Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
1.
Microb Cell Fact ; 23(1): 161, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822407

ABSTRACT

Multi resistant fungi are on the rise, and our arsenal compounds are limited to few choices in the market such as polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. Although each of these drugs featured a unique mechanism, antifungal resistant strains did emerge and continued to arise against them worldwide. Moreover, the genetic variation between fungi and their host humans is small, which leads to significant challenges in new antifungal drug discovery. Endophytes are still an underexplored source of bioactive secondary metabolites. Many studies were conducted to isolate and screen endophytic pure compounds with efficacy against resistant yeasts and fungi; especially, Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus, which encouraged writing this review to critically analyze the chemical nature, potency, and fungal source of the isolated endophytic compounds as well as their novelty features and SAR when possible. Herein, we report a comprehensive list of around 320 assayed antifungal compounds against Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus in the period 1980-2024, the majority of which were isolated from fungi of orders Eurotiales and Hypocreales associated with terrestrial plants, probably due to the ease of laboratory cultivation of these strains. 46% of the reviewed compounds were active against C. albicans, 23% against C. neoformans, 29% against A. fumigatus and only 2% against C. auris. Coculturing was proved to be an effective technique to induce cryptic metabolites absent in other axenic cultures or host extract cultures, with Irperide as the most promising compounds MIC value 1 µg/mL. C. auris was susceptible to only persephacin and rubiginosin C. The latter showed potent inhibition against this recalcitrant strain in a non-fungicide way, which unveils the potential of fungal biofilm inhibition. Further development of culturing techniques and activation of silent metabolic pathways would be favorable to inspire the search for novel bioactive antifungals.


Subject(s)
Antifungal Agents , Endophytes , Antifungal Agents/pharmacology , Endophytes/metabolism , Humans , Microbial Sensitivity Tests , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/metabolism , Fungi/drug effects , Fungi/metabolism , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Candida albicans/drug effects
2.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829899

ABSTRACT

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Subject(s)
Cell Cycle Proteins , Cryptococcus neoformans , Mad2 Proteins , Spindle Apparatus , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Spindle Apparatus/metabolism , Spindle Apparatus/genetics , Signal Transduction , Fungal Proteins/metabolism , Fungal Proteins/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , M Phase Cell Cycle Checkpoints/genetics , Mitosis/genetics , Kinetochores/metabolism , Chromosome Segregation/genetics , Microtubules/metabolism , Microtubules/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 121(21): e2319707121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743622

ABSTRACT

Glycogen is a glucose storage molecule composed of branched α-1,4-glucan chains, best known as an energy reserve that can be broken down to fuel central metabolism. Because fungal cells have a specialized need for glucose in building cell wall glucans, we investigated whether glycogen is used for this process. For these studies, we focused on the pathogenic yeast Cryptococcus neoformans, which causes ~150,000 deaths per year worldwide. We identified two proteins that influence formation of both glycogen and the cell wall: glycogenin (Glg1), which initiates glycogen synthesis, and a protein that we call Glucan organizing enzyme 1 (Goe1). We found that cells missing Glg1 lack α-1,4-glucan in their walls, indicating that this material is derived from glycogen. Without Goe1, glycogen rosettes are mislocalized and ß-1,3-glucan in the cell wall is reduced. Altogether, our results provide mechanisms for a close association between glycogen and cell wall.


Subject(s)
Cell Wall , Cryptococcus neoformans , Fungal Proteins , Glucans , Glycogen , Cell Wall/metabolism , Glycogen/metabolism , Glucans/metabolism , Fungal Proteins/metabolism , Cryptococcus neoformans/metabolism , Glucosyltransferases/metabolism , beta-Glucans/metabolism
4.
Methods Mol Biol ; 2775: 257-268, 2024.
Article in English | MEDLINE | ID: mdl-38758323

ABSTRACT

Melanin is a complex dark pigment synthetized by the phenoloxidase enzyme laccase in Cryptococcus neoformans. In vitro, this enzyme oxidizes exogenous catecholamines to produce melanin that may be secreted or incorporated into the fungal cell wall. This pigment has multiple roles in C. neoformans virulence during its interaction with different hosts and probably also in protecting fungal cells in the environment against predation and oxidative and radiation stresses, among others. However, it is important to note that laccase also has melanin-independent roles in C. neoformans interactions with host cells. In this chapter, we describe a quantitative laccase assay and a method for evaluating the kinetics of melanin production in C. neoformans colonies.


Subject(s)
Cryptococcus neoformans , Laccase , Melanins , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/enzymology , Laccase/metabolism , Melanins/biosynthesis , Melanins/metabolism , Enzyme Assays/methods
5.
Methods Mol Biol ; 2775: 109-126, 2024.
Article in English | MEDLINE | ID: mdl-38758314

ABSTRACT

RNA sequencing is a next-generation sequencing approach that may be used to investigate many aspects of gene expression changes between cells. Analysis of the data is typically a multistep process using several bioinformatics tools. The following protocol utilizes a reliable pipeline for identifying differentially expressed genes among samples of Cryptococcus neoformans that is approachable for the adventurous beginner.


Subject(s)
Computational Biology , Cryptococcus neoformans , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Transcriptome , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Gene Expression Profiling/methods , Computational Biology/methods , Transcriptome/genetics , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation, Fungal , Software , Sequence Analysis, RNA/methods
6.
Methods Mol Biol ; 2775: 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38758319

ABSTRACT

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen found ubiquitously in the environment that causes pneumonia and life-threatening infections of the central nervous system. Following inhalation of yeasts or desiccated basidiospores into the lung alveoli, resident pulmonary phagocytic cells aid in the identification and eradication of Cryptococcus yeast through their arsenal of pattern recognition receptors (PRRs). PRRs recognize conserved pathogen-associated molecular patterns (PAMPs), such as branched mannans, ß-glucans, and chitins that are the major components of the fungal cell wall. However, the key receptors/ligand interactions required for cryptococcal recognition and eventual fungal clearance have yet to be elucidated. Here we present an imaging flow cytometer (IFC) method that offers a novel quantitative cellular imaging and population statistics tool to accurately measure phagocytosis of fungal cells. It has the capacity to measure two distinct steps of phagocytosis: association/attachment and internalization in a high-throughput and quantitative manner that is difficult to achieve with other technologies. Results from these IFC studies allow for the potential to identify PRRs required for recognition, uptake, and subsequent activation of cytokine production, as well as other effector cell responses required for fungal clearance.


Subject(s)
Cryptococcus neoformans , Flow Cytometry , Phagocytosis , Flow Cytometry/methods , Cryptococcus neoformans/metabolism , Animals , Mice , Phagocytes/metabolism , Phagocytes/microbiology , Cryptococcosis/microbiology , Cryptococcosis/metabolism , Cryptococcosis/immunology , Cryptococcus/metabolism , Humans , Image Cytometry/methods , Receptors, Pattern Recognition/metabolism
7.
Methods Mol Biol ; 2775: 127-137, 2024.
Article in English | MEDLINE | ID: mdl-38758315

ABSTRACT

Proteomic profiling provides in-depth information about the regulation of diverse biological processes, activation of and communication across signaling networks, and alterations to protein production, modifications, and interactions. For infectious disease research, mass spectrometry-based proteomics enables detection of host defenses against infection and mechanisms used by the pathogen to evade such responses. In this chapter, we outline protein extraction from organs, tissues, and fluids collected following intranasal inoculation of a murine model with the human fungal pathogen Cryptococcus neoformans. We describe sample preparation, followed by purification, processing on the mass spectrometer, and a robust bioinformatics analysis. The information gleaned from proteomic profiling of fungal infections supports the detection of novel biomarkers for diagnostic and prognostic purposes.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Proteomics , Animals , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/pathogenicity , Mice , Cryptococcosis/microbiology , Cryptococcosis/metabolism , Proteomics/methods , Computational Biology/methods , Proteome/metabolism , Biomarkers/metabolism , Mass Spectrometry/methods
8.
Methods Mol Biol ; 2775: 329-347, 2024.
Article in English | MEDLINE | ID: mdl-38758327

ABSTRACT

The cell wall of the fungal pathogens Cryptococcus neoformans and C. gattii is critical for cell wall integrity and signaling external threats to the cell, allowing it to adapt and grow in a variety of changing environments. Chitin is a polysaccharide found in the cell walls of fungi that is considered to be essential for fungal survival. Chitosan is a polysaccharide derived from chitin via deacetylation that is also essential for cryptococcal cell wall integrity, fungal pathogenicity, and virulence. Cryptococcus has evolved mechanisms to regulate the amount of chitin and chitosan during growth under laboratory conditions or during mammalian infection. Therefore, levels of chitin and chitosan have been useful phenotypes to define mutant Cryptococcus strains. As a result, we have developed and/or refined various qualitative and quantitative methods for measuring chitin and chitosan. These techniques include those that use fluorescent probes that are known to bind to chitin (e.g., calcofluor white and wheat germ agglutinin), as well as those that preferentially bind to chitosan (e.g., eosin Y and cibacron brilliant red 3B-A). Techniques that enhance the localization and quantification of chitin and chitosan in the cell wall include (i) fluorescence microscopy, (ii) flow cytometry, (iii) and spectrofluorometry. We have also modified two highly selective biochemical methods to measure cellular chitin and chitosan content: the Morgan-Elson and the 3-methyl-2-benzothiazolone hydrazine hydrochloride (MBTH) assays, respectively.


Subject(s)
Cell Wall , Chitin , Chitosan , Chitin/metabolism , Chitin/chemistry , Chitin/analysis , Chitosan/chemistry , Chitosan/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Cryptococcus neoformans/metabolism , Fluorescent Dyes/chemistry , Cryptococcus/metabolism , Microscopy, Fluorescence/methods
9.
mSphere ; 9(5): e0025024, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38687055

ABSTRACT

Mitochondrial functions are critical for the ability of the fungal pathogen Cryptococcus neoformans to cause disease. However, mechanistic connections between key functions such as the mitochondrial electron transport chain (ETC) and virulence factor elaboration have yet to be thoroughly characterized. Here, we observed that inhibition of ETC complex III suppressed melanin formation, a major virulence factor. This inhibition was partially overcome by defects in Cir1 or HapX, two transcription factors that regulate iron acquisition and use. In this regard, loss of Cir1 derepresses the expression of laccase genes as a potential mechanism to restore melanin, while HapX may condition melanin formation by controlling oxidative stress. We hypothesize that ETC dysfunction alters redox homeostasis to influence melanin formation. Consistent with this idea, inhibition of growth by hydrogen peroxide was exacerbated in the presence of the melanin substrate L-DOPA. In addition, loss of the mitochondrial chaperone Mrj1, which influences the activity of ETC complex III and reduces ROS accumulation, also partially overcame antimycin A inhibition of melanin. The phenotypic impact of mitochondrial dysfunction was consistent with RNA-Seq analyses of WT cells treated with antimycin A or L-DOPA, or cells lacking Cir1 that revealed influences on transcripts encoding mitochondrial functions (e.g., ETC components and proteins for Fe-S cluster assembly). Overall, these findings reveal mitochondria-nuclear communication via ROS and iron regulators to control virulence factor production in C. neoformans.IMPORTANCEThere is a growing appreciation of the importance of mitochondrial functions and iron homeostasis in the ability of fungal pathogens to sense the vertebrate host environment and cause disease. Many mitochondrial functions such as heme and iron-sulfur cluster biosynthesis, and the electron transport chain (ETC), are dependent on iron. Connections between factors that regulate iron homeostasis and mitochondrial activities are known in model yeasts and are emerging for fungal pathogens. In this study, we identified connections between iron regulatory transcription factors (e.g., Cir1 and HapX) and the activity of complex III of the ETC that influence the formation of melanin, a key virulence factor in the pathogenic fungus Cryptococcus neoformans. This fungus causes meningoencephalitis in immunocompromised people and is a major threat to the HIV/AIDS population. Thus, understanding how mitochondrial functions influence virulence may support new therapeutic approaches to combat diseases caused by C. neoformans and other fungi.


Subject(s)
Cryptococcus neoformans , Melanins , Melanins/metabolism , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/metabolism , Iron/metabolism , Electron Transport , Mitochondria/metabolism , Iron-Regulatory Proteins/metabolism , Iron-Regulatory Proteins/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Virulence Factors/metabolism , Virulence Factors/genetics , Oxidative Stress , Transcription Factors/metabolism , Transcription Factors/genetics , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Chain Complex Proteins/genetics
10.
Arch Microbiol ; 206(4): 153, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472387

ABSTRACT

3-Bromopyruvate (3BP), known for its potent anticancer properties, also exhibits remarkable efficacy against the pathogenic fungus Cryptococcus neoformans. So far it has been proven that the main fungicidal activity of 3BP is based on ATP depletion and a reduction of intracellular level of glutathione. The presented study includes a broad range of methods to further investigate the mechanistic effects of 3BP on C. neoformans cells. The use of flow cytometry allowed a thorough examination of their survival during 3BP treatment, while observations using electron microscopy made it possible to note the changes in cellular morphology. Utilizing ruthenium red, the study suggests a mitochondrial pathway may initiate programmed cell death in response to 3BP. Analysis of free radical generation and gene expression changes supports this hypothesis. These findings enhance comprehension of 3BP's mechanisms in fungal cells, paving the way for its potential application as a therapeutic agent against cryptococcosis.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Cryptococcus neoformans/metabolism , Pyruvates/metabolism , Pyruvates/pharmacology , Pyruvates/therapeutic use , Cryptococcosis/drug therapy , Apoptosis
11.
mBio ; 15(2): e0327523, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38193728

ABSTRACT

The casein kinase 2 (CK2) complex has garnered extensive attention over the past decades as a potential therapeutic target for diverse human diseases, including cancer, diabetes, and obesity, due to its pivotal roles in eukaryotic growth, differentiation, and metabolic homeostasis. While CK2 is also considered a promising antifungal target, its role in fungal pathogens remains unexplored. In this study, we investigated the functions and regulatory mechanisms of the CK2 complex in Cryptococcus neoformans, a major cause of fungal meningitis. The cryptococcal CK2 complex consists of a single catalytic subunit, Cka1, and two regulatory subunits, Ckb1 and Ckb2. Our findings show that Cka1 plays a primary role as a protein kinase, while Ckb1 and Ckb2 have major and minor regulatory functions, respectively, in growth, cell cycle control, morphogenesis, stress response, antifungal drug resistance, and virulence factor production. Interestingly, triple mutants lacking all three subunits (cka1Δ ckb1Δ ckb2Δ) exhibited more severe phenotypic defects than the cka1Δ mutant alone, suggesting that Ckb1/2 may have Cka1-independent functions. In a murine model of systemic cryptococcosis, cka1Δ and cka1Δ ckb1Δ ckb2Δ mutants showed severely reduced virulence. Transcriptomic, proteomic, and phosphoproteomic analyses further revealed that the CK2 complex controls a wide array of effector proteins involved in transcriptional regulation, cell cycle control, nutrient metabolisms, and stress responses. Most notably, CK2 disruption led to dysregulation of key signaling cascades central to C. neoformans pathogenicity, including the Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin signaling pathways. In summary, our study provides novel insights into the multifaceted roles of the fungal CK2 complex and presents a compelling case for targeting it in the development of new antifungal drugs.IMPORTANCEThe casein kinase 2 (CK2) complex, crucial for eukaryotic growth, differentiation, and metabolic regulation, presents a promising therapeutic target for various human diseases, including cancer, diabetes, and obesity. Its potential as an antifungal target is further highlighted in this study, which explores CK2's functions in C. neoformans, a key fungal meningitis pathogen. The CK2 complex in C. neoformans, comprising the Cka1 catalytic subunit and Ckb1/2 regulatory subunits, is integral to processes like growth, cell cycle, morphogenesis, stress response, drug resistance, and virulence. Our findings of CK2's role in regulating critical signaling pathways, including Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin, underscore its importance in C. neoformans pathogenicity. This study provides valuable insights into the fungal CK2 complex, reinforcing its potential as a target for novel antifungal drug development and pointing out a promising direction for creating new antifungal agents.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Diabetes Mellitus , Meningitis, Fungal , Neoplasms , Animals , Mice , Humans , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cryptococcus neoformans/metabolism , Antifungal Agents/metabolism , Calcium/metabolism , Calcineurin/metabolism , Proteomics , Signal Transduction , Cryptococcosis/microbiology , Obesity
12.
Genetics ; 226(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38279937

ABSTRACT

Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membraneless organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Cryptococcus neoformans/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Cryptococcosis/microbiology , Transgenes , Fungal Proteins/genetics
13.
mSphere ; 9(1): e0055723, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38085018

ABSTRACT

The N6-threonylcarbamoyl adenosine (t6A) tRNA modification is critical for ensuring translation fidelity across three domains of life. Our prior work highlighted the KEOPS complex, organized in a Pcc1-Kae1-Bud32-Cgi121 linear arrangement, not only serves an evolutionarily conserved role in t6A tRNA modification but also exerts diverse functional impacts on pathobiological characteristics in Cryptococcus neoformans, a leading cause of fungal meningitis worldwide. However, the extent to which the pleiotropic functions of the KEOPS complex are specifically tied to tRNA modification remains uncertain. To address this, we undertook a functional characterization of Sua5, responsible for generating the precursor threonylcarbamoyl-adenylate (TC-AMP) for t6A tRNA modification, using a reverse genetics approach. Comparative phenotypic analyses with KEOPS mutants revealed that Sua5 plays a vital role in multiple cellular processes, such as t6A tRNA modification, growth, sexual development, stress response, and virulence factor production, thus reflecting the multifaceted functions of the KEOPS complex. In support of this, sua5Δ bud32Δ double mutants showed phenotypes comparable to those of the corresponding single mutants. Intriguingly, a SUA5 allele lacking a mitochondria targeting sequence (SUA5MTSΔ) was sufficient to restore the wild-type phenotypes in the sua5Δ mutant, suggesting that Sua5's primary functional locus may be cytosolic, akin to the KEOPS complex. Further supporting this, the deletion of Qri7, a mitochondrial paralog of Kae1, had no discernible phenotypic impact on C. neoformans. We concluded that cytosolic t6A tRNA modifications, orchestrated by Sua5 and the KEOPS complex, are central to the regulation of diverse pathobiological functions in C. neoformans.IMPORTANCEUnderstanding cellular functions at the molecular level is crucial for advancing disease treatments. Our research reveals a critical connection between the KEOPS complex and Sua5 in Cryptococcus neoformans, a significant cause of fungal meningitis. While the KEOPS complex is known for its versatile roles in cellular processes, Sua5 is specialized in t6A tRNA modification. Our key finding is that the diverse roles of the KEOPS complex, ranging from cell growth and stress response to virulence, are fundamentally linked to its function in t6A tRNA modification. This conclusion is supported by the remarkable similarities between the impacts of Sua5 and KEOPS on these processes, despite their roles in different steps of the t6A modification pathway. This newfound understanding deepens our insight into fungal biology and opens new avenues for developing potential therapies against dangerous fungal diseases.


Subject(s)
Cryptococcus neoformans , Meningitis, Fungal , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Adenosine/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
14.
ACS Infect Dis ; 10(2): 475-488, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-37856427

ABSTRACT

Antibodies play a vital role in the immune response to infectious diseases and can be administered passively to protect patients. In the case of Cryptococcus neoformans, a WHO critical priority fungal pathogen, infection results in antibodies targeting capsular glucuronoxylomannan (GXM). These antibodies yield protective, non-protective, and disease-enhancing outcomes when administered passively. However, it was unknown how these distinct antibodies recognized their antigens at the molecular level, leading to the hypothesis that they may target different GXM epitopes. To test this hypothesis, we constructed a microarray containing 26 glycans representative of those found in highly virulent cryptococcal strains and utilized it to study 16 well-characterized monoclonal antibodies. Notably, we found that protective and non-protective antibodies shared conserved reactivity to the M2 motif of GXM, irrespective of the strain used in infection or GXM-isolated to produce a conjugate vaccine. Here, only two antibodies, 12A1 and 18B7, exhibited diverse trivalent GXM motif reactivity. IgG antibodies associated with protective responses showed cross-reactivity to at least two GXM motifs. This molecular understanding of antibody binding epitopes was used to map the antigenic diversity of two Cryptococcus neoformans strains, which revealed the exceptional complexity of fungal capsular polysaccharides. A multi-GXM motif vaccine holds the potential to effectively address this antigenic diversity. Collectively, these findings underscore the context-dependent nature of antibody function and challenge the classification of anti-GXM epitopes as either "protective" or "non-protective".


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Antibodies, Fungal/metabolism , Cryptococcus neoformans/metabolism , Epitopes , Antibodies, Monoclonal , Polysaccharides
15.
Front Cell Infect Microbiol ; 13: 1331429, 2023.
Article in English | MEDLINE | ID: mdl-38149006

ABSTRACT

Cryptococcus neoformans can invade the central nervous system by crossing the blood-brain barrier via a transcellular mechanism that relies on multiple host factors. In this narrative, we review the evidence that a direct interplay between C. neoformans and brain endothelial cells forms the basis for invasion and transmigration across the brain endothelium. Adherence and internalization of C. neoformans is dependent on transmembrane proteins, including a hyaluronic acid receptor and an ephrin receptor tyrosine kinase. We consider the role of EphA2 in facilitating the invasion of the central nervous system by C. neoformans and highlight experimental evidence supporting macropinocytosis as a potential mechanism of internalization and transcytosis. How macropinocytosis might be conclusively demonstrated in the context of C. neoformans is also discussed.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Cryptococcus neoformans/metabolism , Endothelial Cells/metabolism , Cryptococcosis/metabolism , Brain/metabolism , Blood-Brain Barrier
16.
Nat Commun ; 14(1): 6587, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852972

ABSTRACT

Cryptococcus spp. are environmental fungi that first must adapt to the host environment before they can cause life-threatening meningitis in immunocompromised patients. Host CO2 concentrations are 100-fold higher than the external environment and strains unable to grow at host CO2 concentrations are not pathogenic. Using a genetic screening and transcriptional profiling approach, we report that the TOR pathway is critical for C. neoformans adaptation to host CO2 partly through Ypk1-dependent remodeling of phosphatidylserine asymmetry at the plasma membrane. We also describe a C. neoformans ABC/PDR transporter (PDR9) that is highly expressed in CO2-sensitive environmental strains, suppresses CO2-induced phosphatidylserine/phospholipid remodeling, and increases susceptibility to host concentrations of CO2. Interestingly, regulation of plasma membrane lipid asymmetry by the TOR-Ypk1 axis is distinct in C. neoformans compared to S. cerevisiae. Finally, host CO2 concentrations suppress the C. neoformans pathways that respond to host temperature (Mpk1) and pH (Rim101), indicating that host adaptation requires a stringent balance among distinct stress responses.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Cryptococcus neoformans/metabolism , Saccharomyces cerevisiae/metabolism , Phospholipids/metabolism , Carbon Dioxide/metabolism , Phosphatidylserines/metabolism , Cryptococcosis/microbiology , ATP-Binding Cassette Transporters/metabolism
17.
PLoS Pathog ; 19(10): e1011721, 2023 10.
Article in English | MEDLINE | ID: mdl-37812645

ABSTRACT

V-ATPase, which comprises 13-14 subunits, is essential for pH homeostasis in all eukaryotes, but its proper function requires a regulator to assemble its subunits. While RAVE (regulator of H+-ATPase of vacuolar and endosomal membranes) and Raboconnectin-3 complexes assemble V-ATPase subunits in Saccharomyces cerevisiae and humans, respectively, the function of the RAVE complex in fungal pathogens remains largely unknown. In this study, we identified two RAVE complex components, Rav1 and Wdr1, in the fungal meningitis pathogen Cryptococcus neoformans, and analyzed their roles. Rav1 and Wdr1 are orthologous to yeast RAVE and human Rabconnectin-3 counterparts, respectively, forming the hybrid RAVE (hRAVE) complex. Deletion of RAV1 caused severe defects in growth, cell cycle control, morphogenesis, sexual development, stress responses, and virulence factor production, while the deletion of WDR1 resulted in similar but modest changes, suggesting that Rav1 and Wdr1 play central and accessary roles, respectively. Proteomics analysis confirmed that Wdr1 was one of the Rav1-interacting proteins. Although the hRAVE complex generally has V-ATPase-dependent functions, it also has some V-ATPase-independent roles, suggesting a unique role beyond conventional intracellular pH regulation in C. neoformans. The hRAVE complex played a critical role in the pathogenicity of C. neoformans, and RAV1 deletion attenuated virulence and impaired blood-brain barrier crossing ability. This study provides comprehensive insights into the pathobiological roles of the fungal RAVE complex and suggests a novel therapeutic strategy for controlling cryptococcosis.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Saccharomyces cerevisiae Proteins , Vacuolar Proton-Translocating ATPases , Humans , Saccharomyces cerevisiae Proteins/metabolism , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Saccharomyces cerevisiae/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
18.
Biochem Biophys Res Commun ; 670: 73-78, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37285720

ABSTRACT

The second step in the de novo sphingolipid biosynthesis is the reduction of 3-ketodihydrosphingosine by 3-ketodihydrosphingosine reductase (KDSR) to produce dihydrosphingosine (sphinganine). Fungal TSC10 and mammalian KDSR (also named FVT-1) proteins are the enzymes responsible for this process and they belong to the short-chain dehydrogenase/reductase (SDR) superfamily. Albeit that both fungal and mammalian 3-ketodihydrosphingosine reductases were identified more than a decade ago, no structure of these enzymes from any species has been experimentally determined. Here we report the crystal structure of the catalytic domain of TSC10 from Cryptococcus neoformans in complex with NADPH. cnTSC10 adopts a Rossmann fold with a central seven-stranded ß-sheet flanked by α-helices on both sides. Several regions are disordered that include the segment connecting the serine and tyrosine residues of the catalytic triad, the so-called 'substrate loop', and the C-terminal region that often participates in homo-tetramerization in other SDRs. In addition, the cofactor NADPH is not fully ordered. These structural features indicate that the catalytic site of cnTSC10 possesses significant flexibility. cnTSC10 is predominantly dimeric in solution while a minor portion of the protein forms homo-tetramer. The crystal structure reveals that the homo-dimer interface involves both hydrophobic and hydrophilic interactions mediated by helices α4 and α5, as well as the loop connecting strand ß4 and helix α4. Because residues forming hydrogen bonds and salt bridges in the dimer interface are not conserved between fungal TSC10 and mammalian KDSR proteins, it might be possible to develop inhibitors that selectively target fungal TSC10 dimerization.


Subject(s)
Cryptococcus neoformans , Amino Acid Sequence , Binding Sites , Cryptococcus neoformans/metabolism , Crystallography, X-Ray , Models, Molecular , NADP/metabolism , Oxidoreductases/metabolism
19.
J Basic Microbiol ; 63(10): 1095-1105, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37309240

ABSTRACT

The 3,4-dihydroxyphenylalanine (DOPA) melanin is one of the important virulence factors for Cryptococcus neoformans, which may trigger immune responses in the host. While the production of DOPA melanin is catalyzed by laccase that is predominantly encoded by LAC1 gene. Therefore, regulating the genetic expression of C. neoformans is conducive to exploring the impact of interested molecules on the host. In this work, we established two systems that were constructed quickly and easily for the knock-down/knock-out of LAC1 gene: RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats CRISPR-Cas9. The RNAi system was constructed by pSilencer 4.1-CMV neo plasmid and short hairpin RNA to achieve effective transcriptional suppression. The CRISPR-Cas9 system was used the PNK003 vectors to obtain a stable albino mutant strain. The results of phenotype, quantitative real-time polymerase chain reaction, transmission electron microscope, and spectrophotometry were used to assess the ability of melanin production. As a result, the RNAi system displayed attenuation of transcriptional suppression when the transformants continuously passed on new plates. However, the transcriptional suppression of long loop in short hairpin RNA was more powerful and lasted longer. An albino strain produced by CRISPR-Cas9 was completely unable to synthesize melanin. In conclusion, strains with different capacities of melanin production were obtained by RNAi and CRISPR-Cas9 systems, which might be useful for exploring the linear relation between melanin and immunoreaction of the host. In addition, the two systems in this article might be convenient to quickly screen the possible trait-regulating genes of other serotypes of C. neoformans.


Subject(s)
Cryptococcus neoformans , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , RNA Interference , CRISPR-Cas Systems , Melanins , Dihydroxyphenylalanine , RNA, Small Interfering
20.
Curr Opin Microbiol ; 74: 102331, 2023 08.
Article in English | MEDLINE | ID: mdl-37257400

ABSTRACT

Recent studies in pathogenic yeasts reinforce our appreciation of the influence of metal homeostasis on the fungal cell surface. To illustrate this influence, we focus on recent studies on Cryptococcus neoformans, a fungal pathogen with a complex surface of a cell wall with embedded melanin and an attached polysaccharide capsule. Copper and iron are essential yet toxic metals, and current efforts demonstrate the importance of these metals for modulating the surface structure of C. neoformans cells in ways that contribute to fungal-host interactions during disease in vertebrate hosts. In this review, we briefly summarize mechanisms of acquisition and regulation for copper and iron, and then discuss recent insights into the connections between the metals and the cell surface.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Cryptococcus neoformans/metabolism , Copper/metabolism , Fungal Proteins/metabolism , Cryptococcosis/microbiology , Iron/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...