Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 837
Filter
1.
Parasitol Res ; 123(6): 230, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822199

ABSTRACT

Cryptosporidium is an important water-borne and food-borne parasite with a high burden of disease. This organism has been shown to contaminate various leafy vegetables; however, studies assessing the presence of Cryptosporidium spp in pre-washed and ready-to-eat vegetables are limited. Routine surveillance in the UK revealed a nationwide exceedance of human cases of Cryptosporidium. Therefore, this study aims to assess the presence of this parasite in pre-washed vegetables from supermarkets in the UK. A total of 36 samples were purchased from four different supermarkets. A nested PCR targeting the SSU rRNA was carried out on 24 samples, 58% were PCR-positive for Cryptosporidium. Sanger sequencing confirmed that, of these sequences, 4/24 (17%) produced significant similarities to Cryptosporidium parvum. This study provides evidence for the presence of C. parvum in pre-washed and ready-to-eat vegetables. Future work to identify the point of contamination is required.


Subject(s)
Cryptosporidium parvum , Vegetables , Cryptosporidium parvum/isolation & purification , Cryptosporidium parvum/genetics , Cryptosporidium parvum/classification , Vegetables/parasitology , England , Pilot Projects , Supermarkets , Polymerase Chain Reaction , DNA, Protozoan/genetics , Sequence Analysis, DNA , RNA, Ribosomal, 18S/genetics , Humans , DNA, Ribosomal/genetics
2.
PLoS Negl Trop Dis ; 18(5): e0012212, 2024 May.
Article in English | MEDLINE | ID: mdl-38787872

ABSTRACT

BACKGROUND: Cryptosporidium spp. cause watery diarrhea in humans and animals, especially in infants and neonates. They parasitize the apical surface of the epithelial cells in the intestinal lumen. However, the pathogenesis of Cryptosporidium-induced diarrhea is not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we infected C57BL/6j neonatal mice with C. parvum IIa and IId subtypes, and examined oocyst burden, pathological changes, and intestinal epithelial permeability during the infection. In addition, transcriptomic analyses were used to study the mechanism of diarrhea induced by the C. parvum IId subtype. The neonatal mice were sensitive to both C. parvum IIa and IId infection, but the IId subtype caused a wide oocyst shedding window and maintained the high oocyst burden in the mice compared with the IIa subtype. In addition, the mice infected with C. parvum IId resulted in severe intestinal damage at the peak of infection, leading to increased permeability of the epithelial barrier. The KEGG, GO and GSEA analyses revealed that the downregulation of adherens junction and cell junction molecules at 11 dpi. Meanwhile, E-cadherin, which is associated with adherens junction, was reduced at the protein level in mouse ileum at peak and late infection. CONCLUSIONS/SIGNIFICANCE: C. parvum IId infection causes more severe pathological damage than C. parvum IIa infection in neonatal mice. Furthermore, the impairment of the epithelial barrier during C. parvum IId infection results from the downregulation of intestinal junction proteins.


Subject(s)
Animals, Newborn , Cryptosporidiosis , Cryptosporidium parvum , Down-Regulation , Intestinal Mucosa , Mice, Inbred C57BL , Animals , Cryptosporidium parvum/genetics , Cryptosporidiosis/parasitology , Cryptosporidiosis/pathology , Mice , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Cadherins/metabolism , Cadherins/genetics , Diarrhea/parasitology , Epithelial Cells/parasitology , Female , Oocysts , Ileum/parasitology , Ileum/pathology , Disease Models, Animal
3.
Nature ; 630(8015): 174-180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811723

ABSTRACT

The parasite Cryptosporidium is a leading agent of diarrhoeal disease in young children, and a cause and consequence of chronic malnutrition1,2. There are no vaccines and only limited treatment options3. The parasite infects enterocytes, in which it engages in asexual and sexual replication4, both of which are essential to continued infection and transmission. However, their molecular mechanisms remain largely unclear5. Here we use single-cell RNA sequencing to reveal the gene expression programme of the entire Cryptosporidium parvum life cycle in culture and in infected animals. Diverging from the prevailing model6, we find support for only three intracellular stages: asexual type-I meronts, male gamonts and female gametes. We reveal a highly organized program for the assembly of components at each stage. Dissecting the underlying regulatory network, we identify the transcription factor Myb-M as the earliest determinant of male fate, in an organism that lacks genetic sex determination. Conditional expression of this factor overrides the developmental program and induces widespread maleness, while conditional deletion ablates male development. Both have a profound impact on the infection. A large set of stage-specific genes now provides the opportunity to understand, engineer and disrupt parasite sex and life cycle progression to advance the development of vaccines and treatments.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Life Cycle Stages , Transcription, Genetic , Animals , Life Cycle Stages/genetics , Female , Male , Mice , Cryptosporidium parvum/genetics , Cryptosporidium parvum/growth & development , Cryptosporidiosis/parasitology , Single-Cell Analysis , Sex Determination Processes/genetics , Gene Expression Regulation , Humans , Gene Regulatory Networks
4.
Parasit Vectors ; 17(1): 146, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504274

ABSTRACT

BACKGROUND: Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS: We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS: To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS: In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Animals , Cryptosporidium parvum/genetics , Cryptosporidiosis/parasitology , Sporozoites/metabolism , Protozoan Proteins/metabolism , Membrane Proteins/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , DNA-Binding Proteins/metabolism , Biomarkers, Tumor/metabolism , Tumor Suppressor Proteins/metabolism
5.
Acta Trop ; 254: 107177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518835

ABSTRACT

Cryptosporidia (Cryptosporidium) is a protozoan that is widely parasitic in the intestinal cells of humans and animals, and it is also an important zoonotic parasite. However, there is no epidemiological investigation on Cryptosporidium spp. infection in infants with diarrhea of Inner Mongolia, the largest livestock region in China. To investigate the prevalence of Cryptosporidium, 2435 fresh fecal samples were collected from children with diarrhea in Inner Mongolia Maternal and Child Health Care Hospital. Molecular characterization of Cryptosporidium was carried out based on its 18S rRNA and gp60 gene sequences. The overall prevalence was 12.85% (313/2435), and in Hohhot (12.15%), it was lower than that in the surrounding city (14.87%) (P < 0.05). Moreover, Cryptosporidium was detected in different seasons and sexes. Concerning the age of children with diarrhea, the prevalence of those age groups between 0 and 1 was obviously lower than others, and there were significant differences in the prevalence at different ages (P < 0.001). Analysis of the 18S rRNA gene sequence revealed that all the positive samples were Cryptosporidium parvum, and there were 5 subtypes (IIdA23G3, IIdA24G3, IIdA24G4, IIdA25G3, and IIdA25G4). To the best of our knowledge, the above subtypes have not been reported. Our results provide a relevant basis for control and education on food safety and foodborne illness prevention.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Diarrhea , Feces , RNA, Ribosomal, 18S , Humans , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , China/epidemiology , Infant , Female , RNA, Ribosomal, 18S/genetics , Male , Diarrhea/epidemiology , Diarrhea/parasitology , Child, Preschool , Feces/parasitology , Prevalence , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Infant, Newborn , Child , DNA, Protozoan/genetics , Seasons , Sequence Analysis, DNA , Genotype , Phylogeny , Cryptosporidium parvum/genetics , Cryptosporidium parvum/isolation & purification , Cryptosporidium parvum/classification , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
6.
Front Immunol ; 15: 1351427, 2024.
Article in English | MEDLINE | ID: mdl-38318169

ABSTRACT

One of the leading causes of infectious diarrhea in newborn calves is the apicomplexan protozoan Cryptosporidium parvum (C. parvum). However, little is known about its immunopathogenesis. Using next generation sequencing, this study investigated the immune transcriptional response to C. parvum infection in neonatal calves. Neonatal male Holstein-Friesian calves were either orally infected (N = 5) or not (CTRL group, N = 5) with C. parvum oocysts (gp60 subtype IIaA15G2R1) at day 1 of life and slaughtered on day 7 after infection. Total RNA was extracted from the jejunal mucosa for short read. Differentially expressed genes (DEGs) between infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05. Infection did not affect plasma immunohematological parameters, including neutrophil, lymphocyte, monocyte, leucocyte, thrombocyte, and erythrocyte counts as well as hematocrit and hemoglobin concentration on day 7 post infection. The immune-related DEGs were selected according to the UniProt immune system process database and were used for gene ontology (GO) and pathway enrichment analysis using Cytoscape (v3.9.1). Based on GO analysis, DEGs annotated to mucosal immunity, recognizing and presenting antigens, chemotaxis of neutrophils, eosinophils, natural killer cells, B and T cells mediated by signaling pathways including toll like receptors, interleukins, tumor necrosis factor, T cell receptor, and NF-KB were upregulated, while markers of macrophages chemotaxis and cytosolic pattern recognition were downregulated. This study provides a holistic snapshot of immune-related pathways induced by C. parvum in calves, including novel and detailed feedback and feedforward regulatory mechanisms establishing the crosstalk between innate and adaptive immune response in neonate calves, which could be utilized further to develop new therapeutic strategies.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Immune System Phenomena , Animals , Cattle , Male , Humans , Cryptosporidium parvum/genetics , Cryptosporidium/genetics , Transcriptome , Cattle Diseases/genetics , Intestinal Mucosa , Tumor Necrosis Factor-alpha/genetics , Adaptive Immunity
7.
Water Res ; 254: 121333, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38402753

ABSTRACT

The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Cryptosporidium parvum/genetics , Cryptosporidium/genetics , Genomics , Virulence
8.
PLoS Pathog ; 20(2): e1011992, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416794

ABSTRACT

Recent advances in the in vitro cultivation of Cryptosporidium parvum using hollow fiber bioreactor technology (HFB) have permitted continuous growth of parasites that complete all life cycle stages. The method provides access to all stages of the parasite and provides a method for non-animal production of oocysts for use in clinical trials. Here we examined the effect of long-term (>20 months) in vitro culture on virulence-factors, genome conservation, and in vivo pathogenicity of the host by in vitro cultured parasites. We find low-level sequence variation that is consistent with that observed in calf-passaged parasites. Further using a calf model infection, oocysts obtained from the HFB caused diarrhea of the same volume, duration and oocyst shedding intensity as in vivo passaged parasites.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Cryptosporidium parvum/genetics , Virulence , Cryptosporidiosis/parasitology , Oocysts , Genomics , Feces
9.
Vet Parasitol Reg Stud Reports ; 47: 100964, 2024 01.
Article in English | MEDLINE | ID: mdl-38199683

ABSTRACT

Cryptosporidium is a protozoan parasite with worldwide distribution, infecting a wide range of hosts with some zoonotic species. Calves have been identified as one of the most common reservoirs of this parasite. However, little is known about the genetics of Cryptosporidium in calves in Portugal. This study aimed to molecularly characterize infections of Cryptosporidium in pre-weaned calves from the Lisbon and Tagus Valley (LTV) in Portugal. Fifty-two samples were collected from calves from eight dairy and two beef farms in LTV, Portugal. Cryptosporidium oocysts were detected by Modified Ziehl-Neelsen staining (MZN) and direct immunofluorescent assay (DFA). MZN and DFA revealed the presence of Cryptosporidium oocysts in 40.4% (21/52) and 67.3% (35/52) samples, respectively. Positive samples were analyzed by PCR-RFLP of the 18 s rRNA gene for species identification. DNA amplification of the 18S rRNA gene was successful for 88.6% (31/35) of samples. Cryptosporidium parvum was identified in 96.8% (30/31) of the samples, and from one sample Cryptosporidium bovis was identified. Cryptosporidium parvum positive samples were subtyped by sequencing the PCR product of a partial fragment of the 60 kDa glycoprotein (gp60) gene. Subtype analysis of the C. parvum isolates revealed that all isolates belonged to subtype family IIa. Four subtypes were recognized within this subtype family, including the hyper-transmissible IIaA15G2R1 subtype that is the most frequently reported worldwide (27/30), IIaA14G2R1 (1/30), IIaA16G2R1 (1/30) and IIaA19G2R1 (1/30). To our knowledge, this is the first report of C. bovis, and C. parvum subtypes IIaA14G2R1 and IIaA19G2R1 in cattle in LTV, Portugal. The presence of the zoonotic C. parvum subtype in this study suggests that pre-weaned calves are likely to be a significant reservoir of zoonotic C. parvum, highlighting the importance of animal-to-human infection transmission risk. Further molecular studies are required to better understand the epidemiology of cryptosporidiosis in Portugal.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Animals , Cattle , Cryptosporidium/genetics , Portugal/epidemiology , Cryptosporidiosis/epidemiology , Cryptosporidium parvum/genetics , Environment , Oocysts , Cattle Diseases/epidemiology
10.
Nat Commun ; 15(1): 380, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191884

ABSTRACT

Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the tricarboxylic acid cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Cryptosporidium parvum/genetics , Glucose , Phosphates , Escherichia coli , Hexokinase
11.
Proc Natl Acad Sci U S A ; 121(1): e2313210120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147547

ABSTRACT

Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Crosses, Genetic , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Cryptosporidium parvum/genetics , Life Cycle Stages
12.
Acta Trop ; 249: 107057, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37913972

ABSTRACT

Cryptosporidium parvum could regulate the expression of microRNAs of epithelial cells to facilitate its intracellular propagation. MiR-4521 has been reported to play an important role during the development and progression of tumors and infectious diseases by regulating cell proliferation, apoptosis, and autophagy. However, the implication of miR-4521 during C. parvum infection was still unknown. In this study, the expression of miR-4521 was found to be upregulated in HCT-8 cells infected with C. parvum from 8 h post-infection (pi) to 48 hpi, and its upregulation would be related with the TLR/NF-κB signal pathway during C. parvum infection. One potential target of miR-4521, foxm1, was down-regulated in HCT-8 cells from 24 hpi to 48 hpi, and the expression of foxm1 was negatively regulated by miR-4521. The target relationship between miR-4521 and foxm1 was further validated by using dual luciferase reporter assay. Further studies showed that miR-4521 promoted the propagation of C. parvum in HCT-8 cells through targeting foxm1 by regulating BCL2-mediating cell apoptosis. These results contribute to further understanding of the regulatory mechanisms of host miRNAs during Cryptosporidium infection.


Subject(s)
Apoptosis , Cryptosporidiosis , Cryptosporidium parvum , Forkhead Box Protein M1 , MicroRNAs , Humans , Apoptosis/genetics , Cryptosporidiosis/genetics , Cryptosporidiosis/pathology , Cryptosporidium parvum/genetics , MicroRNAs/genetics , Forkhead Box Protein M1/genetics
13.
Sci Rep ; 13(1): 22106, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092824

ABSTRACT

Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.


Subject(s)
Coinfection , Coronavirus, Bovine , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Cattle , Cryptosporidium parvum/genetics , Transcriptome , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Coronavirus, Bovine/genetics
14.
Mikrobiyol Bul ; 57(4): 660-666, 2023 Oct.
Article in Turkish | MEDLINE | ID: mdl-37885393

ABSTRACT

Cow's milk, which is one of today's most important food sources, can be a reservoir for many pathogens that create a risk to public health. One of these pathogens is Cryptosporidium parvum. The oocysts of C.parvum, an obligate intracellular parasite, cause infection when ingested orally. The oocysts scattered around with the feces of infected cows or calves can contaminate raw milk and this is frequently seen in dairy farms. The aim of this study was to investigate the viability of C.parvum by propidium monoazide (PMA)-quantitative polymerase chain reaction (qPCR) method after heat treatment applied to contaminated raw cow's milk. For the study, 50 ml of unpasteurized cow's milk was contaminated with 5 X 105 C.parvum oocysts and portioned into 1.5 ml microcentrifuge tubes. Three groups, namely the control group, pasteurization group and boiling group were formed. No warming procedure was applied to the control group. In the pasteurization group, the milks in microcentrifuge tubes were poured into the wells of the dry block heater set to 71.7 °C and incubated for five seconds. At the end of the period, the milks were transferred to the wells of the cold metal tube, which was removed at -20 °C with the help of a micropipette, and incubated for five seconds. The milks in the boiling group were incubated for two minutes in a dry block heater set to 95 °C. After the heat treatment, the milks in microcentrifuge tubes were transferred to 10 ml centrifuge tubes, PBS was added to make the final volume 10 ml, and centrifuged at 4000 rpm for 20 minutes. After this process was repeated twice, 400 µl of PBS was added to the precipitate remaining at the bottom, and the precipitate was homogenized. One sample of each group was applied with PMA, while PMA was not applied to the other sample. PMA-applied samples were incubated for five minutes at room temperature and in the dark, and then exposed to UV light for five minutes in the device with cooling feature. The oocysts were collected by centrifugation at 5000 g for five minutes. After DNA isolation from oocysts, SYBR Green real time PCR (Rt-PCR) was performed using primers amplifying the COWP gene region. As a result of SYBR Green Rt-PCR, the mean Ct values of the control without PMA, pasteurization and boiling groups were determined as 25 ± 1.24, 23 ± 0.98 and 26 ± 1.03, respectively. While no peak was obtained in the boiling group after PMA application, the mean Ct values of the control and pasteurization groups were 28 ± 1.38 and 31 ± 1.46, respectively. As a result, it was concluded that live C.parvum cysts in milk could be detected by PMA-qPCR method and live oocysts could be found in pasteurized milk.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Female , Animals , Cattle , Milk , Cryptosporidium parvum/genetics , Pasteurization , Oocysts
15.
J Infect Dis ; 228(9): 1292-1298, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37832036

ABSTRACT

Cryptosporidium species are a major cause of diarrhea and associated with growth failure. There is currently only limited knowledge of the parasite's genomic variability. We report a genomic analysis of Cryptosporidium parvum isolated from Bangladeshi infants and reanalysis of sequences from the United Kingdom. Human isolates from both locations shared 154 variants not present in the cattle-derived reference genome, suggesting host-specific adaptation of the parasite. Remarkably 34.6% of single-nucleotide polymorphisms unique to human isolates were nonsynonymous and 8.2% of these were in secreted proteins. Linkage disequilibrium decay indicated frequent recombination. The genetic diversity of C. parvum has potential implications for vaccine and therapeutic design. Clinical Trials Registration. NCT02764918.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Parasites , Infant , Humans , Child , Animals , Cattle , Cryptosporidium parvum/genetics , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Bangladesh/epidemiology , Genomics
16.
Parasitol Res ; 122(11): 2621-2630, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37676305

ABSTRACT

Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Animals , Cryptosporidium parvum/genetics , Cryptosporidium parvum/metabolism , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Destrin/metabolism , Cryptosporidiosis/parasitology , Microfilament Proteins/metabolism
17.
Vet Res ; 54(1): 66, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608341

ABSTRACT

Cryptosporidium spp. remain a major cause of waterborne diarrhea and illness in developing countries and represent a significant burden to farmers worldwide. Cryptosporidium parvum virus 1 (CSpV1), of the genus Cryspovirus, was first reported to be present in the cytoplasm of C. parvum in 1997. Full-length genome sequences have been obtained from C. parvum from Iowa (Iowa), Kansas (KSU) and China. We aimed at characterizing the genome of CSpV1 from France and used sequence analysis from Cryptosporidium isolates to explore whether CSpV1 genome diversity varies over time, with geographical sampling location, C. parvum genetic diversity, or ruminant host species. A total of 123 fecal samples of cattle, sheep and goats were collected from 17 different French departments (57 diseased animal fecal samples and 66 healthy animal fecal samples). Subtyping analysis of the C. parvum isolates revealed the presence of two zoonotic subtype families IIa and IId. Sequence analysis of CSpV1 revealed that all CSpV1 from France, regardless of the subtype of C. parvum (IIaA15G2R1, IIaA17G2R1 and IIdA18G1R1) are more closely related to CSpV1 from Turkey, and cluster on a distinct branch from CSpV1 collected from C. parvum subtype IIaA15G2R1 from Asia and North America. We also found that samples collected on a given year or successive years in a given location are more likely to host the same subtype of C. parvum and the same CSpV1 strain. Yet, there is no distinct clustering of CSpV1 per French department or ruminants, probably due to trade, and transmission of C. parvum among host species. Our results point towards (i) a close association between CSpV1 movement and C. parvum movement, (ii) recent migrations of C. parvum among distantly located departments and (iii) incidental transmission of C. parvum between ruminants. All together, these results provide insightful information regarding CSpV1 evolution and suggest the virus might be used as an epidemiological tracer for C. parvum. Future studies need to investigate CSpV1's role in C. parvum virulence and on subtype ability to infect different species.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Goat Diseases , Sheep Diseases , Sheep , Animals , Cattle , Goats , Cryptosporidium parvum/genetics , Cryptosporidiosis/epidemiology , France/epidemiology , Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology
18.
Parasitol Res ; 122(9): 2237-2241, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37462744

ABSTRACT

Cryptosporidium parvum is the second-most prevalent Cryptosporidium species that infects humans worldwide. In European countries, it is the most prevalent species in sheep, suggesting that these animals are a source of zoonotic infection. Preweaned lambs and goats are particularly susceptible to infection by the parasite and may suffer from severe diarrhea whilst excreting large quantities of infectious oocysts. Fifty fecal samples from preweaned lambs and goats with diarrhea from 35 farms across Israel, found to be Cryptosporidium-positive by microscopy, were tested by PCR and sequence analyses to determine the infective species and subtypes. Cryptosporidium parvum DNA was detected in most samples from both lambs and goats (46/50). Cryptosporidium xiaoi DNA was detected in three samples from kids, with co-infection detected in a single sample. Eleven different C. parvum subtypes were found, 10 in lambs and 5 in goats. All subtypes were from the IIa and IId subtype families, with subtypes IIdA20G1 and IIaA15G2R1 being the most prevalent and widespread. These subtypes were previously found in calves and humans in Israel and are considered the most prevalent C. parvum subtypes in small ruminants globally. These results underline the zoonotic potential of C. parvum from small ruminants and the high subtype diversity compared to previous reports from other Middle Eastern countries. In addition, this is the first report of C. xiaoi in Israel.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Humans , Sheep , Cattle , Cryptosporidium parvum/genetics , Cryptosporidium/genetics , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Goats/parasitology , Israel/epidemiology , Feces/parasitology , Diarrhea/epidemiology , Diarrhea/veterinary , Diarrhea/parasitology , Genotype
19.
J Proteomics ; 287: 104969, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37463621

ABSTRACT

Cryptosporidium is a protozoan parasite capable of infecting humans and animals and is a leading cause of diarrheal disease and early childhood mortality. The molecular mechanisms underlying invasive infection and its pathogenesis remain largely unknown. To better understand the molecular mechanism of the interaction between C. parvum and host cells, we profiled the changes of host cells membrane proteins extracted using native membrane protein extraction kit between C. parvum-infected HCT-8 cells and the control group after C. parvum infected 6 h combined with quantitative Tandem Mass Tags (TMT) liquid chromatography-dual mass spectrometry proteomic analysis. Among the 4844 quantifiable proteins identified, the expression levels of 625 were upregulated, and those of 116 were downregulated at 6 h post-infection compared with controls (1.5-fold difference in abundance, p < 0.05). Enrichment analysis of the function, protein domain and Kyoto Encyclopedia of Genes and Genomes pathway of the differentially expressed proteins revealed that the differentially expressed proteins were mainly related to biological functions related to the cytoskeleton and cytoplasmic matrix. We also found that infection with C. parvum may destroy HCT-8 intercellular space adhesion. Six proteins were further verified using quantitative real-time reverse transcription polymerase chain reaction and western blotting. Through systematic analysis of proteomics related to HCT-8 cell membranes infected by C. parvum, we found many host membrane proteins that can serve as potential receptors in C. parvum adhesion or invasion. C. parvum infection destroyed host cell barrier function and caused extensive changes in host cytoskeleton proteins, providing a deeper understanding of the molecules and their functions involved in the host-C. parvum interaction. SIGNIFICANCE: There is a lack of systematic research on the molecular mechanisms underlying the interaction of C. parvum with host cells. Changes of host cell membrane proteins after C. parvum infection may be used to examine the host cell receptors for parasite adhesion and invasion, and how the parasite interacts with these receptors. It is of great significance that host cells undergo membrane fusion to mediate invasion. Through proteomic studies on the host cell membrane after infection with HCT-8 cells by C. parvum, we observed disruption of the host cell cellular barrier function and widespread alteration of host cytoskeletal proteins caused by C. parvum infection, providing a deeper understanding of the molecules and their functions involved in host-C. parvum interaction.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humans , Child, Preschool , Animals , Cryptosporidiosis/genetics , Cryptosporidiosis/metabolism , Cryptosporidiosis/parasitology , Cryptosporidium parvum/genetics , Proteomics , Membrane Proteins
20.
Parasit Vectors ; 16(1): 221, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415254

ABSTRACT

BACKGROUND: Cryptosporidium is second only to rotavirus as a cause of moderate-to-severe diarrhea in young children. There are currently no fully effective drug treatments or vaccines for cryptosporidiosis. MicroRNAs (miRNAs) are involved in regulating the innate immune response to Cryptosporidium parvum infection. In this study, we investigated the role and mechanism of miR-3976 in regulating HCT-8 cell apoptosis induced by C. parvum infection. METHODS: Expression levels of miR-3976 and C. parvum burden were estimated using real-time quantitative polymerase chain reaction (RT-qPCR) and cell apoptosis was detected by flow cytometry. The interaction between miR-3976 and B-cell lymphoma 2-related protein A1 (BCL2A1) was studied by luciferase reporter assay, RT-qPCR, and western blotting. RESULTS: Expression levels of miR-3976 were decreased at 8 and 12 h post-infection (hpi) but increased at 24 and 48 hpi. Upregulation of miR-3976 promoted cell apoptosis and inhibited the parasite burden in HCT-8 cells after C. parvum infection. Luciferase reporter assay indicated that BCL2A1 was a target gene of miR-3976. Co-transfection with miR-3976 and a BCL2A1 overexpression vector revealed that miR-3976 targeted BCL2A1 and suppressed cell apoptosis and promoted the parasite burden in HCT-8 cells. CONCLUSIONS: The present data indicated that miR-3976 regulated cell apoptosis and parasite burden in HCT-8 cells by targeting BCL2A1 following C. parvum infection. Future study should determine the role of miR-3976 in hosts' anti-C. parvum immunity in vivo.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , MicroRNAs , Parasites , Animals , Child , Child, Preschool , Humans , Apoptosis , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Cryptosporidium parvum/genetics , Cryptosporidium parvum/metabolism , MicroRNAs/metabolism , Parasites/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...