types of PTMs are associated with the development of the central nervous system. In this study, we detected four novel PTMs in the cerebral cortex of BTBR mice as compared to C57BL/6 J (B6) mice using western blotting. Results revealed that lysine crotonylation and succinylation were elevated in the cerebral cortex of BTBR mice compared to levels in B6 mice. We speculate that elevated profiles of lysine crotonylation and succinylation may be involved in mechanisms related to neuroanatomical abnormalities in cerebral cortex of BTBR mice.


Subject(s)
Brain/pathology , Crotonates/metabolism , Lysine/metabolism , Protein Processing, Post-Translational/genetics , Succinates/metabolism , Animals , Brain Chemistry/genetics , Cerebral Cortex/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Neurologic Mutants , Social Behavior , Species Specificity
16.
Nucleic Acids Res ; 46(17): 8689-8699, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30102385

ABSTRACT

DEAD-box proteins are an essential class of enzymes involved in all stages of RNA metabolism. The study of DEAD-box proteins is challenging in a native setting since they are structurally similar, often essential and display dosage sensitivity. Pharmacological inhibition would be an ideal tool to probe the function of these enzymes. In this work, we describe a chemical genetic strategy for the specific inactivation of individual DEAD-box proteins with small molecule inhibitors using covalent complementarity. We identify a residue of low conservation within the P-loop of the nucleotide-binding site of DEAD-box proteins and show that it can be mutated to cysteine without a substantial loss of enzyme function to generate electrophile-sensitive mutants. We then present a series of small molecules that rapidly and specifically bind and inhibit electrophile-sensitive DEAD-box proteins with high selectivity over the wild-type enzyme. Thus, this approach can be used to systematically generate small molecule-sensitive alleles of DEAD-box proteins, allowing for pharmacological inhibition and functional characterization of members of this enzyme family.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , DEAD Box Protein 58/chemistry , DEAD-box RNA Helicases/chemistry , Oncogene Protein pp60(v-src)/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Acrylamides/chemical synthesis , Acrylamides/metabolism , Acrylates/chemical synthesis , Acrylates/metabolism , Adenosine Monophosphate/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Cloning, Molecular , Crotonates/chemical synthesis , Crotonates/metabolism , Crystallography, X-Ray , DEAD Box Protein 58/antagonists & inhibitors , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , DEAD-box RNA Helicases/antagonists & inhibitors , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Kinetics , Models, Molecular , Oncogene Protein pp60(v-src)/antagonists & inhibitors , Oncogene Protein pp60(v-src)/genetics , Oncogene Protein pp60(v-src)/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Immunologic , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
17.
J Pharm Sci ; 107(11): 2742-2747, 2018 11.
Article in English | MEDLINE | ID: mdl-30055222

ABSTRACT

Breast cancer resistance protein (BCRP) is a point of interest in drug-drug interaction safety testing. Therefore, a consensus probe that can be applied as victim in multiple experimental settings is of great benefit. Identification of candidates has been driven by the amount and quality of available clinical data, and as a result, drugs such as sulfasalazine and rosuvastatin have been suggested. In this article, the in vitro performance of 5 possible alternatives was evaluated: atorvastatin, chlorothiazide, dantrolene, topotecan, and teriflunomide, and benchmarked against sulfasalazine and rosuvastatin in reference in vitro assays for BCRP drug-drug interaction testing. Based on the results, teriflunomide is proposed as an alternate in vitro BCRP probe.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Animals , Biological Transport , Caco-2 Cells , Crotonates/metabolism , Crotonates/pharmacokinetics , Crotonates/pharmacology , Dogs , Drug Interactions , Humans , Hydroxybutyrates , Madin Darby Canine Kidney Cells , Nitriles , Toluidines/metabolism , Toluidines/pharmacokinetics , Toluidines/pharmacology
18.
Metab Eng ; 48: 175-183, 2018 07.
Article in English | MEDLINE | ID: mdl-29883803

ABSTRACT

Methane, the primary component of natural gas, is the second most abundant greenhouse gas (GHG) and contributes significantly to climate change. The conversion of methane to industrial platform chemicals provides an attractive opportunity to decrease GHG emissions and utilize this inexpensive and abundantly available gas as a carbon feedstock. While technologies exist for chemical conversion of methane to liquid fuels, the technical complexity of these processes mandate high capital expenditure, large-scale commercial facilities to leverage economies of scale that cannot be efficiently scaled down. Alternatively, bioconversion technologies capable of efficient small-scale operation with high carbon and energy efficiency can enable deployment at remote methane resources inaccessible to current chemical technologies. Aerobic obligate methanotrophs, specifically Methylomicrobium buryatense 5GB1, have recently garnered increased research interest for development of such bio-technologies. In this study, we demonstrate production of C-4 carboxylic acids non-native to the host, specifically crotonic and butyric acids, from methane in an engineered M. buryatense 5GB1C by diversion of carbon flux through the acetyl-CoA node of central 'sugar' linked metabolic pathways using reverse ß-oxidation pathway genes. The synthesis of short chain carboxylic acids through the acetyl-CoA node demonstrates the potential for engineering M. buryatense 5GB1 as a platform for bioconversion of methane to a number of value added industrial chemicals, and presents new opportunities for further diversifying the products obtainable from methane as the feedstock.


Subject(s)
Acetyl Coenzyme A , Butyric Acid/metabolism , Crotonates/metabolism , Metabolic Engineering , Methane/metabolism , Methylococcaceae , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Methylococcaceae/genetics , Methylococcaceae/metabolism
19.
Expert Opin Pharmacother ; 19(5): 483-498, 2018 04.
Article in English | MEDLINE | ID: mdl-29528247

ABSTRACT

INTRODUCTION: Multiple sclerosis (MS) is an immune-mediated and neurodegenerative disease with an unpredictable outcome. Immune-modulatory treatment aims at decreasing long-term disability. With the increasing number of treatment options, it is essential to fully digest the possible side effects of the available therapeutics and to monitor patients is essential. AREAS COVERED: All approved disease-modifying drugs (DMD) for MS are discussed in this review. Mode of action, adverse effects, reported risks for infections and malignancies, and pregnancy related issues are discussed in the review. The authors also provide suggestions for monitoring therapy. For all approved DMDs the pivotal studies have been included for possible side effects, as well as reports by health authorities. For this manuscript, PubMed was checked for reports on side effects for various drugs. EXPERT OPINION: Treatment options in MS are manifold, each carrying different risks. The safety-risk profile for approved agents is favorable. Knowing and monitoring these possible side effects is essential to minimize risks associated with treatment. Presently, the long-term experience for some of these therapies is missing and this must be addressed.


Subject(s)
Immunologic Factors/adverse effects , Immunosuppressive Agents/adverse effects , Alemtuzumab/adverse effects , Alemtuzumab/metabolism , Alemtuzumab/therapeutic use , Cladribine/adverse effects , Cladribine/metabolism , Cladribine/therapeutic use , Crotonates/adverse effects , Crotonates/metabolism , Crotonates/therapeutic use , Fingolimod Hydrochloride/adverse effects , Fingolimod Hydrochloride/metabolism , Fingolimod Hydrochloride/therapeutic use , Glatiramer Acetate/adverse effects , Glatiramer Acetate/metabolism , Glatiramer Acetate/therapeutic use , Humans , Hydroxybutyrates , Immunologic Factors/therapeutic use , Immunosuppressive Agents/therapeutic use , Interferon-beta/adverse effects , Interferon-beta/metabolism , Interferon-beta/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Natalizumab/adverse effects , Natalizumab/metabolism , Natalizumab/therapeutic use , Neoplasms/etiology , Nitriles , Toluidines/adverse effects , Toluidines/metabolism , Toluidines/therapeutic use
20.
Nat Commun ; 9(1): 105, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317660

ABSTRACT

The recently discovered histone post-translational modification crotonylation connects cellular metabolism to gene regulation. Its regulation and tissue-specific functions are poorly understood. We characterize histone crotonylation in intestinal epithelia and find that histone H3 crotonylation at lysine 18 is a surprisingly abundant modification in the small intestine crypt and colon, and is linked to gene regulation. We show that this modification is highly dynamic and regulated during the cell cycle. We identify class I histone deacetylases, HDAC1, HDAC2, and HDAC3, as major executors of histone decrotonylation. We show that known HDAC inhibitors, including the gut microbiota-derived butyrate, affect histone decrotonylation. Consistent with this, we find that depletion of the gut microbiota leads to a global change in histone crotonylation in the colon. Our results suggest that histone crotonylation connects chromatin to the gut microbiota, at least in part, via short-chain fatty acids and HDACs.


Subject(s)
Crotonates/metabolism , Fatty Acids, Volatile/physiology , Histone Deacetylases/metabolism , Histones/metabolism , Intestinal Mucosa/metabolism , Acylation , Animals , Cell Cycle , Colon/metabolism , Colon/microbiology , Gastrointestinal Microbiome , HCT116 Cells , Histone Deacetylase Inhibitors , Humans , Male , Mice, Inbred C57BL , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...