Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.435
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829127

ABSTRACT

In recent years, solution processes have gained considerable traction as a cost-effective and scalable method to produce high-performance thermoelectric materials. The process entails a series of critical steps: synthesis, purification, thermal treatments, and consolidation, each playing a pivotal role in determining performance, stability, and reproducibility. We have noticed a need for more comprehensive details for each of the described steps in most published works. Recognizing the significance of detailed synthetic protocols, we describe here the approach used to synthesize and characterize one of the highest-performing polycrystalline p-type SnSe. In particular, we report the synthesis of SnSe particles in water and the subsequent surface treatment with CdSe molecular complexes that yields CdSe-SnSe nanocomposites upon consolidation. Moreover, the surface treatment inhibits grain growth through Zenner pinning of secondary phase CdSe nanoparticles and enhances defect formation at different length scales. The enhanced complexity in the CdSe-SnSe nanocomposite microstructure with respect to SnSe promotes phonon scattering and thereby significantly reduces the thermal conductivity. Such surface engineering provides opportunities in solution processing for introducing and controlling defects, making it possible to optimize the transport properties and attain a high thermoelectric figure of merit.


Subject(s)
Cadmium Compounds , Selenium Compounds , Thermal Conductivity , Selenium Compounds/chemistry , Cadmium Compounds/chemistry , Tin/chemistry , Solutions/chemistry , Surface Properties , Crystallization/methods
2.
AAPS PharmSciTech ; 25(5): 127, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844724

ABSTRACT

The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Polymers , Raloxifene Hydrochloride , Solubility , X-Ray Diffraction , Polymers/chemistry , Excipients/chemistry , Raloxifene Hydrochloride/chemistry , Multivariate Analysis , X-Ray Diffraction/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Compounding/methods , Microscopy, Electron, Scanning/methods , Hydrogen Bonding , Crystallization/methods
3.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714634

ABSTRACT

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Subject(s)
Crystallization , Griseofulvin , Polymers , Transition Temperature , Griseofulvin/chemistry , Crystallization/methods , Polymers/chemistry , Drug Stability , Hydrogen Bonding , Polyvinyls/chemistry , Polyethylene Glycols/chemistry , Povidone/chemistry , Glass/chemistry
4.
AAPS PharmSciTech ; 25(5): 114, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750299

ABSTRACT

There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions. Distinct behaviors emerge in the cases of Peroxydone™ complex and UHP. The partially crystalline (PC-VEN) form proves more stable with Peroxydone™, while the amorphous form (A-VEN) shows enhanced stability with UHP. N-oxide VEN, a significant degradation product, varies between these cases, reflecting the impact of different oxidative stress conditions. Peroxydone™ complex demonstrates higher reproducibility and stability, making it a promising option for screening impurities in solid-state oxidative stress scenarios. This research not only contributes to the understanding of VEN's stability in solid-state but also aids formulators in anticipating excipient incompatibilities owing to presence of reactive impurities (peroxides) and oxidation in the final dosage form.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Crystallization , Drug Stability , Excipients , Oxidation-Reduction , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Crystallization/methods , Sulfonamides/chemistry , Excipients/chemistry , Oxidative Stress , Chemistry, Pharmaceutical/methods , Temperature
5.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38743928

ABSTRACT

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Subject(s)
Crystallization , Water , Crystallization/methods , Water/chemistry , Kinetics , Drug Stability , Nifedipine/chemistry , Vinyl Compounds/chemistry , Thermodynamics , Pyrrolidines/chemistry , Viscosity , Chemistry, Pharmaceutical/methods , Humidity , Temperature , Solubility , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives
6.
Methods Mol Biol ; 2787: 333-353, 2024.
Article in English | MEDLINE | ID: mdl-38656501

ABSTRACT

X-ray crystallography is a robust and widely used technique that facilitates the three-dimensional structure determination of proteins at an atomic scale. This methodology entails the growth of protein crystals under controlled conditions followed by their exposure to X-ray beams and the subsequent analysis of the resulting diffraction patterns via computational tools to determine the three-dimensional architecture of the protein. However, achieving high-resolution structures through X-ray crystallography can be quite challenging due to complexities associated with protein purity, crystallization efficiency, and crystal quality.In this chapter, we provide a detailed overview of the gene to structure determination pipeline used in X-ray crystallography, a crucial tool for understanding protein structures. The chapter covers the steps in protein crystallization, along with the processes of data collection, processing, structure determination, and refinement. The most commonly faced challenges throughout this procedure are also addressed. Finally, the importance of standardized protocols for reproducibility and accuracy is emphasized, as they are crucial for advancing the understanding of protein structure and function.


Subject(s)
Crystallization , Protein Conformation , Proteins , Crystallography, X-Ray/methods , Proteins/chemistry , Crystallization/methods , Models, Molecular , Software
7.
Mol Pharm ; 21(6): 2949-2959, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38685852

ABSTRACT

Crystallization is a widely used purification technique in the manufacture of active pharmaceutical ingredients (APIs) and precursor molecules. However, when impurities and desired compounds have similar molecular structures, separation by crystallization may become challenging. In such cases, some impurities may form crystalline solid solutions with the desired product during recrystallization. Understanding the molecular structure of these recrystallized solid solutions is crucial to devise methods for effective purification. Unfortunately, there are limited analytical techniques that provide insights into the molecular structure or spatial distribution of impurities that are incorporated within recrystallized products. In this study, we investigated model solid solutions formed by recrystallizing salicylic acid (SA) in the presence of anthranilic acid (AA). These two molecules are known to form crystalline solid solutions due to their similar molecular structures. To overcome challenges associated with the long 1H longitudinal relaxation times (T1(1H)) of SA and AA, we employed dynamic nuclear polarization (DNP) and 15N isotope enrichment to enable solid-state NMR experiments. Results of solid-state NMR experiments and DFT calculations revealed that SA and AA are homogeneously alloyed as a solid solution. Heteronuclear correlation (HETCOR) experiments and plane-wave DFT structural models provide further evidence of the molecular-level interactions between SA and AA. This research provides valuable insights into the molecular structure of recrystallized solid solutions, contributing to the development of effective purification strategies and an understanding of the physicochemical properties of solid solutions.


Subject(s)
Carbon Isotopes , Crystallization , Magnetic Resonance Spectroscopy , Nitrogen Isotopes , Salicylic Acid , ortho-Aminobenzoates , Magnetic Resonance Spectroscopy/methods , Salicylic Acid/chemistry , Crystallization/methods , Nitrogen Isotopes/chemistry , ortho-Aminobenzoates/chemistry , Carbon Isotopes/chemistry , Solutions/chemistry , Molecular Structure
8.
Mol Pharm ; 21(6): 2894-2907, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38688017

ABSTRACT

The formulation of drug with improved bioavailability is always challenging and indispensable in the field of pharmaceutics. The control of intermolecular interactions via crystal engineering approach and solid-state molecular recognition results in the formation of active drug molecules with modulated pharmacological benefits. Therefore, with the aim to improve the solubility and dissolution rate of the drug chlorpropamide (CPA), the mechanochemical liquid-assisted grinding (LAG) of the drug with several pharmaceutically accepted excipients was performed. This contributed to the discovery of six novel solid phases, namely salts, salt cocrystals and salt cocrystal hydrate─the salt of CPA with 3, 4-diaminopyridine (DAP); salt and salt cocrystal (SC) polymorph (Z″=3) with 1, 4-diazabicyclo [2.2.2] octane (DABCO); a salt, SC polymorph (Z″=9), and a SC hydrate (Z″=9) with piperazine (PIP). The formation of these salts and salt cocrystals are mainly guided by the strong hydrogen bonds with tunable strength having high electrostatic contribution. This attractive interaction brings the donor and the acceptor atoms close to each other for a facile proton transfer. Furthermore, the conformational constraints on the drug molecules, provided by the excipients via strong and directional hydrogen bonds, are quite impressive as this leads to the identification and characterization of "new conformational isomers" for the CPA molecules. The new crystalline phases exhibit enhanced intrinsic dissolution rate in comparison to that of the pure drug, the magnitude being 7, 131, and 120 folds for CPADAP, CPADABCO_II, and CPAPIP_III, respectively. Furthermore, it is interesting to note that the order of solubility is enhanced by 2.7-, 3-, and 7-fold, respectively, for the abovementioned salts. This also mirrors the trends in the magnitude of the binding energy, the higher magnitude being reflected in the lower solubility. Additionally, the in vivo experiments performed in SD rats results in the enhancement of the magnitude of the pharmacokinetic properties, when compared to the pristine drug. The concentration of the drug in CPADABCO_II and CPAPIP_III formulations exhibits 6- and 4-fold increments, respectively. Indeed, these results corroborate to the trends observed in the structural characterization, intermolecular energy calculations, solubility, and in vitro dissolution assessments.


Subject(s)
Chlorpropamide , Crystallization , Hydrogen Bonding , Salts , Solubility , Crystallization/methods , Salts/chemistry , Chlorpropamide/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Drug Compounding/methods , Animals , Rats , Biological Availability
9.
J Vis Exp ; (205)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38526130

ABSTRACT

Protocols for robotic protein crystallization using the Crystallization Facility at Harwell and in situ room temperature data collection from crystallization plates at Diamond Light Source beamline VMXi are described. This approach enables high-quality room-temperature crystal structures to be determined from multiple crystals in a straightforward manner and provides very rapid feedback on the results of crystallization trials as well as enabling serial crystallography. The value of room temperature structures in understanding protein structure, ligand binding, and dynamics is becoming increasingly recognized in the structural biology community. This pipeline is accessible to users from all over the world with several available modes of access. Crystallization experiments that are set up can be imaged and viewed remotely with crystals identified automatically using a machine learning tool. Data are measured in a queue-based system with up to 60° rotation datasets from user-selected crystals in a plate. Data from all the crystals within a particular well or sample group are automatically merged using xia2.multiplex with the outputs straightforwardly accessed via a web browser interface.


Subject(s)
Proteins , Synchrotrons , Crystallization/methods , Crystallography, X-Ray , Temperature , Proteins/chemistry , Data Collection
10.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 279-288, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38488731

ABSTRACT

A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization.


Subject(s)
Synchrotrons , Crystallography, X-Ray , Crystallization/methods , Data Collection
11.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542174

ABSTRACT

The present study was designed to investigate the physical stability of three organic materials with similar chemical structures. The examined compounds revealed completely different crystallization tendencies in their supercooled liquid states and were classified into three distinct classes based on their tendency to crystallize. (S)-4-Benzyl-2-oxazolidinone easily crystallizes during cooling from the melt; (S)-4-Benzylthiazolidine-2-thione does not crystallize during cooling from the melt, but crystallizes easily during subsequent reheating above Tg; and (S)-4-Benzyloxazolidine-2-thione does not crystallize either during cooling from the melt or during reheating. Such different tendencies to crystallize are observed despite the very similar chemical structures of the compounds, which only differ in oxide or sulfur atoms in one of their rings. We also studied the isothermal crystallization kinetics of the materials that were shown to transform into a crystalline state. Molecular dynamics and thermal properties were thoroughly investigated using broadband dielectric spectroscopy, as well as conventional and temperature-modulated differential scanning calorimetry in the wide temperature range. It was found that all three glass formers have the same dynamic fragility (m = 93), calculated directly from dielectric structural relaxation times. This result verifies that dynamic fragility is not related to the tendency to crystallize. In addition, thermodynamic fragility predictions were also made using calorimetric data. It was found that the thermodynamic fragility evaluated based on the width of the glass transition, observed in the temperature dependence of heat capacity, correlates best with the tendency to crystallize.


Subject(s)
Thiones , Crystallization/methods , Phase Transition , Temperature , Thermodynamics , Calorimetry, Differential Scanning
12.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38551918

ABSTRACT

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Subject(s)
Calorimetry, Differential Scanning , Excipients , Freeze Drying , Poloxamer , Trehalose , Freeze Drying/methods , Poloxamer/chemistry , Excipients/chemistry , Trehalose/chemistry , Calorimetry, Differential Scanning/methods , Sucrose/chemistry , X-Ray Diffraction , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Crystallization/methods , Chemistry, Pharmaceutical/methods , Proteins/chemistry , Drug Compounding/methods , Freezing
13.
Angew Chem Int Ed Engl ; 63(16): e202317695, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38380831

ABSTRACT

3D electron diffraction (3D ED) has shown great potential in crystal structure determination in materials, small organic molecules, and macromolecules. In this work, an automated, low-dose and low-bias 3D ED protocol has been implemented to identify six phases from a multiple-phase melt-crystallisation product of an active pharmaceutical ingredient, griseofulvin (GSF). Batch data collection under low-dose conditions using a widely available commercial software was combined with automated data analysis to collect and process over 230 datasets in three days. Accurate unit cell parameters obtained from 3D ED data allowed direct phase identification of GSF Forms III, I and the known GSF inclusion complex (IC) with polyethylene glycol (PEG) (GSF-PEG IC-I), as well as three minor phases, namely GSF Forms II, V and an elusive new phase, GSF-PEG IC-II. Their structures were then directly determined by 3D ED. Furthermore, we reveal how the stabilities of the two GSF-PEG IC polymorphs are closely related to their crystal structures. These results demonstrate the power of automated 3D ED for accurate phase identification and direct structure determination of complex, beam-sensitive crystallisation products, which is significant for drug development where solid form screening is crucial for the overall efficacy of the drug product.


Subject(s)
Electrons , Polymers , Polymers/chemistry , Griseofulvin/chemistry , Polyethylene Glycols/chemistry , Crystallization/methods
14.
Mol Pharm ; 21(4): 1794-1803, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401048

ABSTRACT

Although nucleation is considered the first step in the crystallization of glass materials, the structure and properties of the nuclei are not understood well. Influence of nucleation on the structure and dynamics of celecoxib glass was evaluated in this study. The nuclei for Form III were induced by annealing the glass at freezing temperature, and their impact on the relaxation behavior was investigated using thermal analysis and broadband dielectric spectroscopy to find accelerated α relaxation and suppressed ß relaxation. In addition, observed after nucleation was a decrease in cooperativity of the molecular motion, presumably because of the appearance of void spaces in the glass structure. During long-term isothermal crystallization studies, crystal growth to Form III was accelerated in the presence of the nuclei, whereas this effect was less remarkable when a different crystal form dominated the crystallization behavior. These observations should provide more detailed insights into the nucleation mechanism and impact of nucleation on molecular dynamics including physical stability of pharmaceutical glasses. In addition, discussed is the remarkable acceleration of the crystallization rate of the celecoxib glass just below its Tg, which could be understood by diffusionless crystal growth.


Subject(s)
Cold Temperature , Molecular Dynamics Simulation , Celecoxib , Crystallization/methods , Glass/chemistry , Calorimetry, Differential Scanning
15.
Eur J Pharm Biopharm ; 196: 114202, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309539

ABSTRACT

The crystal structure of a new Progesterone (PROG) co-crystal with para-aminobenzoic acid (PABA) showing enhanced solution properties is reported. PROG-PABA co-crystal was first identified though an in silico coformer screening process using the CSD Co-crystal deign function, then confirmed through a solution evaporation crystallisation experiment. The resulting co-crystal was characterized using single crystal X-ray diffraction, differential scanning calorimetry and Fourier-transform infrared spectroscopy. Liquid assisted grinding was selected as a suitable scale up method compared to spray drying and antisolvent methods due to minimal starting material phases in the final product. Following scale up, aqueous solubility, stability and dissolution measurements were carried out. PROG-PABA showed increased distinct aqueous solubility and dissolution compared to PROG starting material and was shown to be stable at 75 % relative humidity for 3 months. Tablets containing co-crystal were produced then compared to the Utrogestan® soft gel capsule formulation through a dissolution experiment. PROG-PABA tablets showed a substantial increase in dissolution over the course of the experiment with over 30× the amount of PROG dissolved at the 3-hour time point. This co-crystal shows positive implications for developing an improved oral PROG formulation.


Subject(s)
4-Aminobenzoic Acid , Progesterone , Progesterone/chemistry , Crystallography, X-Ray , Solubility , Crystallization/methods , Calorimetry, Differential Scanning , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared/methods
16.
Biomed Mater ; 19(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38324889

ABSTRACT

This research study is primarily centred around calcination temperature and time influence on phase formation in bioactive glasses (BGs). In the present study, BG with a nominal composition of 45S5 was synthesized through the sol-gel process. The developed BGs then underwent heat treatment for various sintering durations and temperatures. X-ray diffraction (XRD) patterns of the BGs reveals that the sintering process led to the crystallization of both devitrite (Na2Ca3Si6O16) and combeite (Na2Ca2Si3O9) phases. The field emission scanning electron microscopy study divulges morphological alterations, from sheet-like to rod-like structures to eventually transforming into spherical and sheet-like structures. The surface area and Type-IV mesoporous porosity were validated through Brunauer Emmett Teller analysis, highlighting a notable increase in pore volume and mechanical strength at a lower sintering temperature.In vitroapatite formation was carried out in Hank's balance salt in order to evaluate the bioactivity of the glass. After 7 d of immersion in simulated body fluid (SBF), XRD patterns and scanning electron microscopy micrographs results showed that formation of hydroxyapatite layer on the surface of the BGs. The BG compatibility with erythrocytes (red blood cells) was also studied, and the results revealed that there was only a low 2% lysis, showing good hemocompatibility. The drug loading and release behaviour of the BGs was studied in thein vitroanalysis. The findings showed a high drug encapsulation effectiveness of up to 90% and continuous drug release from the BGs for 24 h. The materials biocompatibility was unambiguously confirmed by cytocompatibility and proliferation studies. This study provides compelling evidence for the exceptional efficacy and promise of the distinct 45S5 BGs in advancing the field of regenerative medicine.


Subject(s)
Biocompatible Materials , Durapatite , Biocompatible Materials/chemistry , Durapatite/chemistry , Crystallization/methods , Microscopy, Electron, Scanning , Glass/chemistry , Ceramics/chemistry
17.
J Pharm Sci ; 113(6): 1616-1623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38311170

ABSTRACT

Vanillin crystals undergo needle-like morphology that results in poor flowability, crystal breakage, and low packing density. The spherical crystallization technology can produce particles with improved flowability and stability. A reverse antisolvent crystallization based on liquid-liquid phase separation is proposed in this work to produce vanillin spherical agglomerates. Hansen Solubility Parameters are applied to explain the liquid-liquid phase separation (LLPS) phenomenon. The Pixact Crystallization Monitoring system is applied to in-situ monitor the whole process. A six-step spherical crystallization mechanism is revealed based on the recorded photos, including the generation of oil droplets, nucleation inside oil droplets, the coalescence and split of oil droplets, crystal growth and agglomeration, breakage of oil droplets, and attrition of agglomerates. Different working conditions are tested to explore the best operation parameters and a frequency-conversion stirring strategy is proposed to improve the production of spherical crystals.


Subject(s)
Benzaldehydes , Crystallization , Solubility , Solvents , Crystallization/methods , Solvents/chemistry , Benzaldehydes/chemistry , Particle Size , Phase Transition , Phase Separation
18.
Eur J Pharm Sci ; 195: 106722, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38336250

ABSTRACT

Posaconazole is a broad-spectrum antifungal agent exhibiting rich polymorphism. Up to now, a total of fourteen different crystal forms have been reported, sometimes with an ambiguous nomenclature, but less is known about their properties and stability relationships. Investigating the solid-state of a drug compound is essential to identify the most stable form under working conditions and to prevent the risk of undesired solid-phase transformations under processing and storage. In this paper, we study posaconazole polymorphism by providing a description of its polymorphs, hydrates, and solvates. Powder X-ray diffraction (PXRD), dynamic vapor sorption (DVS), spectroscopic and thermal techniques were employed to characterize the different forms. In addition, the solid-phase transformations of posaconazole in aqueous suspensions were studied by means of Raman microscopy. Surprisingly, we found that Form S, the crystal form contained in the marketed oral suspension, is not the most stable form in water. Form S readily converts to a more stable hydrate, i.e. Form A, after storage in water for two weeks. In the commercial oral formulation the conversion between the two forms is prevented by the presence of polysorbate 80. Such insights into the stabilizing excipient effects beyond particle dispersion are critical to formulators.


Subject(s)
Triazoles , Water , Water/chemistry , Crystallization/methods , Drug Stability , X-Ray Diffraction , Calorimetry, Differential Scanning
19.
Adv Healthc Mater ; 13(14): e2303248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38272459

ABSTRACT

Biomineral crystals form complex nonequilibrium structures based on the multistep nucleation theory, via transient amorphous precursors. However, the intricate nature of the biological system results in the inconsistent frequency of nucleation and crystallization, which making it problematic to obtain homogeneous nanocrystals, limits their application in biomedicine. Here, it is reported that homogeneous nanocrystals of photoinduced oriented crystallization with protein coronas are based on intracellular liquid-liquid phase separation for in situ analysis and mapping of surface-enhanced Raman spectroscopy (SERS). Near-infrared light promotes the formation of intracellular dense phases, accelerates the nucleation of gold atoms at secondary structure sites of proteins, and promotes the growth of crystals. Homogeneous gold nanocrystals with stable SERS signals can be used to analysis different cell cycles and acquire in situ molecular information of metastatic tumor cells. Of note are tag molecule is embedded in protein coronas of gold nanocrystals to enable the mapping of patient tumor tissue samples and the portable recognition of tumor cells. Thus, this study proposes a new strategy for biomineralization of intracellular homogeneous gold nanocrystals and its potential application.


Subject(s)
Crystallization , Gold , Metal Nanoparticles , Spectrum Analysis, Raman , Humans , Gold/chemistry , Crystallization/methods , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Nanoparticles/chemistry , Cell Line, Tumor , Protein Corona/chemistry , Phase Separation
20.
Food Res Int ; 177: 113872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225141

ABSTRACT

Lactose crystallization during storage deteriorates reconstitution performance of milk powders, but the relationship between lactose crystallization and reconstitution is inexplicit. The objective of this study is to characterize crystalline lactose in the context of formulation and elucidate the complex relationship between lactose crystallization and powder functionality. Lactose in Skim Milk Powder (SMP), Whole Milk Powder (WMP) and Fat-Filled Milk Powder (FFMP) stored under 23 %, 53 % and 75 % Relative Humidity (RH) at 25  â„ƒ for four months was compared. Lactose, surface chemistry and microstructure of FFMP stored at 25 â„ƒ and 40 â„ƒ at 23 % to 75 % RH for four months were also analyzed and interpreted. At the same RH, FFMP crystallized in the same pattern as WMP. At 53 % RH, FFMP and WMP differentiated from SMP in terms of lactose morphology as well as the ratio between anhydrous α-lactose and anhydrous ß-lactose. Lactose remained amorphous at 23 % RH, crystallized predominantly to α/ß-lactose (1:4) at 40 to 58 % RH and to α-lactose monohydrate at 75 % RH. The crystallinity index was similar for all powders containing crystalline lactose. The estimated crystallite size increased from approx. 0.1 to 20 µm with increasing RH and temperature. When amorphous lactose crystallized into crystals below approx. 0.1 µm at 25 °C and 43 % RH, the microstructure and surface lipid were comparable to that of the reference powder. This powder reconstituted into a stable suspension system comparable to that of reference (well performing) powders. These results demonstrate that crystallite size is the key property linking lactose crystallization and reconstitution. Our finding thus indicates limiting crystallite size is important for maintaining desired product quality.


Subject(s)
Lactose , Milk , Animals , Crystallization/methods , Milk/chemistry , Lactose/chemistry , Powders/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...