Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.851
Filter
1.
Parasitol Res ; 123(6): 231, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829429

ABSTRACT

Cryptosporidium spp. are protozoa commonly found in domestic and wild animals. Limited information is available on Cryptosporidium in deer worldwide. In this study, 201 fecal samples were collected from Alpine musk deer on three farms in Gansu Province, China. Detection and subtyping of Cryptosporidium were performed by PCR and sequence analysis of the SSU rRNA and gp60 genes. The prevalence of Cryptosporidium infection in Alpine musk deer was 3.9% (8/201), with infection rates of 1.0% (1/100), 2.8% (1/36), and 9.2% (6/65) in three different farms. All positive samples for Cryptosporidium were from adult deer. Two Cryptosporidium species were identified, including C. parvum (n = 2) and C. xiaoi (n = 6). The C. parvum isolates were subtyped as IIdA15G1, while the C. xiaoi isolates were subtyped as XXIIIa (n = 2) and XXIIIg (n = 4). The IIdA15G1 subtype of C. parvum was found for the first time in deer. These results provide important insights into the identity and human infectious potential of Cryptosporidium in farmed Alpine musk deer.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Deer , Feces , Animals , Deer/parasitology , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , China/epidemiology , Feces/parasitology , Prevalence , DNA, Protozoan/genetics , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Genotype , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
2.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829369

ABSTRACT

Cryptosporidium is an enteric pathogen and a prominent cause of diarrheal disease worldwide. Control of Cryptosporidium requires CD4+ T cells, but how protective CD4+ T cell responses are generated is poorly understood. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to understand the basis for CD4+ T cell priming and effector function. These studies revealed that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node but differentiate into Th1 cells in the gut to provide local parasite control. Although type 1 conventional dendritic cells (cDC1s) were dispensable for CD4+ T cell priming, they were required for CD4+ T cell gut homing and were a source of IL-12 at the site of infection that promoted local production of IFN-γ. Thus, cDC1s have distinct roles in shaping CD4+ T cell responses to an enteric infection: first, to promote gut homing from the mesLN, and second, to drive effector responses in the intestine.


Subject(s)
CD4-Positive T-Lymphocytes , Cryptosporidiosis , Cryptosporidium , Dendritic Cells , Mice, Inbred C57BL , Animals , Dendritic Cells/immunology , Dendritic Cells/parasitology , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , Mice , Cryptosporidium/immunology , Cryptosporidium/physiology , Intestines/immunology , Intestines/parasitology , Interleukin-12/metabolism , Interleukin-12/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Th1 Cells/immunology , Lymph Nodes/immunology , Lymph Nodes/parasitology
3.
Parasit Vectors ; 17(1): 199, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698452

ABSTRACT

BACKGROUND: Enteric parasitic infections remain a major public health problem globally. Cryptosporidium spp., Cyclospora spp. and Giardia spp. are parasites that cause diarrhea in the general populations of both developed and developing countries. Information from molecular genetic studies on the speciation of these parasites and on the role of animals as vectors in disease transmission is lacking in Ghana. This study therefore investigated these diarrhea-causing parasites in humans, domestic rats and wildlife animals in Ghana using molecular tools. METHODS: Fecal samples were collected from asymptomatic school children aged 9-12 years living around the Shai Hills Resource Reserve (tourist site), from wildlife (zebras, kobs, baboons, ostriches, bush rats and bush bucks) at the same site, from warthogs at the Mole National Park (tourist site) and from rats at the Madina Market (a popular vegetable market in Accra, Ghana. The 18S rRNA gene (18S rRNA) and 60-kDa glycoprotein gene (gp60) for Cryptosporidium spp., the glutamate dehydrogenase gene (gdh) for Giardia spp. and the 18S rDNA for Cyclospora spp. were analyzed in all samples by PCR and Sanger sequencing as markers of speciation and genetic diversity. RESULTS: The parasite species identified in the fecal samples collected from humans and animals included the Cryptosporidium species C. hominis, C. muris, C. parvum, C. tyzzeri, C. meleagridis and C. andersoni; the Cyclopora species C. cayetanensis; and the Gardia species, G. lamblia and G. muris. For Cryptosporidium, the presence of the gp60 gene confirmed the finding of C. parvum (41%, 35/85 samples) and C. hominis (29%, 27/85 samples) in animal samples. Cyclospora cayetanensis was found in animal samples for the first time in Ghana. Only one human sample (5%, 1/20) but the majority of animal samples (58%, 51/88) had all three parasite species in the samples tested. CONCLUSIONS: Based on these results of fecal sample testing for parasites, we conclude that animals and human share species of the three genera (Cryptosporidium, Cyclospora, Giardia), with the parasitic species mostly found in animals also found in human samples, and vice-versa. The presence of enteric parasites as mixed infections in asymptomatic humans and animal species indicates that they are reservoirs of infections. This is the first study to report the presence of C. cayetanensis and C. hominis in animals from Ghana. Our findings highlight the need for a detailed description of these parasites using high-throughput genetic tools to further understand these parasites and the neglected tropical diseases they cause in Ghana where such information is scanty.


Subject(s)
Animals, Domestic , Animals, Wild , Cryptosporidiosis , Cryptosporidium , Cyclospora , Cyclosporiasis , Feces , Animals , Ghana/epidemiology , Cyclospora/genetics , Cyclospora/isolation & purification , Cyclospora/classification , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Cyclosporiasis/epidemiology , Cyclosporiasis/parasitology , Cyclosporiasis/veterinary , Animals, Wild/parasitology , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/transmission , Humans , Child , Animals, Domestic/parasitology , Rats , DNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Giardiasis/veterinary , Giardiasis/parasitology , Giardiasis/epidemiology , Diarrhea/parasitology , Diarrhea/veterinary , Diarrhea/epidemiology , Phylogeny , Giardia/genetics , Giardia/isolation & purification , Giardia/classification
4.
Front Immunol ; 15: 1379798, 2024.
Article in English | MEDLINE | ID: mdl-38756777

ABSTRACT

Introduction: Cryptosporidiosis is a poorly controlled zoonosis caused by an intestinal parasite, Cryptosporidium parvum, with a high prevalence in livestock (cattle, sheep, and goats). Young animals are particularly susceptible to this infection due to the immaturity of their intestinal immune system. In a neonatal mouse model, we previously demonstrated the importance of the innate immunity and particularly of type 1 conventional dendritic cells (cDC1) among mononuclear phagocytes (MPs) in controlling the acute phase of C. parvum infection. These immune populations are well described in mice and humans, but their fine characterization in the intestine of young ruminants remained to be further explored. Methods: Immune cells of the small intestinal Peyer's patches and of the distal jejunum were isolated from naive lambs and calves at different ages. This was followed by their fine characterization by flow cytometry and transcriptomic analyses (q-RT-PCR and single cell RNAseq (lamb cells)). Newborn animals were infected with C. parvum, clinical signs and parasite burden were quantified, and isolated MP cells were characterized by flow cytometry in comparison with age matched control animals. Results: Here, we identified one population of macrophages and three subsets of cDC (cDC1, cDC2, and a minor cDC subset with migratory properties) in the intestine of lamb and calf by phenotypic and targeted gene expression analyses. Unsupervised single-cell transcriptomic analysis confirmed the identification of these four intestinal MP subpopulations in lamb, while highlighting a deeper diversity of cell subsets among monocytic and dendritic cells. We demonstrated a weak proportion of cDC1 in the intestine of highly susceptible newborn lambs together with an increase of these cells within the first days of life and in response to the infection. Discussion: Considering cDC1 importance for efficient parasite control in the mouse model, one may speculate that the cDC1/cDC2 ratio plays also a key role for the efficient control of C. parvum in young ruminants. In this study, we established the first fine characterization of intestinal MP subsets in young lambs and calves providing new insights for comparative immunology of the intestinal MP system across species and for future investigations on host-Cryptosporidium interactions in target species.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Homeostasis , Animals , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Cryptosporidium parvum/immunology , Sheep , Cattle , Homeostasis/immunology , Dendritic Cells/immunology , Dendritic Cells/parasitology , Phagocytes/immunology , Phagocytes/parasitology , Animals, Newborn , Sheep Diseases/parasitology , Sheep Diseases/immunology , Peyer's Patches/immunology , Peyer's Patches/parasitology , Macrophages/immunology , Macrophages/parasitology , Intestines/parasitology , Intestines/immunology , Ruminants/parasitology , Ruminants/immunology
5.
Sci Rep ; 14(1): 11218, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755395

ABSTRACT

Cryptosporidium spp. are significant zoonotic intestinal parasites that induce diarrhea and even death across most vertebrates, including humans. Previous studies showed that sheep are important hosts for Cryptosporidium and that its distribution in sheep is influenced by geography, feeding patterns, age, and season. Environmental factors also influence the transmission of Cryptosporidium. Molecular studies of Cryptosporidium in sheep have been conducted in only a few regions of China, and studies into the effect of sheep-housing environments on Cryptosporidium transmission are even rarer. To detect the prevalence of Cryptosporidium in large-scale sheep-housing farms, a total of 1241 fecal samples were collected from sheep, 727 environmental samples were taken from sheep housing, and 30 water samples were collected in six regions of China. To ascertain the existence of the parasite and identify the species of Cryptosporidium spp., we conducted nested PCR amplification of DNA extracted from all samples using the small-subunit (SSU) rRNA gene as a target. For a more in-depth analysis of Cryptosporidium spp. subtypes, C. xiaoi-and C. ubiquitum-positive samples underwent separate nested PCR amplification targeting the 60 kDa glycoprotein (gp60) gene. The amplification of the Cryptosporidium spp. SSU rRNA gene locus from the whole genomic DNA of all samples yielded a positive rate of 1.2% (20/1241) in fecal samples, 0.1% (1/727) in environmental samples, and no positive samples were found in water samples. The prevalence of Cryptosporidium spp. infection in large-scale housed sheep was 1.7%, which was higher than that in free-ranging sheep (0.0%). The highest prevalence of infection was found in weaning lambs (6.8%). Among the different seasons, the peaks were found in the fall and winter. The most prevalent species were C. xiaoi and C. ubiquitum, with the former accounting for the majority of infections. The distribution of C. xiaoi subtypes was diverse, with XXIIIc (n = 1), XXIIId (n = 2), XXIIIe (n = 2), and XXIIIl (n = 4) identified. In contrast, only one subtype, XIIa (n = 9), was found in C. ubiquitum. In this study, C. xiaoi and C. ubiquitum were found to be the predominant species, and Cryptosporidium was found to be present in the environment. These findings provide an important foundation for the comprehensive prevention and management of Cryptosporidium in intensively reared sheep. Furthermore, by elucidating the prevalence of Cryptosporidium in sheep and its potential role in environmental transmission, this study deepens our understanding of the intricate interactions between animal health, environmental contamination, and public health dynamics.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Farms , Feces , Genetic Variation , Sheep Diseases , Animals , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Sheep/parasitology , China/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/transmission , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Sheep Diseases/transmission , Prevalence , Feces/parasitology , Phylogeny
6.
PLoS Negl Trop Dis ; 18(5): e0012157, 2024 May.
Article in English | MEDLINE | ID: mdl-38739632

ABSTRACT

BACKGROUND: A number of studies have detected relationships between weather and diarrhea. Few have investigated associations with specific enteric pathogens. Understanding pathogen-specific relationships with weather is crucial to inform public health in low-resource settings that are especially vulnerable to climate change. OBJECTIVES: Our objectives were to identify weather and environmental risk factors associated with diarrhea and enteropathogen prevalence in young children in rural Bangladesh, a population with high diarrheal disease burden and vulnerability to weather shifts under climate change. METHODS: We matched temperature, precipitation, surface water, and humidity data to observational longitudinal data from a cluster-randomized trial that measured diarrhea and enteropathogen prevalence in children 6 months-5.5 years from 2012-2016. We fit generalized additive mixed models with cubic regression splines and restricted maximum likelihood estimation for smoothing parameters. RESULTS: Comparing weeks with 30°C versus 15°C average temperature, prevalence was 3.5% higher for diarrhea, 7.3% higher for Shiga toxin-producing Escherichia coli (STEC), 17.3% higher for enterotoxigenic E. coli (ETEC), and 8.0% higher for Cryptosporidium. Above-median weekly precipitation (median: 13mm; range: 0-396mm) was associated with 29% higher diarrhea (adjusted prevalence ratio 1.29, 95% CI 1.07, 1.55); higher Cryptosporidium, ETEC, STEC, Shigella, Campylobacter, Aeromonas, and adenovirus 40/41; and lower Giardia, sapovirus, and norovirus prevalence. Other associations were weak or null. DISCUSSION: Higher temperatures and precipitation were associated with higher prevalence of diarrhea and multiple enteropathogens; higher precipitation was associated with lower prevalence of some enteric viruses. Our findings emphasize the heterogeneity of the relationships between hydrometeorological variables and specific enteropathogens, which can be masked when looking at composite measures like all-cause diarrhea. Our results suggest that preventive interventions targeted to reduce enteropathogens just before and during the rainy season may more effectively reduce child diarrhea and enteric pathogen carriage in rural Bangladesh and in settings with similar meteorological characteristics, infrastructure, and enteropathogen transmission.


Subject(s)
Diarrhea , Rural Population , Humans , Bangladesh/epidemiology , Diarrhea/epidemiology , Diarrhea/microbiology , Infant , Child, Preschool , Risk Factors , Rural Population/statistics & numerical data , Prevalence , Male , Female , Weather , Enterotoxigenic Escherichia coli/isolation & purification , Cryptosporidium/isolation & purification , Temperature , Shiga-Toxigenic Escherichia coli/isolation & purification , Climate Change , Cryptosporidiosis/epidemiology
7.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Article in English | MEDLINE | ID: mdl-38718306

ABSTRACT

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Subject(s)
Cryptosporidiosis , Interferon-gamma , Intestinal Mucosa , Mice, Knockout , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Mice , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Cryptosporidium , Epithelial Cells/parasitology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Enterocytes/parasitology , Enterocytes/metabolism , Enterocytes/immunology , Mice, Inbred C57BL , Interferon gamma Receptor , STAT1 Transcription Factor/metabolism , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Signal Transduction
8.
Front Immunol ; 15: 1388366, 2024.
Article in English | MEDLINE | ID: mdl-38799470

ABSTRACT

Cryptosporidiosis in humans is caused by infection of the zoonotic apicomplexan parasite Cryptosporidium parvum. In 2006, it was included by the World Health Organization (WHO) in the group of the most neglected poverty-related diseases. It is characterized by enteritis accompanied by profuse catarrhalic diarrhea with high morbidity and mortality, especially in children of developing countries under the age of 5 years and in HIV patients. The vulnerability of HIV patients indicates that a robust adaptive immune response is required to successfully fight this parasite. Little is known, however, about the adaptive immune response against C. parvum. To have an insight into the early events of the adaptive immune response, we generated primary human dendritic cells (DCs) from monocytes of healthy blood donors and exposed them to C. parvum oocysts and sporozoites in vitro. DCs are equipped with numerous receptors that detect microbial molecules and alarm signals. If stimulation is strong enough, an essential maturation process turns DCs into unique activators of naïve T cells, a prerequisite of any adaptive immune response. Parasite exposure highly induced the production of the pro-inflammatory cytokines/chemokines interleukin (IL)-6 and IL-8 in DCs. Moreover, antigen-presenting molecules (HLA-DR and CD1a), maturation markers, and costimulatory molecules required for T-cell stimulation (CD83, CD40, and CD86) and adhesion molecules (CD11b and CD58) were all upregulated. In addition, parasite-exposed human DCs showed enhanced cell adherence, increased mobility, and a boosted but time-limited phagocytosis of C. parvum oocysts and sporozoites, representing other prerequisites for antigen presentation. Unlike several other microbial stimuli, C. parvum exposure rather led to increased oxidative consumption rates (OCRs) than extracellular acidification rates (ECARs) in DCs, indicating that different metabolic pathways were used to provide energy for DC activation. Taken together, C. parvum-exposed human DCs showed all hallmarks of successful maturation, enabling them to mount an effective adaptive immune response.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Dendritic Cells , Humans , Dendritic Cells/immunology , Cryptosporidium parvum/immunology , Cryptosporidiosis/immunology , Animals , Cytokines/metabolism , Cytokines/immunology , Cells, Cultured , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Adaptive Immunity , Zoonoses/immunology , Zoonoses/parasitology
9.
PLoS Negl Trop Dis ; 18(5): e0012212, 2024 May.
Article in English | MEDLINE | ID: mdl-38787872

ABSTRACT

BACKGROUND: Cryptosporidium spp. cause watery diarrhea in humans and animals, especially in infants and neonates. They parasitize the apical surface of the epithelial cells in the intestinal lumen. However, the pathogenesis of Cryptosporidium-induced diarrhea is not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we infected C57BL/6j neonatal mice with C. parvum IIa and IId subtypes, and examined oocyst burden, pathological changes, and intestinal epithelial permeability during the infection. In addition, transcriptomic analyses were used to study the mechanism of diarrhea induced by the C. parvum IId subtype. The neonatal mice were sensitive to both C. parvum IIa and IId infection, but the IId subtype caused a wide oocyst shedding window and maintained the high oocyst burden in the mice compared with the IIa subtype. In addition, the mice infected with C. parvum IId resulted in severe intestinal damage at the peak of infection, leading to increased permeability of the epithelial barrier. The KEGG, GO and GSEA analyses revealed that the downregulation of adherens junction and cell junction molecules at 11 dpi. Meanwhile, E-cadherin, which is associated with adherens junction, was reduced at the protein level in mouse ileum at peak and late infection. CONCLUSIONS/SIGNIFICANCE: C. parvum IId infection causes more severe pathological damage than C. parvum IIa infection in neonatal mice. Furthermore, the impairment of the epithelial barrier during C. parvum IId infection results from the downregulation of intestinal junction proteins.


Subject(s)
Animals, Newborn , Cryptosporidiosis , Cryptosporidium parvum , Down-Regulation , Intestinal Mucosa , Mice, Inbred C57BL , Animals , Cryptosporidium parvum/genetics , Cryptosporidiosis/parasitology , Cryptosporidiosis/pathology , Mice , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Cadherins/metabolism , Cadherins/genetics , Diarrhea/parasitology , Epithelial Cells/parasitology , Female , Oocysts , Ileum/parasitology , Ileum/pathology , Disease Models, Animal
10.
Nature ; 630(8015): 174-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811723

ABSTRACT

The parasite Cryptosporidium is a leading agent of diarrhoeal disease in young children, and a cause and consequence of chronic malnutrition1,2. There are no vaccines and only limited treatment options3. The parasite infects enterocytes, in which it engages in asexual and sexual replication4, both of which are essential to continued infection and transmission. However, their molecular mechanisms remain largely unclear5. Here we use single-cell RNA sequencing to reveal the gene expression programme of the entire Cryptosporidium parvum life cycle in culture and in infected animals. Diverging from the prevailing model6, we find support for only three intracellular stages: asexual type-I meronts, male gamonts and female gametes. We reveal a highly organized program for the assembly of components at each stage. Dissecting the underlying regulatory network, we identify the transcription factor Myb-M as the earliest determinant of male fate, in an organism that lacks genetic sex determination. Conditional expression of this factor overrides the developmental program and induces widespread maleness, while conditional deletion ablates male development. Both have a profound impact on the infection. A large set of stage-specific genes now provides the opportunity to understand, engineer and disrupt parasite sex and life cycle progression to advance the development of vaccines and treatments.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Life Cycle Stages , Transcription, Genetic , Animals , Life Cycle Stages/genetics , Female , Male , Mice , Cryptosporidium parvum/genetics , Cryptosporidium parvum/growth & development , Cryptosporidiosis/parasitology , Single-Cell Analysis , Sex Determination Processes/genetics , Gene Expression Regulation , Humans , Gene Regulatory Networks
12.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38722262

ABSTRACT

The present research delved into the transmission patterns, diagnostic methods, molecular traits, and phylogenetic analysis of Cryptosporidium species. The research was undertaken to enhance comprehension of the epidemiology and the potential for zoonotic transmission. A total of 80 goat-kid samples were tested, 7 were confirmed positive by mZN microscopy and 12 by nested-PCR. By PCR, 18SSUrRNA, HSP70, and GP60 amplicons were tested for Cryptosporidium. The restriction enzymes viz., SspI, VspI and MboII were used to genotype 12 Cryptosporidium positive samples by which C. parvum and C. bovis mixed infections were detected. Quantitative reverse transcription real-time PCR was used to transcriptionally screen the COWP-subunit genes to assess the severity of the infection in goat-kids, which showed upregulation of COWP6 and COWP4, while COWP9 and COWP3 genes were downregulated. A silent mutation was found at the codon CCA→CCC, which is being reported for the first time in goat field isolates. Phylogenetic and sequencing analyses confirmed the presence of the anthropozoonotic IIe subtype.


Subject(s)
Cryptosporidiosis , Goat Diseases , Goats , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Animals , Goat Diseases/parasitology , Goat Diseases/diagnosis , Cryptosporidiosis/diagnosis , Cryptosporidiosis/parasitology , Real-Time Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/veterinary , Microscopy/veterinary , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Protozoan Proteins/genetics
13.
J Water Health ; 22(3): 612-626, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557575

ABSTRACT

In a recent monitoring study of Minnesota's public supply wells, Cryptosporidium was commonly detected with 40% of the wells having at least one detection. Risk factors for Cryptosporidium occurrence in drinking water supply wells, beyond surface water influence, remain poorly understood. To address this gap, physical and chemical factors were assessed as potential predictors of Cryptosporidium occurrence in 135 public supply wells in Minnesota. Univariable analysis, regression techniques, and classification trees were used to analyze the data. Many variables were identified as significant risk factors in univariable analysis and several remained significant throughout the succeeding analysis techniques. These factors fell into general categories of well use and construction, aquifer characteristics, and connectedness to the land surface, well capture zones, and land use therein, existence of potential contaminant sources within 200-feet of the well, and variability in the chemical and isotopic parameters measured during the study. These risk categories, and the specific variables and threshold values we have identified, can help guide future research on factors influencing Cryptosporidium contamination of wells and can be used by environmental health programs to develop risk-based sampling plans and design interventions that reduce associated health risks.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Groundwater , Water Pollutants, Chemical , Humans , Cryptosporidiosis/epidemiology , Minnesota , Environmental Monitoring/methods , Water Supply , Water Wells , Risk Factors , Water Pollutants, Chemical/analysis
14.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(1): 105-110, 2024 Mar 27.
Article in Chinese | MEDLINE | ID: mdl-38604694

ABSTRACT

Cryptosporidium is an important intestinal parasite that is mainly transmitted through the fecal-oral route. Human infection may occur following ingestion of water and food contaminated by Cryptosporidium oocysts, and children and immunocompromised individuals are at a high risk of infections. The main symptoms of Cryptosporidium infections include diarrhea, vomiting, malnutrition, and even death. Because of high sensitivity and rapid procedures, molecular tests are helpful for the diagnosis of cryptosporidiosis and may reduce the public health risk of cryptosporidiosis. This review summarizes the advances in the latest prevalence and molecular detection of human Cryptosporidium infections during recent years.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Child , Humans , Cryptosporidiosis/diagnosis , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Prevalence , Diarrhea/parasitology , Feces/parasitology
15.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Article in English | MEDLINE | ID: mdl-38660488

ABSTRACT

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Subject(s)
Cryptosporidium parvum , Extracellular Vesicles , Protozoan Proteins , Sporozoites , Extracellular Vesicles/metabolism , Cryptosporidium parvum/metabolism , Sporozoites/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/analysis , Microscopy, Electron, Transmission , Animals , Cryptosporidiosis/parasitology , Humans , Proteome/analysis , Proteomics , Flow Cytometry
16.
BMC Vet Res ; 20(1): 126, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561770

ABSTRACT

BACKGROUND: Ethno-veterinary practices could be used as a sustainable developmental tool by integrating traditional phytotherapy and husbandry. Phytotherapeutics are available and used worldwide. However, evidence of their antiparasitic efficacy is currently very limited. Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality. In this respect, especially smallholders and organic producers face severe challenges. Parasites, as disease causing agents, often outcompete other pathogens in such extensive production systems. A total of 720 faecal samples were collected in two farms from three age categories, i.e. weaners, fatteners, and sows. Flotation (Willis and McMaster method), modified Ziehl-Neelsen stained faecal smear, centrifugal sedimentation, modified Blagg technique, and faecal cultures were used to identify parasites and quantify the parasitic load. RESULTS: The examination confirmed the presence of infections with Eimeria spp., Cryptosporidium spp., Balantioides coli (syn. Balantidium coli), Ascaris suum, Oesophagostomum spp., Strongyloides ransomi, and Trichuris suis, distributed based on age category. A dose of 180 mg/kg bw/day of Allium sativum L. and 90 mg/kg bw/day of Artemisia absinthium L. powders, administered for 10 consecutive days, revealed a strong, taxonomy-based antiprotozoal and anthelmintic activity. CONCLUSIONS: The results highlighted the therapeutic potential of both A. sativum and A. absinthium against gastrointestinal parasites in pigs. Their therapeutic effectiveness may be attributed to the content in polyphenols, tocopherols, flavonoids, sterols, sesquiterpene lactones, and sulfoxide. Further research is required to establish the minimal effective dose of both plants against digestive parasites in pigs.


Subject(s)
Anti-Infective Agents , Artemisia absinthium , Cryptosporidiosis , Cryptosporidium , Garlic , Intestinal Diseases, Parasitic , Parasites , Swine Diseases , Animals , Swine , Female , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Farms , Intestinal Diseases, Parasitic/drug therapy , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Swine Diseases/drug therapy , Swine Diseases/parasitology , Feces/parasitology , Prevalence
17.
BMC Microbiol ; 24(1): 113, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575881

ABSTRACT

BACKGROUND: Cryptosporidium is a highly pathogenic parasite responsible for diarrhea in children worldwide. Here, the epidemiological status and genetic characteristics of Cryptosporidium in children with or without diarrhea were investigated with tracking of potential sources in Wenzhou City, China. METHODS: A total of 1032 children were recruited, 684 of whom had diarrhea and 348 without, from Yuying Children's Hospital in Wenzhou, China. Samples of stool were collected from each participant, followed by extraction of DNA, genotyping, and molecular identification of Cryptosporidium species and subtypes. RESULTS: Twenty-two of the 1032 (2.1%) children were infected with Cryptosporidium spp. with 2.5% (17/684) and 1.4% (5/348) in diarrhoeic and asymptomatic children, respectively. Four Cryptosporidium species were identified, including C. parvum (68.2%; 15/22), C. felis (13.6%; 3/22), C. viatorum (9.1%; 2/22), and C. baileyi (9.1%; 2/22). Two C. parvum subtypes named IIdA19G1 (n = 14) and IInA10 (n = 1), and one each of C. felis (XIXa) and C. viatorum (XVaA3g) subtype was found as well. CONCLUSIONS: This is the first research that identified Cryptosporidium in children of Wenzhou, China, using PCR. Identification of zoonotic C. parvum, C. felis, C. viatorum, and their subtypes indicate potential cross-species transmission of Cryptosporidium between children and animals. Additionally, the presence of C. baileyi in children suggests that this species has a wider host range than previously believed and that it possesses the capacity to infect humans.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Child , Animals , Humans , Cryptosporidium/genetics , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Diarrhea/epidemiology , China/epidemiology , Feces/parasitology , Genotype , Probability
18.
J Water Health ; 22(4): 773-784, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678429

ABSTRACT

This study aims to determine the prevalence of Cryptosporidium and Eimeria spp. oocysts in fish specimens in the river Kura. It was conducted during the 2021-2022 at two sites: Mingachevir reservoir in central Azerbaijan and in Neftchala district where the river finally enters the Caspian Sea through a delta of the Kura River estuary. The diagnosis of oocysts was performed microscopically. Fine smears from the intestine epithelial layers stained by Ziehl-Neelsen for Cryptosporidium oocysts. To identify Eimeria oocysts, each fish's faecal material and intestinal scrapings were examined directly under a light microscope in wet samples on glass slides with a coverslip. Results revealed a prevalence of Cryptosporidium and Eimeria species infections in fish hosts from both territories Rutilus caspicus, Alburnus filippi, Abramis brama orientalis and Carassius gibelio. Of 170 investigated fish specimens, 8.8% (15/170) were infected with Cryptosporidium species oocysts. Eimeria species oocysts were identified in 20.6% (35/170). The presence of Cryptosporidium and Eimeria infections in fish specimens are natural infections. However, their presence in fish species may be attributed to the age of the fish species and water pollution. This is the first report regarding the prevalence of Cryptosporidium oocysts in fish species in Azerbaijan.


Subject(s)
Coccidiosis , Cryptosporidiosis , Cryptosporidium , Cyprinidae , Eimeria , Fish Diseases , Rivers , Animals , Azerbaijan/epidemiology , Rivers/parasitology , Cryptosporidium/isolation & purification , Eimeria/isolation & purification , Cyprinidae/parasitology , Coccidiosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Prevalence , Oocysts/isolation & purification
19.
PLoS One ; 19(4): e0297967, 2024.
Article in English | MEDLINE | ID: mdl-38656969

ABSTRACT

Infectious disease cryptosporidiosis is caused by the cryptosporidium parasite, a type of parasitic organism. It is spread through the ingestion of contaminated water, food, or fecal matter from infected animals or humans. The control becomes difficult because the parasite may remain in the environment for a long period. In this work, we constructed an epidemic model for the infection of cryptosporidiosis in a fractional framework with strong and weak immunity concepts. In our analysis, we utilize the well-known next-generation matrix technique to evaluate the reproduction number of the recommended model, indicated by [Formula: see text]. As [Formula: see text], our results show that the disease-free steady-state is locally asymptotically stable; in other cases, it becomes unstable. Our emphasis is on the dynamical behavior and the qualitative analysis of cryptosporidiosis. Moreover, the fixed point theorem of Schaefer and Banach has been utilized to investigate the existence and uniqueness of the solution. We identify suitable conditions for the Ulam-Hyers stability of the proposed model of the parasitic infection. The impact of the determinants on the sickness caused by cryptosporidiosis is highlighted by the examination of the solution pathways using a novel numerical technique. Numerical investigation is conducted on the solution pathways of the system while varying various input factors. Policymakers and health officials are informed of the crucial factors pertaining to the infection system to aid in its control.


Subject(s)
Cryptosporidiosis , Cryptosporidiosis/transmission , Cryptosporidiosis/immunology , Cryptosporidiosis/epidemiology , Humans , Animals , Cryptosporidium/immunology
20.
Epidemiol Infect ; 152: e64, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616329

ABSTRACT

Occurrence of cryptosporidiosis has been associated with weather conditions in many settings internationally. We explored statistical clusters of human cryptosporidiosis and their relationship with severe weather events in New Zealand (NZ). Notified cases of cryptosporidiosis from 1997 to 2015 were obtained from the national surveillance system. Retrospective space-time permutation was used to identify statistical clusters. Cluster data were compared to severe weather events in a national database. SaTScan analysis detected 38 statistically significant cryptosporidiosis clusters. Around a third (34.2%, 13/38) of these clusters showed temporal and spatial alignment with severe weather events. Of these, nearly half (46.2%, 6/13) occurred in the spring. Only five (38%, 5/13) of these clusters corresponded to a previously reported cryptosporidiosis outbreak. This study provides additional evidence that severe weather events may contribute to the development of some cryptosporidiosis clusters. Further research on this association is needed as rainfall intensity is projected to rise in NZ due to climate change. The findings also provide further arguments for upgrading the quality of drinking water sources to minimize contamination with pathogens from runoff from livestock agriculture.


Subject(s)
Cryptosporidiosis , Weather , Cryptosporidiosis/epidemiology , New Zealand/epidemiology , Humans , Retrospective Studies , Adult , Child, Preschool , Male , Middle Aged , Child , Female , Aged , Adolescent , Young Adult , Space-Time Clustering , Infant , Disease Outbreaks , Aged, 80 and over , Seasons , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL
...