Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 117(10): 5364-5375, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32094181

ABSTRACT

Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.


Subject(s)
Cercozoa/ultrastructure , Cryptophyta/ultrastructure , Dinoflagellida/ultrastructure , Evolution, Molecular , Genome, Plastid , Plastids/physiology , Symbiosis , Cell Nucleus/genetics , Cell Nucleus/physiology , Cercozoa/classification , Cercozoa/genetics , Chlorophyta/classification , Chlorophyta/physiology , Chlorophyta/ultrastructure , Cryptophyta/classification , Cryptophyta/genetics , Dinoflagellida/classification , Dinoflagellida/genetics , Models, Biological , Phylogeny , Plastids/genetics
2.
mBio ; 9(5)2018 10 30.
Article in English | MEDLINE | ID: mdl-30377285

ABSTRACT

Animals and amoebae assemble actin/spectrin-based plasma membrane skeletons, forming what is often called the cell cortex, whereas euglenids and alveolates (ciliates, dinoflagellates, and apicomplexans) have been shown to assemble a thin, viscoelastic, actin/spectrin-free membrane skeleton, here called the epiplast. Epiplasts include a class of proteins, here called the epiplastins, with a head/medial/tail domain organization, whose medial domains have been characterized in previous studies by their low-complexity amino acid composition. We have identified two additional features of the medial domains: a strong enrichment of acid/base amino acid dyads and a predicted ß-strand/random coil secondary structure. These features have served to identify members in two additional unicellular eukaryotic radiations-the glaucophytes and cryptophytes-as well as additional members in the alveolates and euglenids. We have analyzed the amino acid composition and domain structure of 219 epiplastin sequences and have used quick-freeze deep-etch electron microscopy to visualize the epiplasts of glaucophytes and cryptophytes. We define epiplastins as proteins encoded in organisms that assemble epiplasts, but epiplastin-like proteins, of unknown function, are also encoded in Insecta, Basidiomycetes, and Caulobacter genomes. We discuss the diverse cellular traits that are supported by epiplasts and propose evolutionary scenarios that are consonant with their distribution in extant eukaryotes.IMPORTANCE Membrane skeletons associate with the inner surface of the plasma membrane to provide support for the fragile lipid bilayer and an elastic framework for the cell itself. Several radiations, including animals, organize such skeletons using actin/spectrin proteins, but four major radiations of eukaryotic unicellular organisms, including disease-causing parasites such as Plasmodium, have been known to construct an alternative and essential skeleton (the epiplast) using a class of proteins that we term epiplastins. We have identified epiplastins in two additional radiations and present images of their epiplasts using electron microscopy. We analyze the sequences and secondary structure of 219 epiplastins and present an in-depth overview and analysis of their known and posited roles in cellular organization and parasite infection. An understanding of epiplast assembly may suggest therapeutic approaches to combat infectious agents such as Plasmodium as well as approaches to the engineering of useful viscoelastic biofilms.


Subject(s)
Algal Proteins/chemistry , Alveolata/chemistry , Cryptophyta/chemistry , Euglenida/chemistry , Membrane Proteins/chemistry , Protozoan Proteins/chemistry , Alveolata/ultrastructure , Amino Acids/analysis , Cryoelectron Microscopy , Cryptophyta/ultrastructure , Euglenida/ultrastructure , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Protein Conformation , Protein Domains , Protein Multimerization
3.
Protist ; 169(5): 662-681, 2018 11.
Article in English | MEDLINE | ID: mdl-30125802

ABSTRACT

For years the genus Chroomonas was defined as being a cryptophyte with rectangular periplast plates, with a gullet and with biliprotein types PC 630 or 645. In phylogenetic trees the genus proved to be paraphyletic. Moreover, cells with hexagonal periplast plates were found in an SEM preparation from material of the type species C. nordstedtii. In this study, material of Hansgirg's C. nordstedtii was subjected to PCR and to sequencing of two short DNA tags. These tags allowed for an unambiguous identification of the real C. nordstedtii in the phylogeny of the blue-green cryptophytes. The genus Chroomonas corresponds to subclade 1, whereas subclades 3 and 4 do not belong to Chroomonas, if Hemiselmis is maintained. Additional examination by light and scanning electron microscopy and by spectrophotometry demonstrate that subclade 1 comprises only cells with hexagonal periplast plates and PC 630, whereas rectangular periplast plates are found only in subclades 3 and 4. Consequently the genus Chroomonas and its type species, C. nordstedtii, are revised and two novel species, C. debatzensis and C. gentoftensis sp. nov., are described.


Subject(s)
Cryptophyta/classification , Cryptophyta/genetics , Cryptophyta/growth & development , Cryptophyta/ultrastructure , DNA, Ribosomal/genetics , Microscopy, Electron, Scanning , Phylogeny , Sequence Analysis, DNA
4.
Harmful Algae ; 68: 105-117, 2017 09.
Article in English | MEDLINE | ID: mdl-28962973

ABSTRACT

Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6×106 cells ml-1, but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator-1 h-1, respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3-8.3 cells predator-1h-1 and 0.012-0.033d-1, respectively. Marine cryptophytes, including T. amphioxeia, are known to be favorite prey species for many mixotrophic and heterotrophic dinoflagellates and ciliates. Cryptophytes, therefore, likely play important roles in marine food webs and may exert a considerable potential grazing impact on the populations of marine bacteria.


Subject(s)
Bacteria/metabolism , Cryptophyta/microbiology , Cryptophyta/physiology , Harmful Algal Bloom , Seawater , Bacteria/ultrastructure , Bays , Cryptophyta/ultrastructure , Heterotrophic Processes , Republic of Korea , Synechococcus/metabolism , Synechococcus/ultrastructure
5.
J Eukaryot Microbiol ; 63(6): 804-812, 2016 11.
Article in English | MEDLINE | ID: mdl-27218475

ABSTRACT

We report a new heterotrophic cryptomonad Hemiarma marina n. g., n. sp. that was collected from a seaweed sample from the Republic of Palau. In our molecular phylogenetic analyses using the small subunit ribosomal RNA gene, H. marina formed a clade with two marine environmental sequences, and the clade was placed as a sister lineage of the freshwater cryptomonad environmental clade CRY1. Alternatively, in the concatenated large and small subunit ribosomal RNA gene phylogeny, H. marina was placed as a sister lineage of Goniomonas. Light and electron microscopic observations showed that H. marina shares several ultrastructural features with cryptomonads, such as flattened mitochondrial cristae, a periplast cell covering, and ejectisomes that consist of two coiled ribbon structures. On the other hand, H. marina exhibited unique behaviors, such as attaching to substrates with its posterior flagellum and displaying a jumping motion. H. marina also had unique periplast arrangement and flagellar transitional region. On the basis of both molecular and morphological information, we concluded that H. marina should be treated as new genus and species of cryptomonads.


Subject(s)
Cryptophyta/isolation & purification , Seawater/parasitology , Cryptophyta/classification , Cryptophyta/genetics , Cryptophyta/ultrastructure , DNA, Ribosomal/genetics , Flagella/genetics , Flagella/ultrastructure , Heterotrophic Processes , Microscopy, Electron, Transmission , Phylogeny
6.
Harmful Algae ; 59: 19-30, 2016 11.
Article in English | MEDLINE | ID: mdl-28073503

ABSTRACT

Mesodinium rubrum Lohmann is a mixotrophic ciliate and one of the best studied species exhibiting acquired phototrophy. To investigate the fate of cryptophyte organelles in the ciliate subjected to starvation, we conducted ultrastructural studies of a Korean strain of M. cf. rubrum during a 10 week starvation experiments. Ingested cells of the cryptophyte Teleaulax amphioxeia were first enveloped by ciliate membrane, and then prey organelles, including ejectisomes, flagella, basal bodies and flagellar roots, were digested. Over time, prey nuclei protruded into the cytoplasm of the ciliate, their size and volume increased, and their number decreased, suggesting that the cryptophyte nuclei likely fused with each other in the ciliate cytoplasm. At 4 weeks of starvation, M. cf. rubrum cells without cryptophyte nuclei started to appear. At 10 weeks of starvation, only two M. cf. rubrum cells still possessing a cryptophyte nucleus had relatively intact chloroplast-mitochondria complexes (CMCs), while M. cf. rubrum cells without cryptophyte nuclei had a few damaged CMCs. This is the first ultrastructural study demonstrating that cryptophyte nuclei undergo a dramatic change inside M. cf. rubrum in terms of size, shape, and number following their acquisition.


Subject(s)
Ciliophora/physiology , Ciliophora/cytology , Ciliophora/metabolism , Ciliophora/ultrastructure , Cryptophyta/cytology , Cryptophyta/ultrastructure , Nutritional Physiological Phenomena , Organelles/metabolism , Organelles/ultrastructure
7.
Protist ; 165(2): 113-22, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24568875

ABSTRACT

The cells of cryptophycean and chlorarachniophycean algae contain a nucleomorph, a vestigial nucleus derived from red and green algal endosymbionts respectively. The origin of the nucleomorph is therefore different from that of cellular organelles such as mitochondria and chloroplasts. In this study, we sought to determine whether cell cycle regulation of the nucleomorph in the cryptophycean alga Pyrenomonas helgolandii is functionally similar to that of the cell nucleus. We performed an ultrastructural analysis of nucleomorph division in cells prepared by rapid freezing fixation - freeze substitution and also carried out BrdU labeling experiments to determine the timing of nucleomorph DNA synthesis in relation to that of the cell nucleus. In cells cultured under 16 hours light: 8 hours dark conditions, BrdU labeling experiments showed that DNA synthesis in the nucleomorph occurred during a limited period from 2 hr to 4 hr after the beginning of the dark period. The S phase in the nucleomorph started just after completion of the nuclear S phase. Thus, DNA synthesis in the nucleomorph occurred at a defined period of the cell cycle. By contrast, our BrdU experiments showed that the nucleoids of mitochondria and chloroplasts could perform DNA synthesis throughout the whole cell cycle.


Subject(s)
Cell Cycle , Cell Nucleus/physiology , Cryptophyta/physiology , Cell Nucleus/ultrastructure , Cryptophyta/ultrastructure , DNA/biosynthesis , Darkness , Light , Microscopy, Electron , Microscopy, Fluorescence
8.
New Phytol ; 202(1): 50-78, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24410730

ABSTRACT

Cryptospores, recovered from Ordovician through Devonian rocks, differ from trilete spores in possessing distinctive configurations (i.e. hilate monads, dyads, and permanent tetrads). Their affinities are contentious, but knowledge of their relationships is essential to understanding the nature of the earliest land flora. This review brings together evidence about the source plants, mostly obtained from spores extracted from minute, fragmented, yet exceptionally anatomically preserved fossils. We coin the term 'cryptophytes' for plants that produced the cryptospores and show them to have been simple terrestrial organisms of short stature (i.e. millimetres high). Two lineages are currently recognized. Partitatheca shows a combination of characters (e.g. spo-rophyte bifurcation, stomata, and dyads) unknown in plants today. Lenticulatheca encompasses discoidal sporangia containing monads formed from dyads with ultrastructure closer to that of higher plants, as exemplified by Cooksonia. Other emerging groupings are less well characterized, and their precise affinities to living clades remain unclear. Some may be stem group embryophytes or tracheophytes. Others are more closely related to the bryophytes, but they are not bryophytes as defined by extant representatives. Cryptophytes encompass a pool of diversity from which modern bryophytes and vascular plants emerged, but were competitively replaced by early tracheophytes. Sporogenesis always produced either dyads or tetrads, indicating strict genetic control. The long-held consensus that tetrads were the archetypal condition in land plants is challenged.


Subject(s)
Biodiversity , Cryptophyta/physiology , Spores/physiology , Biological Evolution , Cell Wall/metabolism , Cryptophyta/cytology , Cryptophyta/ultrastructure , Meiosis , Spores/cytology , Spores/ultrastructure
9.
Biochimie ; 100: 3-17, 2014 May.
Article in English | MEDLINE | ID: mdl-24316280

ABSTRACT

The mitochondria have arisen as a consequence of endosymbiosis of an ancestral α-proteobacterium with a methane-producing archae. The main function of the canonical aerobic mitochondria include ATP generation via oxidative phosphorylation, heme and phospholipid synthesis, calcium homeostasis, programmed cell death, and the formation of iron-sulfur clusters. Under oxygen-restricted conditions, the mitochondrion has often undergone remarkable reductive alterations of its content and function, leading to the generation of mitochondrion-related organelles (MROs), such as mitosomes, hydrogenosomes, and mithochondrion-like organelles, which are found in a wide range of anaerobic/microaerophilic eukaryotes that include several medically important parasitic protists such as Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, Cryptosporidium parvum, Blastocystis hominis, and Encephalitozoon cuniculi, as well as free-living protists such as Sawyeria marylandensis, Neocallimastix patriciarum, and Mastigamoeba balamuthi. The transformation from canonical aerobic mitochondria to MROs apparently have occurred in independent lineages, and resulted in the diversity of their components and functions. Due to medical and veterinary importance of the MRO-possessing human- and animal-pathogenic protozoa, their genomic, transcriptomic, proteomic, and biochemical evidence has been accumulated. Detailed analyses of the constituents and functions of the MROs in such anaerobic pathogenic protozoa, which reside oxygen-deprived or oxygen-poor environments such as the mammalian intestine and the genital organs, should illuminate the current evolutionary status of the MROs in these organisms, and give insight to environmental constraints that drive the evolution of eukaryotes and their organelles. In this review, we summarize and discuss the diverse metabolic functions and protein transport systems of the MROs from anaerobic parasitic protozoa.


Subject(s)
Biological Evolution , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Alveolata/physiology , Alveolata/ultrastructure , Amoebozoa/physiology , Amoebozoa/ultrastructure , Anaerobiosis , Biodiversity , Cryptophyta/physiology , Cryptophyta/ultrastructure , Diplomonadida/physiology , Diplomonadida/ultrastructure , Gene Expression Regulation , Genome, Mitochondrial , Humans , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Neocallimastix/physiology , Neocallimastix/ultrastructure , Phylogeny , Protein Transport
10.
Protist ; 164(5): 622-42, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23880436

ABSTRACT

The unarmoured marine dinoflagellate Amphidinium poecilochroum and the unarmoured freshwater dinoflagellate Gymnodinium aeruginosum both belonging to the same clade, are known to possess cryptomonad-derived kleptochloroplasts. Previous studies revealed that G. aeruginosum can synchronise the division of the chloroplast with its own cell division while no simultaneous division takes place in A. poecilochroum, which is interpreted to mean that state of kleptochloroplastidy in G. aeruginosum is closer to that of the initial acquisition of the 'true chloroplast' within the lineage. Although the general ultrastructure of these two species has been reported, the changes in the kleptochloroplast with time have never been followed. We observed morphological changes in kleptochloroplasts of A. poecilochroum and G. aeruginosum following the ingestion of cryptomonad cells, using light and transmission electron microscopes. In A. poecilochroum, the cryptomonad ejectosomes, mitochondria and cytoplasm were all actively transferred into digestive vacuoles within 1h of ingestion. The chloroplasts were deformed and the cryptomonad nucleus was digested after 3h. By contrast, in G. aeruginosum, the cryptomonad cytoplasm and nucleus were retained for 24h following ingestion, and the chloroplast was substantially enlarged. These differences imply that the retention of the cryptomonad nucleus is important for the maintenance of the chloroplast.


Subject(s)
Chloroplasts/ultrastructure , Cryptophyta/ultrastructure , Dinoflagellida/physiology , Dinoflagellida/ultrastructure , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Chloroplasts/metabolism , Cryptophyta/metabolism , Dinoflagellida/classification , Eating
11.
PLoS One ; 8(1): e53820, 2013.
Article in English | MEDLINE | ID: mdl-23308288

ABSTRACT

New specimens of the kleptoplastidal dinoflagellate Gymnodinium eucyaneum Hu were collected in China. We investigated the systematics of the dinoflagellate and the origin of its endosymbiont based on light morphology and phylogenetic analyses using multiple DNA sequences. Cells were dorsoventrally flattened with a sharply acute hypocone and a hemispherical epicone. The confusion between G. eucyaneum and G. acidotum Nygaard still needs to be resolved. We found that the hypocone was conspicuously larger than the epicone in most G. eucyaneum cells, which differed from G. acidotum, but there were a few cells whose hypocone and epicone were of nearly the same size. In addition, there was only one site difference in the partial nuclear LSU rDNA sequences of a sample from Japan given the name G. acidotum and G. eucyaneum in the present study, which suggest that G. eucyaneum may be a synonym of G. acidotum. Spectroscopic analyses and phylogenetic analyses based on nucleomorph SSU rDNA sequences and chloroplast 23 s rDNA sequences suggested that the endosymbiont of G. eucyaneum was derived from Chroomonas (Cryptophyta), and that it was most closely related to C. coerulea Skuja. Moreover, the newly reported kleptoplastidal dinoflagellates G. myriopyrenoides and G. eucyaneum in our study were very similar, and the taxonomy of kleptoplastidal dinoflagellates was discussed.


Subject(s)
Cryptophyta/classification , DNA, Ribosomal/classification , Dinoflagellida/classification , RNA, Ribosomal, 23S/classification , Biological Evolution , Cell Nucleus/ultrastructure , China , Chloroplasts/ultrastructure , Cryptophyta/genetics , Cryptophyta/ultrastructure , DNA, Ribosomal/genetics , Dinoflagellida/genetics , Dinoflagellida/ultrastructure , Phylogeny , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA , Symbiosis
12.
Protoplasma ; 250(2): 551-63, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22868567

ABSTRACT

Fragments of discharged ejectisomes were isolated from two Cryptomonas and a Chroomonas species by detergent treatment followed by Percoll density gradient centrifugation. The fragments withstand high concentrated detergent solutions, reducing agents and freeze-thawing. Disintegration was achieved in 6 M guanidine hydrochloride. Reassembly into long, filamentous, ejectisome-like structures occurred after dialysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the polypeptide patterns of isolated ejectisome fragments and of reconstituted ejectisome-like structures were dominated by polypeptides with relative molecular weights of approximately 6 kDa. The polypeptides were not glycosylated and did not cross-react with antisera directed against recombinant Reb polypeptides which constitute the R-bodies of Caedibacter taeniospiralis. A polyclonal antiserum directed against reconstituted, ejectisome-like filaments cross-reacted with the 6-kDa polypeptides and immunolabeled extruded ejectisome filaments. Twenty amino acid residues, obtained by N-terminal amino acid sequence analysis, matched to polypeptide sequences deduced from cDNA sequences of the cryptophyte Guillardia theta. The term "ejectisins" is introduced for the 6-kDa polypeptides which represent a major component of cryptophycean ejectisomes.


Subject(s)
Cryptophyta/metabolism , Peptides/metabolism , Cells, Cultured , Cryptophyta/ultrastructure , Microscopy, Electron
13.
Protist ; 164(2): 160-82, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23127606

ABSTRACT

We describe a new species of cryptomonad, Goniomonas avonlea sp. nov., using molecular phylogeny and comprehensive microscopic investigation. G. avonlea is a marine bacterivorous flagellate, measuring 8-11 µm long and 6-7 µm wide, with two subequal flagella that are directed anteriorly and posteriorly. G. avonlea is morphologically and genetically distinct from three other Goniomonas species that have been described to date. SEM and TEM show that G. avonlea shares ultrastructural features with other Goniomonas and cryptomonads, including the presence of bipartite ejectisomes, double septa in the transition region, flat mitochondrial cristae, a furrow complex, a rhizostyle, rectangular periplast plates, and the infundibulum. The discharged large ejectisome is straight and has a unique loose, reticulate layer. The flagellar apparatus includes non-tubular roots, microtubular roots, and a compound root that is reminiscent of the multilayered structure (MLS) observed in the flagellate cells of streptophytes and a few other eukaryotes. Molecular phylogenies based on 18S and 28S rRNA genes suggest a specific affiliation of G. avonlea to marine Goniomonas species, and support the monophyly of Goniomonas to the exclusion of plastid-bearing cryptomonads. Our study adds to a growing body of evidence for the high level of diversity and antiquity of the genus Goniomonas.


Subject(s)
Cryptophyta/classification , Cryptophyta/ultrastructure , Phylogeny , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/ultrastructure , Cryptophyta/genetics , Cryptophyta/physiology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Flagella/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Sequence Data , Organelles/ultrastructure , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA
14.
Protoplasma ; 249(1): 107-15, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21336864

ABSTRACT

The first successful isolation of discharged ejectisomes from pigmented cryptophytes is reported. Discharged ejectisomes from a Chroomonas and two Cryptomonas species were characterized by transmission electron microscopy using negative staining and freeze-etching. Tubular-shaped fragments of variable lengths and diameters were obtained which showed a paracrystalline lattice. Particle periodicities of 4.1 nm along the longitudinal axis and 3.1 nm in the transverse direction were measured in negative-stained fragments. The dimensions measured from freeze-etched ejectisome fragments were about 0.5-1 nm larger. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a protein banding pattern, dominated by polypeptides of 40-44, 23-25 and 16-18 kDa. The results are discussed in the context of what is currently known about extrusomes of protists.


Subject(s)
Cell Fractionation/methods , Cryptophyta/chemistry , Organelles/chemistry , Organelles/ultrastructure , Cell Physiological Phenomena , Cryptophyta/physiology , Cryptophyta/ultrastructure , Electrophoresis, Polyacrylamide Gel , Freeze Etching , Microscopy, Electron, Transmission , Peptides/chemistry , Peptides/isolation & purification , Species Specificity , Spectrum Analysis/methods
15.
Photosynth Res ; 100(1): 7-17, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19224391

ABSTRACT

Unicellular cryptophyte algae employ antenna proteins with phycobilin chromophores in their photosynthetic machinery. The mechanism of light harvesting in these organisms is significantly different than the energy funneling processes in phycobilisomes utilized by cyanobacteria and red algae. One of the most striking features of cryptophytes is the location of the water-soluble phycobiliproteins, which are contained within the intrathylakoid spaces and are not on the stromal side of the lamellae as in the red algae and cyanobacteria. Studies of mobility of phycobiliproteins at the lumenal side of the thylakoid membranes and how their diffusional behavior may influence the energy funneling steps in light harvesting are reported. Confocal microscopy and fluorescence recovery after photobleaching (FRAP) are used to measure the diffusion coefficient of phycoerythrin 545 (PE545), the primary light harvesting protein of Rhodomonas CS24, in vivo. It is concluded that the diffusion of PE545 in the lumen is inhibited, suggesting possible membrane association or aggregation as a potential source of mobility hindrance.


Subject(s)
Chloroplasts/metabolism , Cryptophyta/metabolism , Phycobiliproteins/metabolism , Absorption , Chloroplasts/ultrastructure , Cryptophyta/cytology , Cryptophyta/ultrastructure , Diffusion , Fluorescence Recovery After Photobleaching , Microscopy, Confocal , Microscopy, Electron, Transmission , Spectrometry, Fluorescence
16.
Int Microbiol ; 11(3): 171-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18843595

ABSTRACT

Thylakoid membranes of the cryptophyte Chroomonas sp. strain LT were solubilized with dodecyl-beta-maltoside and subjected to sucrose density gradient centrifugation. The four pigment protein complexes obtained were subsequently characterized by absorption and fluorescence spectroscopy, SDS-PAGE, and Western immunoblotting using antisera against the chlorophyll a/c-binding proteins of the marine cryptophyte Cryptomonas maculata and the reaction-center protein D2 of photosystem II of maize. Band 1 consisted mainly of free pigments, phycobiliproteins, and chlorophyll-a/c-binding proteins. Band 2 represented a major chlorophyll a/c-binding protein fraction. A mixture of photosystem II and photosystem I proteins comprised band 3, whereas band 4 was enriched in proteins of photosystem I. Western immunoblotting demonstrated the presence of chlorophyll a/c-binding proteins and their association with photosystem I in band 4. Phosphorylation experiments showed that chlorophyll a/c-binding proteins became phosphorylated. Negative staining electron microscopy of band B4 revealed photosystem I particles with dimensions of 22 nm. Our work showed that PSI-LHCI complexes of cryptophytes are similar to those of Chlamydomonas rheinhardtii, the diatom Phaeodactylum tricornutum, and higher plants.


Subject(s)
Chlorophyll/metabolism , Cryptophyta/metabolism , Peptides/metabolism , Photosystem I Protein Complex/metabolism , Centrifugation, Density Gradient , Chlorophyll A , Cryptophyta/growth & development , Cryptophyta/ultrastructure , Dimerization , Light-Harvesting Protein Complexes/metabolism , Maltose/analogs & derivatives , Maltose/metabolism , Microscopy, Electron , Phosphorylation , Photosystem I Protein Complex/chemistry
17.
Int. microbiol ; 11(3): 171-178, sept. 2008. ilus, graf
Article in English | IBECS | ID: ibc-61300

ABSTRACT

Thylakoid membranes of the cryptophyte Chroomonas sp. strain LT were solubilized with dodecyl-beta-maltoside and subjected to sucrose density gradient centrifugation. The four pigment protein complexes obtained were subsequently characterized by absorption and fluorescence spectroscopy, SDS-PAGE, and Western immunoblotting using antisera against the chlorophyll a/c-binding proteins of the marine cryptophyte Cryptomonas maculata and the reaction-center protein D2 of photosystem II of maize. Band 1 consisted mainly of free pigments, phycobiliproteins, and chlorophyll-a/c-binding proteins. Band 2 represented a major chlorophyll a/c-binding protein fraction. A mixture of photosystem II and photosystem I proteins comprised band 3, whereas band 4 was enriched in proteins of photosystem I. Western immunoblotting demonstrated the presence of chlorophyll a/c-binding proteins and their association with photosystem I in band 4. Phosphorylation experiments showed that chlorophyll a/c-binding proteins became phosphorylated. Negative staining electron microscopy of band B4 revealed photosystem I particles with dimensions of 22 nm. Our work showed that PSI-LHCI complexes of cryptophytes are similar to those of Chlamydomonas rheinhardtii, the diatom Phaeodactylum tricornutum, and higher plants (AU)


No disponible


Subject(s)
Photosystem I Protein Complex/metabolism , Peptides/metabolism , Chlorophyll/metabolism , Cryptophyta/metabolism , Centrifugation/methods , Photosystem I Protein Complex/chemistry , Phosphorylation , Microscopy, Electron , Cryptophyta/ultrastructure , Cryptophyta/growth & development , Spectrometry, Fluorescence/methods , Light-Harvesting Protein Complexes/metabolism
18.
Eukaryot Cell ; 5(6): 954-63, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16757743

ABSTRACT

The nature of the periplastidial pathway of starch biosynthesis was investigated with the model cryptophyte Guillardia theta. The storage polysaccharide granules were shown to be composed of both amylose and amylopectin fractions with a chain length distribution and crystalline organization very similar to those of starch from green algae and land plants. Most starch granules displayed a shape consistent with biosynthesis occurring around the pyrenoid through the rhodoplast membranes. A protein with significant similarity to the amylose-synthesizing granule-bound starch synthase 1 from green plants was found as the major polypeptide bound to the polysaccharide matrix. N-terminal sequencing of the mature protein proved that the precursor protein carries a nonfunctional transit peptide in its bipartite topogenic signal sequence which is cleaved without yielding transport of the enzyme across the two inner plastid membranes. The enzyme was shown to display similar affinities for ADP and UDP-glucose, while the V(max) measured with UDP-glucose was twofold higher. The granule-bound starch synthase from Guillardia theta was demonstrated to be responsible for the synthesis of long glucan chains and therefore to be the functional equivalent of the amylose-synthesizing enzyme of green plants. Preliminary characterization of the starch pathway suggests that Guillardia theta utilizes a UDP-glucose-based pathway to synthesize starch.


Subject(s)
Cryptophyta/metabolism , Starch Synthase/metabolism , Starch/biosynthesis , Amino Acid Sequence , Amylopectin/metabolism , Amylose/metabolism , Cryptophyta/ultrastructure , Cytoplasmic Granules/chemistry , Cytoplasmic Granules/ultrastructure , Glucosyltransferases/metabolism , Molecular Sequence Data , Phylogeny , Plastids/chemistry , Starch/chemistry , Starch Synthase/chemistry
19.
Parassitologia ; 47(2): 217-25, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16252476

ABSTRACT

Cryptosporidium spp. is a protozoan parasite that causes widespread diarrhoeal disease in humans and other animals and is responsible for large waterborne outbreaks of cryptosporidiosis. Unlike many organisms belonging to the phylum Apicomplexa, such as Plasmodium spp. and Toxoplasma gondii, there is no clinically proven drug treatment against this parasite. Some aspects of the basic biology of Cryptosporidium spp. such as the understanding of key metabolic pathways or the full description of the organellar compartment are still lacking. Here I present evidence of the anomalous shape and substructure of the mitochondrion organelle in C. parvum and C. hominis, which is closer to the Guillardia theta nucleomorph structure rather than to the canonical mitochondrion of the proximate apicomplexan T gondii. The atypical architecture is accomplished by an altered organellar metabolone, inferred by in silico conceptual prediction and characterized by unusual, partial and/or reduced pathways. However, phylogeneticanalyses of the mitochondrion and mitochondrion-related loci hsp60, hsp70 (dnaK), alternative oxidase (AOX) and superoxide dismutase (SOD) in C. parvum show diversiform evolutionary pathways, suggesting a "chimera" derived organelle. Taken together these data depict peculiar and intriguing aspects of the C. parvum and C. hominis anomalous mitochondrion framework for further comparative analysis of the organelle within the Cryptosporidium spp. order.


Subject(s)
Cryptosporidium parvum/ultrastructure , Cryptosporidium/ultrastructure , Mitochondria/physiology , Mitochondria/ultrastructure , Adenosine Triphosphate/biosynthesis , Animals , Chaperonins/genetics , Cryptophyta/ultrastructure , Cryptosporidium/genetics , Cryptosporidium/growth & development , Cryptosporidium/physiology , Cryptosporidium parvum/genetics , Cryptosporidium parvum/growth & development , Cryptosporidium parvum/physiology , DNA, Mitochondrial/analysis , DNA, Protozoan/analysis , Eimeria tenella/ultrastructure , Genomics , Humans , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins , Models, Biological , Oxidative Phosphorylation , Oxidoreductases/genetics , Phylogeny , Plant Proteins , Proteomics , Protozoan Proteins/analysis , Protozoan Proteins/genetics , Species Specificity , Structure-Activity Relationship , Superoxide Dismutase/genetics , Toxoplasma/ultrastructure
20.
Protist ; 156(2): 163-79, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16171184

ABSTRACT

The katablepharids are a morphologically well-defined group of heterotrophic flagellates. Since their original description in 1939, they have been classified in the Cryptophyceae (Cryptophyta) based on their similar cell shape, flagellar orientation, and the presence of ejectisomes visible by light microscopy. However, electron microscopy suggests that the katablepharids are distinct from cryptomonads. A possible affinity with the Alveolata has been proposed which is mainly based on the resemblance of their feeding apparatus to the apical complex of the Apicomplexa or to the tentacles of the Ciliophora. In this study, we provide the first SSU rDNA and beta-tubulin molecular sequence data for two katablepharids: Katablepharis japonica sp. nov. and Leucocryptos marina. We reveal that the katablepharids are not closely related to the Alveolata; rather, phylogenetic reconstruction analyses of SSU rDNA and beta-tubulin suggest that the katablepharids are a distant sister group of the Cryptophyta. We therefore conclude that the katablepharids should be a group equivalent to the Cryptophyta and propose Katablepharidophyta divisio nova (ICBN)/Kathablepharida phylum novum (ICZN).


Subject(s)
Cryptophyta/classification , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Tubulin/genetics , Animals , Base Sequence , Cryptophyta/genetics , Cryptophyta/ultrastructure , DNA, Protozoan/chemistry , DNA, Ribosomal/chemistry , Microscopy, Electron , Molecular Sequence Data , Phylogeny , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...