Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 749
Filter
1.
Carbohydr Polym ; 340: 122217, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38857997

ABSTRACT

Iodine (I2) as a broad-spectrum antiseptic has been widely used for treating bacterial infections. However, I2 has low water-solubility and sublimes under ambient conditions, which limits its practical antibacterial applications. The highly specific and sensitive reaction between I2 and starch discovered 200 years ago has been extensively applied in analytical chemistry, but the antibacterial activity of the I2-starch complex is rarely investigated. Herein, we develop a novel type of iodine-based antiseptics, iodine-soluble starch (I2-SS) cryogel, which can dissolve in water instantly and almost completely kill bacteria in 10 min at 2 µg/mL of I2. Although KI3 and the commercially available povidone­iodine (I2-PVP) solutions show similar antibacterial efficacy, the high affinity of I2 to SS largely enhances the shelf stability of the I2-SS solution with ∼73 % I2 left after one-week storage at room temperature. In sharp contrast, ∼8.5 % and âˆ¼2.5 % I2 are detected in KI3 and I2-PVP solutions, respectively. Mechanistic study reveals that the potent antibacterial effect of I2-SS originates from its attack on multiple bacterial targets. The outstanding antibacterial activity, capability of accelerating wound healing, and good biocompatibility of I2-SS are verified through further in vivo experiments. This work may promote the development of next-generation iodine-based antiseptics for clinical use.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents, Local , Cryogels , Iodine , Solubility , Starch , Water , Iodine/chemistry , Iodine/pharmacology , Starch/chemistry , Starch/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/chemistry , Water/chemistry , Cryogels/chemistry , Animals , Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Povidone-Iodine/chemistry , Povidone-Iodine/pharmacology , Escherichia coli/drug effects , Wound Healing/drug effects
2.
Bioelectrochemistry ; 158: 108725, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38714062

ABSTRACT

An enzymatic amperometric uric acid (UA) biosensor was successfully developed by modifying a screen-printed carbon electrode (SPCE) with Prussian blue-poly(3,4-ethylene dioxythiophene) polystyrene sulfonate composite (PB-PEDOT:PSS). The modified SPCE was coated with gold nanoparticles-graphene oxide-chitosan composite cryogel (AuNPs-GO-CS cry). Uricase (UOx) was directly immobilized via chemisorption on AuNPs. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical characterization of the modified electrode was performed by cyclic voltammetry and electrochemical impedance spectroscopy. UA was determined using amperometric detection based on the reduction current of PB which was correlated with the amount of H2O2 produced during the enzymatic reaction. Under optimal conditions, the fabricated UA biosensor in a flow injection analysis (FIA) system produced a linear range from 5.0 to 300 µmol L-1 with a detection limit of 1.88 µmol L-1. The proposed sensor was stable for up to 221 cycles of detection and analysis was rapid (2 min), with good reproducibility (RSDs < 2.90 %, n = 6), negligible interferences, and recoveries from 94.0 ± 3.9 to 101.1 ± 2.6 %. The results of UA detection in blood plasma were in agreement with the enzymatic colorimetric method (P > 0.05).


Subject(s)
Biosensing Techniques , Cryogels , Electrodes , Gold , Graphite , Limit of Detection , Metal Nanoparticles , Uric Acid , Biosensing Techniques/methods , Uric Acid/blood , Uric Acid/analysis , Gold/chemistry , Graphite/chemistry , Cryogels/chemistry , Metal Nanoparticles/chemistry , Carbon/chemistry , Polymers/chemistry , Porosity , Flow Injection Analysis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Chitosan/chemistry , Polystyrenes/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Urate Oxidase/chemistry , Electrochemical Techniques/methods , Nanocomposites/chemistry , Ferrocyanides/chemistry
3.
J Chromatogr A ; 1727: 464996, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38763087

ABSTRACT

Supermacroporous composite cryogels with enhanced adjustable functionality have received extensive interest in bioseparation, tissue engineering, and drug delivery. However, the variations in their components significantly impactfinal properties. This study presents a two-step hybrid machine learning approach for predicting the properties of innovative poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose (pHEMA-PVA-BC) based on their compositions. By considering the ratios of HEMA (1.0-22.0 wt%), PVA (0.2-4.0 wt%), poly(ethylene glycol) diacrylate (1.0-4.5 wt%), BC (0.1-1.5 wt%), and water (68.0-96.0 wt%) as investigational variables, overlay sampling uniform design (OSUD) was employed to construct a high-quality dataset for model development. The random forest (RF) model was used to classify the preparation conditions. Then four models of artificial neural network, RF, gradient boosted regression trees (GBRT), and XGBoost were developed to predict the basic properties of the composite cryogels. The results showed that the RF model achieved an accurate three-class classification of preparation conditions. Among the four models, the GBRT model exhibited the best predictive performance of the basic properties, with the mean absolute percentage error of 16.04 %, 0.85 %, and 2.44 % for permeability, effective porosity, and height of theoretical plate (1.0 cm/min), respectively. Characterization results of the representative pHEMA-PVA-BC composite cryogel showed an effective porosity of 81.01 %, a permeability of 1.20 × 10-12 m2, and a range of height of theoretical plate between 0.40-0.49 cm at flow velocities of 0.5-3.0 cm/min. These indicate that the pHEMA-PVA-BC cryogel was an excellent material with supermacropores, low flow resistance and high mass transfer efficiency. Furthermore, the model output demonstrates that the alteration of the proportions of PVA (0.2-3.5 wt%) and BC (0.1-1.5 wt%) components in composite cryogels resulted in significant changes in the material basic properties. This work represents an attempt to efficiently design and prepare target composite cryogels using machine learning and providing valuable insights for the efficient development of polymers.


Subject(s)
Cellulose , Cryogels , Machine Learning , Polyhydroxyethyl Methacrylate , Polyvinyl Alcohol , Cryogels/chemistry , Polyvinyl Alcohol/chemistry , Polyhydroxyethyl Methacrylate/chemistry , Cellulose/chemistry , Porosity , Neural Networks, Computer
4.
Int J Biol Macromol ; 270(Pt 2): 132174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750842

ABSTRACT

Hydrogels containing catechol group have received attention in the biomedical field due to their robust adhesive/cohesive capabilities, biocompatibility, and hemostatic abilities. Catechol-functionalized chitosan holds promise for preparing self-assembly hydrogels. However, issues of inefficient gelation and instability still persist in these hydrogels. In the current study, we synthesized chitosan catechol (CC) of high catechol substitution (∼28 %) and combined CC with tannic acid (TA, which also contains catechol) to form self-healing CC-TA hydrogels. The catechol-enriched CC-TA composite hydrogels showed rapid gelation and mechanical reinforcement (shear modulus ∼110 Pa). In situ coherent small-angle X-ray scattering (SAXS) coupled with rheometry revealed a morphological feature of mesoscale clusters (∼20 nm) within CC-TA hydrogel. The clusters underwent dynamic destruction under large-amplitude oscillatory shear, corresponding with the strain-dependent and self-healing behavior of the CC-TA hydrogel. The composite hydrogel had osmotic-responsive and notable adhesive properties. Meanwhile, CC-TA composite cryogel prepared simply through freeze-thawing procedures exhibited distinctive macroporous structure (∼200 µm), high water swelling ratio (∼7000 %), and favorable compressive modulus (∼8 kPa). The sponge-like cryogel was fabricated into swabs, demonstrating hemostatic capacity. The CC-TA composites, in both hydrogel and cryogel forms, possessed ROS scavenging ability, antimicrobial activity, and cell compatibility with potentials in biological applications.


Subject(s)
Catechols , Chitosan , Cryogels , Hemostatics , Hydrogels , Tannins , Chitosan/chemistry , Chitosan/pharmacology , Catechols/chemistry , Catechols/pharmacology , Tannins/chemistry , Tannins/pharmacology , Cryogels/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Animals , Rheology
5.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38772344

ABSTRACT

Lentiviral transduction is widely used in research, has shown promise in clinical trials involving gene therapy and has been approved for CAR-T cell immunotherapy. However, most modifications are doneex vivoand rely on systemic administration of large numbers of transduced cells for clinical applications. A novel approach utilizingin situbiomaterial-based gene delivery can reduce off-target side effects while enhancing effectiveness of the manipulation process. In this study, poly(ethylene glycol) diacrylate (PEGDA)-based scaffolds were developed to enablein situlentivirus-mediated transduction. Compared to other widely popular biomaterials, PEGDA stands out due to its robustness and cost-effectiveness. These scaffolds, prepared via cryogelation, are capable of flowing through surgical needles in bothin vitroandin vivoconditions, and promptly regain their original shape. Modification with poly(L-lysine) (PLL) enables lentivirus immobilization while interconnected macroporous structure allows cell infiltration into these matrices, thereby facilitating cell-virus interaction over a large surface area for efficient transduction. Notably, these preformed injectable scaffolds demonstrate hemocompatibility, cell viability and minimally inflammatory response as shown by ourin vitroandin vivostudies involving histology and immunophenotyping of infiltrating cells. This study marks the first instance of using preformed injectable scaffolds for delivery of lentivectors, which offers a non-invasive and localized approach for delivery of factors enablingin situlentiviral transduction suitable for both tissue engineering and immunotherapeutic applications.


Subject(s)
Cryogels , Gene Transfer Techniques , Lentivirus , Polyethylene Glycols , Polyethylene Glycols/chemistry , Cryogels/chemistry , Humans , Lentivirus/genetics , Animals , Cell Survival/drug effects , Tissue Scaffolds/chemistry , Transduction, Genetic , Mice , Biocompatible Materials/chemistry , Genetic Therapy/methods , Surface Properties , Injections , Polylysine/chemistry
6.
Biomacromolecules ; 25(6): 3464-3474, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38743442

ABSTRACT

Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.


Subject(s)
Cryogels , Cryogels/chemistry , Porosity , Peptides/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Polymerization , Polymers/chemistry , Compressive Strength , Extracellular Matrix/chemistry
7.
Sci Adv ; 10(14): eadk5949, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578991

ABSTRACT

The transplantation of engineered cells that secrete therapeutic proteins presents a promising method for addressing a range of chronic diseases. However, hydrogels used to encase and protect non-autologous cells from immune rejection often suffer from poor mechanical properties, insufficient oxygenation, and fibrotic encapsulation. Here, we introduce a composite encapsulation system comprising an oxygen-permeable silicone cryogel skeleton, a hydrogel matrix, and a fibrosis-resistant polymer coating. Cryogel skeletons enhance the fracture toughness of conventional alginate hydrogels by 23-fold and oxygen diffusion by 2.8-fold, effectively mitigating both implant fracture and hypoxia of encapsulated cells. Composite implants containing xenogeneic cells engineered to secrete erythropoietin significantly outperform unsupported alginate implants in therapeutic delivery over 8 weeks in immunocompetent mice. By improving mechanical resiliency and sustaining denser cell populations, silicone cryogel skeletons enable more durable and miniaturized therapeutic implants.


Subject(s)
Cryogels , Hydrogels , Mice , Animals , Silicones , Alginates , Oxygen , Skeleton , Cell Survival
8.
ACS Appl Mater Interfaces ; 16(15): 18386-18399, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591243

ABSTRACT

Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.


Subject(s)
Cryogels , Printing, Three-Dimensional , Humans , Cryogels/chemistry , Anisotropy , Adipocytes , Tissue Engineering/methods , Tissue Scaffolds/chemistry
9.
Int J Biol Macromol ; 266(Pt 1): 131399, 2024 May.
Article in English | MEDLINE | ID: mdl-38641504

ABSTRACT

Developing an injectable hemostatic dressing with shape recovery and high blood absorption ratio for rapid hemostasis in noncompressible hemorrhage maintains a critical clinical challenge. Here, double-network cryogels based on carboxymethyl chitosan, sodium alginate, and methacrylated sodium alginate were prepared by covalent crosslinking and physical crosslinking, and named carboxymethyl chitosan/methacrylated sodium alginate (CM) cryogels. Covalent crosslinking was achieved by methacrylated sodium alginate in the freeze casting process, while physical crosslinking was realized by electrostatic interaction between the amino group of carboxymethyl chitosan and the carboxyl group of sodium alginate. CM cryogels exhibited large water swelling ratios (8167 ± 1062 %), fast blood absorption speed (2974 ± 669 % in 15 s), excellent compressive strength (over 160 kPa for CM100) and shape recovery performance. Compared with gauze and commercial gelatin sponge, better hemostatic capacities were demonstrated for CM cryogel with the minimum blood loss of 40.0 ± 8.9 mg and the lowest hemostasis time of 5.0 ± 2.0 s at hemostasis of rat liver. Made of natural polysaccharides with biocompatibility, hemocompatibility, and cytocompatibility, the CM cryogels exhibit shape recovery and high blood absorption rate, making them promising to be used as an injectable hemostatic dressing for rapid hemostasis in noncompressible hemorrhage.


Subject(s)
Alginates , Chitosan , Chitosan/analogs & derivatives , Cryogels , Hemorrhage , Hemostasis , Hemostatics , Chitosan/chemistry , Cryogels/chemistry , Alginates/chemistry , Animals , Hemorrhage/drug therapy , Rats , Hemostasis/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Biocompatible Materials/chemistry , Humans , Male
10.
Nitric Oxide ; 146: 48-57, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38579898

ABSTRACT

The highly porous morphology of chitosan cryogels, with submicrometric-sized pore cell walls, provides a large surface area which leads to fast water absorption and elevated swelling degrees. These characteristics are crucial for the applications of nitric oxide (NO) releasing biomaterials, in which the release of NO is triggered by the hydration of the material. In the present study, we report the development of chitosan cryogels (CS) with a porous structure of interconnected cells, with wall thicknesses in the range of 340-881 nm, capable of releasing NO triggered by the rapid hydration process. This property was obtained using an innovative strategy based on the functionalization of CS with two previously synthesized S-nitrosothiols: S-nitrosothioglycolic acid (TGA(SNO)) and S-nitrosomercaptosuccinic acid (MSA(SNO)). For this purpose, CS was previously methacrylated with glycidyl methacrylate and subsequently submitted to photocrosslinking and freeze-drying processes. The photocrosslinked hydrogels thus obtained were then functionalized with TGA(SNO) and MSA(SNO) in reactions mediated by carbodiimide. After functionalization, the hydrogels were frozen and freeze-dried to obtain porous S-nitrosated chitosan cryogels with high swelling capacities. Through chemiluminescence measurements, we demonstrated that CS-TGA(SNO) and CS-MSA(SNO) cryogels spontaneously release NO upon water absorption at rates of 3.34 × 10-2 nmol mg-1 min-1 and 1.27 × 10-1 nmol mg-1 min-1, respectively, opening new perspectives for the use of CS as a platform for localized NO delivery in biomedical applications.


Subject(s)
Chitosan , Cryogels , Nitric Oxide , Chitosan/chemistry , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Cryogels/chemistry , Porosity , Photochemical Processes , Cross-Linking Reagents/chemistry
11.
ACS Biomater Sci Eng ; 10(5): 3017-3028, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38655791

ABSTRACT

Macroporous cryogels are attractive scaffolds for biomedical applications, such as biomolecular immobilization, diagnostic sensing, and tissue engineering. In this study, thiol-reactive redox-responsive cryogels with a porous structure are prepared using photopolymerization of a pyridyl disulfide poly(ethylene glycol) methacrylate (PDS-PEG-MA) monomer. Reactive cryogels are produced using PDS-PEG-MA and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) monomers, along with a PEG-based cross-linker and photoinitiator. Functionalization of cryogels using a fluorescent dye via the disulfide-thiol exchange reactions is demonstrated, followed by release under reducing conditions. For ligand-mediated protein immobilization, first, thiol-containing biotin or mannose is conjugated onto the cryogels. Subsequently, fluorescent dye-labeled proteins streptavidin and concanavalin A (ConA) are immobilized via ligand-mediated conjugation. Furthermore, we demonstrate that the mannose-decorated cryogel could capture ConA selectively from a mixture of lectins. The efficiency of protein immobilization could be easily tuned by changing the ratio of the thiol-sensitive moiety in the scaffold. Finally, an integrin-binding cell adhesive peptide is attached to cryogels to achieve successful attachment, and the on-demand detachment of integrin-receptor-rich fibroblast cells is demonstrated. Redox-responsive cryogels can serve as potential scaffolds for a variety of biomedical applications because of their facile synthesis and modification.


Subject(s)
Cryogels , Oxidation-Reduction , Polyethylene Glycols , Cryogels/chemistry , Polyethylene Glycols/chemistry , Animals , Concanavalin A/chemistry , Concanavalin A/metabolism , Methacrylates/chemistry , Mice , Mannose/chemistry , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Sulfhydryl Compounds/chemistry , Streptavidin/chemistry , Streptavidin/metabolism , Proteins/chemistry , Proteins/metabolism , Biotin/chemistry , Biotin/metabolism , Biotin/analogs & derivatives , Porosity
12.
Talanta ; 275: 126122, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663063

ABSTRACT

Hydrogel biosensors present numerous advantages in food safety analysis owing to their remarkable biocompatibility, cargo-loading capabilities and optical properties. However, the current drawbacks (slow target responsiveness and poor mechanical strength) restricted their further utilization at on-site detection of targets. To address these challenges, a DNA-functionalized cryogel with hierarchical pore structures is constructed to improve the reaction rate and the robustness of hydrogel biosensor. During cryogel preparation, ice crystals serve as templates, shaping interconnected hierarchical microporous structures to enhance mass transfer for faster responses. Meanwhile, in the non-freezing zone, concentrated monomers create a dense cross-linked network, strengthening cryogel matrix strength. Accordingly, a colorimetric biosensor based on DNA cryogel has been developed as a proof of concept for rapid detection of aflatoxin B1 (AFB1) in food samples, and an excellent analytical performance was obtained under the optimized conditions with a low detection limit (1 nM), broad detection range (5-100 nM), satisfactory accuracy and precision (recoveries, 81.2-112.6 %; CV, 2.75-5.53 %). Furthermore, by integrating with a smartphone sensing platform, a portable device was created for rapid on-site measurement of target within 45 min, which provided some insight for hydrogel biosensors design.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Colorimetry , Cryogels , DNA , Food Contamination , Aflatoxin B1/analysis , Biosensing Techniques/methods , Colorimetry/methods , DNA/chemistry , DNA/analysis , Cryogels/chemistry , Food Contamination/analysis , Limit of Detection , Hydrogels/chemistry , Food Analysis/methods
13.
Colloids Surf B Biointerfaces ; 237: 113859, 2024 May.
Article in English | MEDLINE | ID: mdl-38547794

ABSTRACT

The main goal of bone tissue engineering research is to replace the allogenic and autologous bone graft substitutes that can promote bone repair. Owing to excellent biocompatibility and osteoconductivity, hydroxyapatite is in extensive research and high demand for both medical and non-medical applications. Although various methods have been developed for the synthesis of hydroxyapatite, in the present study we have shown the use of nanosecond laser energy in the wet precipitation method of nano-hydroxyapatite (nHAP) synthesis without using ammonium solution or any other chemicals for pH maintenance. Here, the present study aimed to fabricate the nanohydroxyapatite using a nanosecond laser. The X-ray diffraction and Fourier transform infrared spectroscopy have confirmed the hydroxyapatite formation under laser irradiation in less time without aging. A transmission electron microscopy confirmed the nano size of synthesized nHAP, which is comparable to conventional nHAP. The length and width of the laser-assisted nHAP were found to be in the range of 50-200 nm and 15-20 nm, respectively, at various laser parameters. The crystallite size obtained by Debye Scherrer formulae was found to be in the range of ∼ 16-36 nm. In addition, laser-assisted nHAP based composite cryogel (nanohydroxyapatite/gelatin/collagen I) was synthesized and impregnated with bioactive molecules (bone morphogenic protein and zoledronic acid) that demonstrated significant osteogenic potential both in vitro in cell experiment and in vivo rat muscle pouch model (abdomen and tibia muscles). Dual-energy X-ray analysis, micro-CT, and histological analysis confirmed ectopic bone regeneration. Micro-CT based histomorphometry showed a higher amount (more than 10-fold) of mineralization for animal groups implanted with composite cryogels loaded with bioactive molecules compared to only composite cryogels groups. Our findings thus demonstrate a controlled and rapid synthetic method for the synthesis of nHAP with various physical, chemical, and biological properties exhibited as comparable to conventionally synthesized nHAP.


Subject(s)
Cryogels , Durapatite , Pyrenes , Rats , Animals , Durapatite/pharmacology , Durapatite/chemistry , Bone Regeneration/physiology , Bone and Bones , Tissue Scaffolds/chemistry
14.
J Mater Chem B ; 12(14): 3453-3468, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38505998

ABSTRACT

In this work, we have demonstrated agar and oxidized bacterial cellulose cryogels as a potential hemostatic dressing material. TEMPO-oxidized bacterial cellulose (OBC) was incorporated into the agar matrix, improving its mechanical and hemostatic properties. The oxidation of bacterial cellulose (BC) was evidenced by chemical characterization studies, confirming the presence of carboxyl groups. The in vitro blood clotting test conducted on agar/OBC composite cryogels demonstrated complete blood clotting within 90 seconds, indicating their excellent hemostatic efficacy. The cryogels exhibited superabsorbent properties with a swelling degree of 4200%, enabling them to absorb large amounts of blood. Moreover, the compressive strength of the composite cryogels was appreciably improved compared to pure agar, resulting in a more stable physical structure. The platelet adhesion test proved the significant ability of the composite cryogels to adhere to and aggregate platelets. Hemocompatibility and cytocompatibility tests have verified the safety of these cryogels for hemostatic applications. Finally, the material exhibited remarkable in vivo hemostatic performance, achieving clotting times of 64 seconds and 35 seconds when tested in the rat tail amputation model and the liver puncture model, respectively. The experiment results were compared with those of commercial hemostat, Axiostat, and Surgispon, affirming the potential of agar/OBC composite cryogel as a hemostatic dressing material.


Subject(s)
Cellulose, Oxidized , Hemostatics , Rats , Animals , Hemostatics/pharmacology , Hemostatics/chemistry , Cellulose, Oxidized/pharmacology , Cryogels/pharmacology , Cryogels/chemistry , Agar , Cellulose/pharmacology
15.
Int J Biol Macromol ; 266(Pt 1): 131168, 2024 May.
Article in English | MEDLINE | ID: mdl-38552694

ABSTRACT

Pharmaceuticals, designed for treating diseases, ironically endanger humans and aquatic ecosystems as pollutants. Adsorption-based wastewater treatment could address this problem, however, creating efficient adsorbents remains a challenge. Recent efforts have shifted towards sustainable bio-based adsorbents. Here, cryogels from lignin-containing cellulose nanofibrils (LCNF) and lignin nanoparticles (LNPs) were explored as pharmaceuticals adsorbents. An enzyme-based approach using laccase was used for crosslinking instead of fossil-based chemical modification. The impact of laccase treatment on LNPs alone produced surface-crosslinked water-insoluble LNPs with preserved morphology and a hemicellulose-rich, water-soluble LNP fraction. The water-insoluble LNPs displayed a significant increase in adsorption capacity, up to 140 % and 400 % for neutral and cationic drugs, respectively. The crosslinked cryogel prepared by one-pot incubation of LNPs, LCNF and laccase showed significantly higher adsorption capacities for various pharmaceuticals in a multi-component system than pure LCNF or unmodified cryogels. The crosslinking minimized the leaching of LNPs in water, signifying enhanced binding between LNPs and LCNF. In real wastewater, the laccase-modified cryogel displayed 8-44 % removal for cationic pharmaceuticals. Overall, laccase treatment facilitated the production of bio-based adsorbents by improving the deposition of LNPs to LCNF. Finally, this work introduces a sustainable approach for engineering adsorbents, while aligning with global sustainability goals.


Subject(s)
Cellulose , Cryogels , Laccase , Lignin , Nanoparticles , Water Pollutants, Chemical , Adsorption , Cryogels/chemistry , Lignin/chemistry , Laccase/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Pharmaceutical Preparations/chemistry , Wastewater/chemistry , Cross-Linking Reagents/chemistry
16.
J Control Release ; 369: 404-419, 2024 May.
Article in English | MEDLINE | ID: mdl-38508528

ABSTRACT

Neurotrophic growth factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been considered as potential therapeutic candidates for neurodegenerative disorders due to their important role in modulating the growth and survival of neurons. However, clinical translation remains elusive, as their large size hinders translocation across the blood-brain barrier (BBB), and their short half-life in vivo necessitates repeated administrations. Local delivery to the brain offers a potential route to the target site but requires a suitable drug-delivery system capable of releasing these proteins in a controlled and sustained manner. Herein, we develop a cryogel microcarrier delivery system which takes advantage of the heparin-binding properties of GDNF and BDNF, to reversibly bind/release these growth factors via electrostatic interactions. Droplet microfluidics and subzero temperature polymerization was used to create monodisperse cryogels with varying degrees of negative charge and an average diameter of 20 µm. By tailoring the inclusion of 3-sulfopropyl acrylate (SPA) as a negatively charged moiety, the release duration of these two growth factors could be adjusted to range from weeks to half a year. 80% SPA cryogels and 20% SPA cryogels were selected to load GDNF and BDNF respectively, for the subsequent biological studies. Cell culture studies demonstrated that these cryogel microcarriers were cytocompatible with neuronal and microglial cell lines, as well as primary neural cultures. Furthermore, in vivo studies confirmed their biocompatibility after administration into the brain, as well as their ability to deliver, retain and release GDNF and BDNF in the striatum. Overall, this study highlights the potential of using cryogel microcarriers for long-term delivery of neurotrophic growth factors to the brain for neurodegenerative disorder therapeutics.


Subject(s)
Brain-Derived Neurotrophic Factor , Brain , Cryogels , Glial Cell Line-Derived Neurotrophic Factor , Cryogels/chemistry , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Animals , Brain-Derived Neurotrophic Factor/administration & dosage , Brain/metabolism , Drug Delivery Systems , Drug Carriers/chemistry , Drug Liberation , Delayed-Action Preparations , Rats, Sprague-Dawley , Humans , Male , Rats
17.
Carbohydr Polym ; 334: 121934, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553248

ABSTRACT

The development of highly effective chitosan-based hemostatic materials that can be utilized for deep wound hemostasis remains a considerable challenge. In this study, a hemostatic antibacterial chitosan/N-hydroxyethyl acrylamide (NHEMAA)/Ti3C2Tx (CSNT) composite cryogel was facilely prepared through the physical interactions between the three components and the spontaneous condensation of NHEMAA. Because of the formation of strong crosslinked network, the CSNT cryogel showed a developed pore structure (~ 99.07 %) and superfast water/blood-triggered shape recovery, enabling it to fill the wound after contacting the blood. Its capillary effect, amino groups, negative charges, and affinity with lipid collectively induced rapid hemostasis, which was confirmed by in vitro and in vivo analysis. In addition, CSNT cryogel showed excellent photothermal antibacterial activities, high biosafety, and in vivo wound healing ability. Furthermore, the presence of chitosan effectively prevented the oxidation of MXene, thus enabling the long-term storage of the MXene-reinforced cryogel. Thus, our hemostatic cryogel demonstrates promising potential for clinical application and commercialization, as it combines high resilience, rapid hemostasis, efficient sterilization, long-term storage, and easy mass production.


Subject(s)
Chitosan , Hemostatics , Nitrites , Transition Elements , Humans , Acrylamide , Anti-Bacterial Agents/pharmacology , Cryogels , Hemostasis , Hemostatics/pharmacology
18.
ACS Appl Mater Interfaces ; 16(12): 14520-14532, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483252

ABSTRACT

The development of shape-memory hemostatic agents is crucial for the treatment of deep incompressible bleeding tissue. However, there are few reports on biomaterials that can monitor bacterial infection at the wound site in real time following hemostasis and effectively promote repair. In this study, we propose a multifunctional QCSG/FLZ cryogel composed of glycidyl methacrylate-functionalized quaternary chitosan (QCSG), fluorescein isothiocyanate (FITC), and a lysozyme (LYZ)-modified zeolitic imidazolate framework (ZIF-8) for incompressible bleeding tissue hemostasis and wound repair. QCSG/FLZ cryogels possess interconnected microporous structure and enhanced mechanical properties, allowing them to be molded into different shapes for effective hemostasis in deep incompressible wounds. Furthermore, the fluorescence quench signal of QCSG/FLZ cryogels enables timely monitoring of bacterial infection when wound triggers infection. Meanwhile, the acidic microenvironment of bacterial infection induces structural lysis of ZIF-8, releasing LYZ and Zn2+, which effectively kill bacteria and accelerate wound repair. In conclusion, our study not only provides potential application of QCSG/FLZ cryogels for hemostasis in deep incompressible wounds but promisingly promotes the development of a tissue repair technique.


Subject(s)
Bacterial Infections , Chitosan , Hemostatics , Humans , Cryogels/chemistry , Hemostatics/chemistry , Hemostasis , Chitosan/chemistry , Hemorrhage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry
19.
Carbohydr Polym ; 332: 121925, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431419

ABSTRACT

Carboxymethyl cellulose (CMC) is a well-known cellulose derivative used in biomedical applications due to its biocompatibility and biodegradability. In this work, novel porous CMC materials, aerogels, were prepared and tested as a drug delivery device. CMC aerogels were made from CMC solutions, followed by non-solvent induced phase separation and drying with supercritical CO2. The influence of CMC characteristics and of processing conditions on aerogels' density, specific surface area, morphology and drug release properties were investigated. Freeze-drying of CMC solutions was also used as an alternative process to compare the properties of the as-obtained "cryogels" with those of aerogels. Aerogels were nanostructured materials with bulk density below 0.25 g/cm3 and high specific surface area up to 143 m2/g. Freeze drying yields highly macroporous materials with low specific surface areas (around 5-18 m2/g) and very low density, 0.01 - 0.07g/cm3. Swelling and dissolution of aerogels and cryogels in water and in a simulated wound exudate (SWE) were evaluated. The drug was loaded in aerogels and cryogels, and release kinetics in SWE was investigated. Drug diffusion coefficients were correlated with material solubility, morphology, density, degree of substitution and drying methods, demonstrating tuneability of new materials' properties in view of their use as delivery matrices.


Subject(s)
Carboxymethylcellulose Sodium , Cryogels , Gels , Drug Delivery Systems , Cellulose
20.
Adv Sci (Weinh) ; 11(17): e2306602, 2024 May.
Article in English | MEDLINE | ID: mdl-38350733

ABSTRACT

Wounds infected with multidrug-resistant (MDR) bacteria are increasingly threatening public health and challenging clinical treatments because of intensive bacterial colonization, excessive inflammatory responses, and superabundant oxidative stress. To overcome this malignant burden and promote wound healing, a multifunctional cryogel (HA/TA2/KR2) composed of hyaluronic acid (HA), tannic acid (TA), and KR-12 peptides is designed. The cryogel exhibited excellent shape-memory properties, strong absorption performance, and hemostatic capacity. In vitro experiments demonstrated that KR-12 in the cryogel can be responsively released by stimulation with hyaluronidase produced by bacteria, reaching robust antibacterial activity against Escherichia coli (E. coli), MDR Pseudomonas aeruginosa (MDR-PA), and methicillin-resistant Staphylococcus aureus (MRSA) by disrupting bacterial cell membranes. Furthermore, the synergetic effect of KR-12 and TA can efficiently scavenge ROS and decrease expression of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α & interleukin (IL)-6), as well as modulate the macrophage phenotype toward the M2 type. In vivo animal tests indicated that the cryogel can effectively destroy bacteria in the wound and promote healing process via accelerating angiogenesis and re-epithelialization. Proteomic analysis revealed the underlying mechanism by which the cryogel mainly reshaped the infected wound microenvironment by inhibiting the Nuclear factor kappa B (NF-κB) signaling pathway and activating the Janus kinase-Signal transducer and activator of transcription (JAK-STAT6) signaling pathway. Therefore, the HA/TA2/KR2 cryogel is a promising dressing candidate for MDR bacteria-infected wound healing.


Subject(s)
Anti-Bacterial Agents , Cryogels , Disease Models, Animal , Hyaluronoglucosaminidase , Reactive Oxygen Species , Wound Healing , Animals , Mice , Anti-Bacterial Agents/pharmacology , Cryogels/pharmacology , Cryogels/chemistry , Escherichia coli/drug effects , Hyaluronic Acid/pharmacology , Hyaluronoglucosaminidase/metabolism , Inflammation/drug therapy , Methicillin-Resistant Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...