Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Parasit Vectors ; 17(1): 209, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720359

ABSTRACT

BACKGROUND: Feline-associated hemotropic Mycoplasma (hemoplasmas) are believed to be transmitted by two primary mechanisms: (1) direct transmission via fighting and (2) vector-borne transmission by the cat flea (Ctenocephalides felis). While the efficiency of transmission by C. felis appears low, most manuscripts focus on the prevalence of hemoplasmas in wild-caught fleas and report either a very low (< 3%) or a high (> 26%) prevalence. Therefore, we aimed to assess the influence of sample processing and PCR methods on C. felis hemoplasma infection prevalence. METHODS: A systemic review of PubMed articles identified 13 manuscripts (1,531 fleas/flea pools) that met the inclusion criteria (performed PCR for >1 hemoplasma on C. felis collected from cats). Risk of bias was assessed utilizing the ROBINS-E tool. Meta-analysis performed in R of these manuscripts found that not washing samples and a common set of 16S rRNA primers first published in Jensen et al. 2001 were associated with increased hemoplasma prevalence. To evaluate the influence of washing on newly collected fleas, we assessed the hemoplasma status of 20 pools of 5 C. felis each, half of which were washed and half not washed. RESULTS: Flea washing did not influence the detection of hemoplasma but instead amplified Spiroplasma. To assess non-specific amplification with the Jensen et al. 2001 primers, 67 C. felis samples (34% previously reported hemoplasma infected) were subject to PCR and sequencing. By this method, hemoplasma was detected in only 3% of samples. In the remaining "hemoplasma infected" fleas, PCR amplified Spiroplasma or other bacteria. CONCLUSIONS: Therefore, we concluded that hemoplasma infection in C. felis is rare, and future flea prevalence studies should sequence all positive amplicons to validate PCR specificity. Further investigation of alternative methods of feline-associated hemoplasma transmission and the ability of C. felis to maintain hemoplasma infection is necessary.


Subject(s)
Cat Diseases , Ctenocephalides , Mycoplasma Infections , Mycoplasma , Animals , Mycoplasma/isolation & purification , Mycoplasma/genetics , Mycoplasma/classification , Ctenocephalides/microbiology , Cats , Cat Diseases/parasitology , Cat Diseases/microbiology , Cat Diseases/diagnosis , Cat Diseases/transmission , Cat Diseases/epidemiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/diagnosis , Mycoplasma Infections/epidemiology , Mycoplasma Infections/transmission , Mycoplasma Infections/microbiology , Flea Infestations/veterinary , Flea Infestations/parasitology , Flea Infestations/epidemiology , Polymerase Chain Reaction , Prevalence , RNA, Ribosomal, 16S/genetics
2.
Trends Parasitol ; 40(4): 324-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458883

ABSTRACT

Ctenocephalides felis, the cat flea, is among the most prevalent and widely dispersed vectors worldwide. Unfortunately, research on C. felis and associated pathogens (Bartonella and Rickettsia spp.) lags behind that of other vectors and vector-borne pathogens. Therefore, we aimed to review fundamental aspects of C. felis as a vector (behavior, epidemiology, phylogenetics, immunology, and microbiome composition) with an emphasis on key techniques and research avenues employed in other vector species. Future laboratory C. felis experimental infections with Bartonella, Rickettsia, and Wolbachia species/strains should examine the vector-pathogen interface utilizing contemporary visualization, transcriptomic, and gene-editing techniques. Further environmental sampling will inform the range and prevalence of C. felis and associated pathogens, improving the accuracy of vector and pathogen modeling to improve infection/infestation risk assessment and diagnostic recommendations.


Subject(s)
Bartonella , Cat Diseases , Ctenocephalides , Felis , Flea Infestations , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Cats , Ctenocephalides/microbiology , Flea Infestations/veterinary , Flea Infestations/epidemiology , Flea Infestations/microbiology , Biology , Rickettsia felis/genetics , Siphonaptera/microbiology
3.
Parasit Vectors ; 17(1): 148, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515160

ABSTRACT

BACKGROUND: Fleas are important hematophagous insects, infesting mammals and birds with a worldwide distribution. Fleas of medical importance have been reported from various carnivores worldwide, such as felids, canids, or mustelids. Romania hosts a wide carnivore diversity, but very little is known about flea species that parasitize these animals in Romania. This study aimed to provide a better understanding of the fleas' diversity and their distribution in a relatively large and diverse number of wild carnivore hosts from Romania. METHODS: From 2013 to 2021, 282 carcasses of wild carnivores from different locations in Romania were collected and examined for the presence of ectoparasites. All collected fleas were morphologically identified using specific keys and descriptions. An analysis of the co-occurrence networks was performed. RESULTS: A total of 11 flea species were identified: Pulex irritans (41.09%), Paraceras melis (20.11%), Ctenocephalides felis (7.33%), Ctenocephalides canis (7.83%), Monopsyllus sciurorum (11.11%), Chaetopsylla trichosa (21.96%), Chaetopsylla homoea (5.5%), Chaetopsylla tuberculaticeps (100%), Chaetopsylla rothschildi (13.33%), Chaetopsylla sp. (14.34%), Chaetopsylla globiceps (5.12%), Echidnophaga gallinacea (10%). The statistical analyses showed a significant difference between the infestation of Martes foina with females being more frequently infected than males (66% versus 33%). Paraceras melis infesting Meles meles had a significantly higher prevalence in female badgers than in males (× 2 = 7.7977, P < 0.01) and higher intensities of infestations in males than in females (t = 1.871, P < 0.05). CONCLUSIONS: This is the first large-scale study investigating the distribution and diversity of flea species infesting wild carnivores in Romania. Three flea species were identified for the first time in Romania (E. gallinacea, C. homoea, and C. tuberculaticeps).


Subject(s)
Canidae , Carnivora , Ctenocephalides , Felidae , Flea Infestations , Mustelidae , Siphonaptera , Male , Animals , Female , Romania/epidemiology , Flea Infestations/epidemiology , Flea Infestations/veterinary , Flea Infestations/parasitology
4.
Comp Immunol Microbiol Infect Dis ; 107: 102153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460359

ABSTRACT

Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.


Subject(s)
Bartonella , Ctenocephalides , Felis , Flea Infestations , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Dogs , Siphonaptera/microbiology , Spain/epidemiology , Ctenocephalides/genetics , Rickettsia felis/genetics , Flea Infestations/epidemiology , Flea Infestations/veterinary , Flea Infestations/microbiology , Bartonella/genetics
5.
Parasit Vectors ; 17(1): 48, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303085

ABSTRACT

BACKGROUND: Cats are the primary reservoirs of the bacterium Bartonella henselae, the main cause of cat-scratch disease in humans. The main vector of the bacterium is the cat flea, Ctenocephalides felis. In southeastern Europe, data are lacking on the prevalence of B. henselae infection in cats, the strains of B. henselae involved and the risk factors associated with the infection. METHODS: Blood samples collected in ethylenediaminetetraacetic acid-containing tubes from 189 domestic cats (156 pet cats and 33 stray cats) from Zagreb, the capital city of Croatia, and 10 counties throughout Croatia were cultured for Bartonella spp. Following culture, bacterial isolates were genotyped at eight loci after using PCR to amplify 16S ribosomal RNA (rRNA) and the internal transcribed spacer region between the 16S and 23S rRNA sequences. Univariate and multivariate logistic regression were used to identify risk factors for B. henselae infection in cats. RESULTS: Bartonella spp. was detected in 31 cats (16.4%), and subsequent genotyping at the eight loci revealed B. henselae in all cases. Thirty complete multilocus sequence typing profiles were obtained, and the strains were identified as four sequence types that had been previously reported, namely ST5 (56.7%), ST6 (23.3%), ST1 (13.3%) and ST24 (3.3%), as well as a novel sequence type, ST33 (3.3%). The univariate analysis revealed a significantly higher risk of B. henselae infection in cats residing in coastal areas of Croatia (odds ratio [OR] 2.592, 95% confidence interval [CI] 1.150-5.838; P = 0.0191) and in cats with intestinal parasites (OR 3.207, 95% CI 1.088-9.457; P = 0.0279); a significantly lower risk was identified in cats aged > 1 year (OR 0.356, 95% CI 0.161-0.787; P = 0.0247) and in cats sampled between April and September (OR 0.325, 95% CI 0.147-0.715; P = 0.005). The multivariate analysis that controlled for age showed a positive association with the presence of intestinal parasites (OR 4.241, 95% CI 1.243-14.470; P = 0.0119) and coastal residence (OR 2.567, 95% CI 1.114-5.915; P = 0.0216) implying increased risk of infection, and a negative association with sampling between April and September (OR 0.379, 95% CI 0.169-0.848; P = 0.018) implying a decreased risk of infection. After controlling for the season, an increased risk of infection remained for the coastal region (OR 2.725, 95% CI 1.200-6.186; P = 0.012). CONCLUSIONS: Bartonella henselae is prevalent throughout Croatia and is a public health threat. Environmental and host factors can significantly affect the risk of infection, and these should be explored in more detail. The presence of intestinal parasites highlights the need to eliminate the flea vector, Ctenocephalides felis, as the most effective approach to control infections in cats and humans.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Cat Diseases , Cat-Scratch Disease , Ctenocephalides , Animals , Cats , Humans , Cat-Scratch Disease/epidemiology , Cat-Scratch Disease/microbiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Croatia/epidemiology , Bartonella henselae/genetics , Risk Factors , Ctenocephalides/microbiology , Cat Diseases/epidemiology
6.
Vector Borne Zoonotic Dis ; 24(4): 201-213, 2024 04.
Article in English | MEDLINE | ID: mdl-38422214

ABSTRACT

Purpose: Flea-borne rickettsioses, collectively referred to as a term for etiological agents Rickettsia felis, Rickettsia typhi, and RFLOs (R. felis-like organisms), has become a public health concern around the world, specifically in the United States. Due to a shared arthropod vector (the cat flea) and clinical signs, discriminating between Rickettsia species has proven difficult. While the effects of microbial coinfections in the vector can result in antagonistic or synergistic interrelationships, subsequently altering potential human exposure and disease, the impact of bacterial interactions within flea populations remains poorly defined. Methods: In this study, in vitro and in vivo systems were utilized to assess rickettsial interactions in arthropods. Results: Coinfection of both R. felis and R. typhi within a tick-derived cell line indicated that the two species could infect the same cell, but distinct growth kinetics led to reduced R. felis growth over time, regardless of infection order. Sequential flea coinfections revealed the vector could acquire both Rickettsia spp. and sustain coinfection for up to 2 weeks, but rickettsial loads in coinfected fleas and feces were altered during coinfection. Conclusion: Altered rickettsial loads during coinfection suggest R. felis and R. typhi interactions may enhance the transmission potential of either agent. Thus, this study provides a functional foundation to disentangle transmission events propelled by complex interspecies relationships during vector coinfections.


Subject(s)
Cat Diseases , Coinfection , Ctenocephalides , Felis , Flea Infestations , Rickettsia felis , Rickettsia , Siphonaptera , Animals , Humans , Cats , Rickettsia typhi , Ctenocephalides/microbiology , Coinfection/veterinary , Siphonaptera/microbiology , Flea Infestations/veterinary
7.
Parasit Vectors ; 17(1): 27, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254213

ABSTRACT

BACKGROUND: The cat flea (Ctenocephalides felis), a parasite commonly found on both dogs and cats, is a competent vector for several zoonotic pathogens, including Dipylidium caninum (tapeworms), Bartonella henselae (responsible for cat scratch disease) and Rickettsia felis (responsible for flea-borne spotted fever). Veterinarians recommend that both cats and dogs be routinely treated with medications to prevent flea infestation. Nevertheless, surveys suggest that nearly one third of pet owners do not routinely administer appropriate preventatives. METHODS: A mathematical model based on weighted averaging over time is developed to predict outdoor flea activity from weather conditions for the contiguous United States. This 'nowcast' model can be updated in real time as weather conditions change and serves as an important tool for educating pet owners about the risks of flea-borne disease. We validate our model using Google Trends data for searches for the term 'fleas.' This Google Trends data serve as a proxy for true flea activity, as validating the model by collecting fleas over the entire USA is prohibitively costly and time-consuming. RESULTS: The average correlation (r) between the nowcast outdoor flea activity predictions and the Google Trends data was moderate: 0.65, 0.70, 0.66, 0.71 and 0.63 for 2016, 2017, 2018, 2019 and 2020, respectively. However, there was substantial regional variation in performance, with the average correlation in the East South Atlantic states being 0.81 while the average correlation in the Mountain states was only 0.45. The nowcast predictions displayed strong seasonal and geographic patterns, with predicted activity generally being highest in the summer months. CONCLUSIONS: The nowcast model is a valuable tool by which to educate pet owners regarding the risk of fleas and flea-borne disease and the need to routinely administer flea preventatives. While it is ideal for domestic cats and dogs to on flea preventatives year-round, many pets remain vulnerable to flea infestation. Alerting pet owners to the local increased risk of flea activity during certain times of the year may motivate them to administer appropriate routine preventives.


Subject(s)
Cat Diseases , Ctenocephalides , Dog Diseases , Flea Infestations , Siphonaptera , Animals , Cats , Dogs , Dog Diseases/epidemiology , Flea Infestations/epidemiology , Flea Infestations/veterinary
8.
Vet Parasitol Reg Stud Reports ; 47: 100953, 2024 01.
Article in English | MEDLINE | ID: mdl-38199696

ABSTRACT

Ticks (Ixodida) and Fleas (Siphonaptera) are considered among the most important arthropod of public health concern due to their ability to transmit vector-borne pathogens to humans. By sharing a common environment, vector-borne diseases constituted major setbacks to the development of a pet population in Bangladesh. This study aimed to determine companion animal-associated ticks and fleas based on morpho-molecular approaches. Between December 2021 and May 2022, 74 animals (62 cats and 12 dogs) were examined, of which 17 (27.4%) cats and 9 (75.0%) dogs had ectoparasitic infestations, with 35.1% overall prevalence. Morphometrical examination showed the ectoparasites in these animals were Ctenocephalides spp. (flea) and Riphicephalus spp. (tick). Genetic analysis using the mitochondrial markers i.e. Cytochrome c oxidase subunit 1 (cox1) revealed the presence of two flea species i.e., Ctenocephalides canis, Ctenocephalides felis, and one tick species Rhipicephalus sanguineus. Interviews of animal owners indicate that 35.14% of them had no concern about ectoparasitic infestation or ectoparasites-borne diseases. Our results indicated that fleas and ticks were the most common ectoparasites in companion animals of this area. The zoonotic nature of some ectoparasites can be regarded as a public health alert. The findings will assist epidemiologists and policymakers in offering customized guidance for upcoming monitoring and preventive tactics in this area.


Subject(s)
Cat Diseases , Ctenocephalides , Dog Diseases , Ectoparasitic Infestations , Flea Infestations , Siphonaptera , Skin Diseases, Parasitic , Cats , Humans , Animals , Dogs , Pets , Bangladesh/epidemiology , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/veterinary , Flea Infestations/epidemiology , Flea Infestations/veterinary , Skin Diseases, Parasitic/veterinary , Cat Diseases/epidemiology , Dog Diseases/epidemiology
9.
Med Vet Entomol ; 38(2): 179-188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38296831

ABSTRACT

Fleas in the genus Ctenocephalides serve as biological vectors or intermediate hosts of microorganisms such as bacteria, rickettsia, protozoa and helminths. Ctenocephalides felis has a worldwide distribution, while C. orientis has long been considered as a subspecies of C. felis in Asia. To help the morphological recognition of these two species and further explore their differences, we used the geometric morphometric approach applied to the head. Both sexes were examined. Five anatomical landmarks of the head were used, and to capture the curvature of the front head, 10 semilandmarks were added. There was a consistent difference in species classification accuracy when considering landmarks only versus their combination with semilandmarks, suggesting the importance of the curve of the head as a taxonomic signal. Using or not the labels in the reclassification analyses, the head shape allowed by itself almost perfect recognition of the two species, in both sexes, even after adjustment for prior probabilities. The same approach disclosed a high level of sexual size and shape dimorphism in both species. The contribution of size variation to the discrimination by shape was much more important between sexes (from 27% to 45%) than between species (from 0.7% to 7.1%). Nevertheless, in our data, size never could represent a way to reliably recognise the sex of an individual, even less its species. Geographical variation in head shape could only be explored for the C. orientis sample. No significant correlation of morphometric variation with geography could be detected, which would be consistent with gene flow between Thai provinces. The geometric morphometric approach of the flea head, when it incorporates head curves, is a promising tool for rapid, economical, and accurate species and sex identification. It is, therefore, a useful tool for future epidemiological and demographic studies.


Subject(s)
Ctenocephalides , Head , Animals , Female , Thailand , Male , Ctenocephalides/anatomy & histology , Ctenocephalides/classification , Head/anatomy & histology , Species Specificity , Sex Characteristics , Geography
10.
Med Vet Entomol ; 38(1): 23-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37736686

ABSTRACT

Outbreaks of acute encephalitis syndrome (AES) with unknown aetiology are reported every year in Gorakhpur district, Uttar Pradesh, India, and Orientia tsutsugamushi, the rickettsial pathogen, responsible for scrub typhus has been attributed as the primary cause of AES problem. However, information on the prevalence of other rickettsial infections is lacking. Hence, this study was carried out to assess any occurrence of tick- and flea-borne rickettsial agents in villages reporting AES cases in this district. In total, 825 peridomestic small mammals were trapped, by setting 9254 Sherman traps in four villages with a trap success rate of 8.9%. The Asian house shrew, Suncus murinus, constituted the predominant animal species (56.2%) and contributed to the maximum number (87.37%) of ectoparasites. In total, 1552 ectoparasites comprising two species of ticks and one species each of flea and louse were retrieved from the trapped rodents/shrews. Rhipicephalus sanguineus, the brown dog tick, was the predominant species retrieved from the trapped rodents/shrews, and the overall infestation rate was 1.75 per animal. In total, 4428 ectoparasites comprising five tick species, three louse species and one flea species were collected from 1798 domestic animals screened. Rhipicephalus microplus was the predominant tick species collected from the domestic animals. The cat flea, Ctenocephalides felis, constituted 1.5% of the total ectoparasites. Of all the ectoparasite samples (5980) from domestic animals and rodents, tested as 1211 pools through real-time PCR assays, 64 pools were positive for 23S rRNA gene of rickettsial agents. The PCR-positive samples were subjected to multi-locus sequence typing (MLST). In BLAST and phylogenetic analysis, the ectoparasites were found to harbour Rickettsia asembonensis (n = 9), Rickettsia conorii (n = 3), Rickettsia massiliae (n = 29) and Candidatus Rickettsia senegalensis (n = 1). A total of 22 pools were detected to have multiple rickettsial agents. The prevalence of fleas and high abundance of tick vectors with natural infections of rickettsial agents indicates the risk of transmission of tick- and flea-borne rickettsial diseases in rural villages of Gorakhpur. Further epidemiological studies are required to confirm the transmission of these agents to humans.


Subject(s)
Acute Febrile Encephalopathy , Cat Diseases , Ctenocephalides , Dog Diseases , Rhipicephalus sanguineus , Rickettsia Infections , Rickettsia , Siphonaptera , Dogs , Cats , Animals , Humans , Siphonaptera/microbiology , Multilocus Sequence Typing/veterinary , Shrews/genetics , Shrews/microbiology , Acute Febrile Encephalopathy/veterinary , Phylogeny , Prevalence , Rhipicephalus sanguineus/genetics , Rickettsia/genetics , Rickettsia Infections/epidemiology , Rickettsia Infections/veterinary , Rickettsia Infections/microbiology , Ctenocephalides/microbiology
11.
Parasit Vectors ; 16(1): 378, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872632

ABSTRACT

BACKGROUND: Poor owner compliance with monthly control measures means that dogs in Australia can remain susceptible to infestations with fleas, present throughout the whole year, and brown dog ticks, which thrive in tropical and subtropical areas. A 150 mg/ml injectable fluralaner suspension (Bravecto Quantum™) was developed to help ensure year-round protection against these parasites. A study investigated the persistent efficacy of this formulation against repeated challenges with Rhipicephalus sanguineus (sensu lato) and Ctenocephalides felis throughout 12 months following a single subcutaneous treatment. METHODS: Twenty dogs were blocked by pre-treatment R. sanguineus s.l. counts and randomized to an untreated control group or to a group treated once, on day 0, with the fluralaner injection (15 mg/kg). Infestations of 50 mixed-sex, unfed adult R. sanguineus s.l. and up to 100 C. felis were done on days 7, 14, 35, 63, 91, 126, 154, 182, 210, 245, 273, 301, 336 and 365. Live flea and tick counts were completed 48 h post-infestation. Flea infestations were also done on day -1, with counts on day 2. Infestations were considered adequate if at each evaluation, at least six dogs in the control group retained at least 20% of tick challenges and 25% of flea challenges. RESULTS: The fluralaner injectable suspension was well tolerated. Efficacy against existing flea infestations was > 99% (arithmetic and geometric means) at 48 h post-treatment. At all subsequent assessments throughout the year following treatment, efficacy against fleas remained at 100%. Arithmetic mean tick count reductions relative to the control group ranged from 97.6% to 100% from day 7 through 11 months and was 92.6% at 12 months (geometric means 95.2% to 100% through 12 months). CONCLUSION: The injectable fluralaner suspension was effective against fleas and brown dog ticks for 12 months following a single treatment. Compared with more frequently administered products where compliance may be suboptimal, the year-round efficacy of this veterinarian-administered fluralaner formulation has the potential to improve owner compliance for control of fleas and ticks. In turn, by reducing the detrimental effects of flea and tick infestations and risk of transmission of flea- and tick-borne pathogens, canine health can be enhanced.


Subject(s)
Ctenocephalides , Dog Diseases , Flea Infestations , Insecticides , Rhipicephalus sanguineus , Siphonaptera , Tick Infestations , Animals , Dogs , Insecticides/pharmacology , Dog Diseases/parasitology , Administration, Topical , Flea Infestations/drug therapy , Flea Infestations/prevention & control , Flea Infestations/veterinary , Tick Infestations/drug therapy , Tick Infestations/prevention & control , Tick Infestations/veterinary
12.
Parasitology ; 150(11): 979-989, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37681253

ABSTRACT

The factors that influence parasite associated bacterial microbial diversity and the geographic distributions of bacteria are not fully understood. In an effort to gain a deeper understanding of the relationship between the bacterial diversity of Ctenocephalides fleas and host species and the external environment, we conducted a metagenetic analysis of 107 flea samples collected from 8 distinct sampling sites in South Africa. Pooled DNA samples mostly comprising of 2 or 3 individuals sampled from the same host, and belonging to the same genetic cluster, were sequenced using the Ion PGM™ Hi-Q™ Kit and the Ion 316™ Chip v2. Differences were detected in the microbiome compositions between Ctenocephalides felis, Ctenocephalides canis and Ctenocephalides connatus. Although based on a small sample, C. connatus occurring on wildlife harboured a higher bacterial richness when compared to C. felis on domestic animals. Intraspecific differences in the microbial OTU diversity were detected within C. f. felis that occurred on domestic cats and dogs. Different genetic lineages of C. f. felis were similar in microbial compositions but some differences exist in the presence or absence of rare bacteria. Rickettsia and Bartonella OTU's identified in South African cat fleas differ from those identified in the USA and Australia. Intraspecific microbial compositions also differ across geographic sampling sites. Generalized dissimilarity modelling showed that temperature and humidity are potentially important environmental factors explaining the pattern obtained.


Subject(s)
Cat Diseases , Ctenocephalides , Felis , Flea Infestations , Siphonaptera , Animals , Cats , Dogs , South Africa , Flea Infestations/epidemiology , Flea Infestations/veterinary , Cat Diseases/parasitology
14.
Vet Parasitol Reg Stud Reports ; 43: 100899, 2023 08.
Article in English | MEDLINE | ID: mdl-37451757

ABSTRACT

This study aimed to evaluate the use of different adhesive substances in an method to monitor the development of C. felis felis eggs. Three adhesive substances were selected: cyanoacrylate, stick glue, and liquid silicone. The eggs were obtained from a laboratory colony and placed on a thin layer of adhesive substance on the lid of a Petri dish to prevent contact with the larval growth substrate. One hundred eggs were used for each adhesive substance. The development of the eggs was monitored for three consecutive days, during which larval hatching and egg characteristics were observed. Of the 100 eggs incubated for each adhesive substance, 64, 51, and 76 larvae hatched and survived from the stick glue, cyanoacrylate, and liquid silicone plates, respectively. After 30 days of incubation, 59, 45, and 68 hatched adults were observed, respectively, in these groups. The mean hatching of larvae and adults between the liquid silicone and cyanoacrylate groups differed statistically (p < 0.05). This study demonstrated positive results, and that liquid silicone was the most easily applicable adhesive substance on the plate and interfered less with egg development, therefore having the best larval recovery compared to incubated eggs compared to the other substances.


Subject(s)
Ctenocephalides , Siphonaptera , Animals , Brazil , Larva
15.
J Vet Sci ; 24(3): e38, 2023 May.
Article in English | MEDLINE | ID: mdl-37271506

ABSTRACT

BACKGROUND: Poor disease management and irregular vector control could predispose sheltered animals to disease such as feline Bartonella infection, a vector-borne zoonotic disease primarily caused by Bartonella henselae. OBJECTIVES: This study investigated the status of Bartonella infection in cats from eight (n = 8) shelters by molecular and serological approaches, profiling the CD4:CD8 ratio and the risk factors associated with Bartonella infection in shelter cats. METHODS: Bartonella deoxyribonucleic acid (DNA) was detected through polymerase chain reaction (PCR) targeting 16S-23S rRNA internal transcribed spacer gene, followed by DNA sequencing. Bartonella IgM and IgG antibody titre, CD4 and CD8 profiles were detected using indirect immunofluorescence assay and flow cytometric analysis, respectively. RESULTS: B. henselae was detected through PCR and sequencing in 1.0% (1/101) oral swab and 2.0% (1/50) cat fleas, while another 3/50 cat fleas carried B. clarridgeiae. Only 18/101 cats were seronegative against B. henselae, whereas 30.7% (31/101) cats were positive for both IgM and IgG, 8% (18/101) cats had IgM, and 33.7% (34/101) cats had IgG antibody only. None of the eight shelters sampled had Bartonella antibody-free cats. Although abnormal CD4:CD8 ratio was observed in 48/83 seropositive cats, flea infestation was the only significant risk factor observed in this study. CONCLUSIONS: The present study provides the first comparison on the Bartonella spp. antigen, antibody status and CD4:CD8 ratio among shelter cats. The high B. henselae seropositivity among shelter cats presumably due to significant flea infestation triggers an alarm of whether the infection could go undetectable and its potential transmission to humans.


Subject(s)
Bartonella Infections , Bartonella , Cat Diseases , Ctenocephalides , Flea Infestations , Humans , Animals , Cats , Malaysia/epidemiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella/genetics , Flea Infestations/veterinary , Immunoglobulin G , Cat Diseases/epidemiology
16.
Comp Immunol Microbiol Infect Dis ; 96: 101983, 2023 May.
Article in English | MEDLINE | ID: mdl-37099997

ABSTRACT

Seventy-five flea pools (one to ten fleas per pool) from 51 Andean foxes (Lycalopex culpaeus) and five South American grey foxes or chillas (Lycalopex griseus) from the Mediterranean region of Chile were analyzed for the presence of DNA of Bartonella spp. and Rickettsia spp. through quantitative real-time PCR for the nouG and gltA genes, respectively. Positive samples were further characterized by conventional PCR protocols, targeting gltA and ITS genes for Bartonella, and gltA, ompA, and ompB genes for Rickettsia. Bartonella was detected in 48 % of the Pulex irritans pools (B. rochalimae in three pools, B. berkhoffii in two pools, B. henselae in one pool), and 8 % of the Ctenocephalides felis felis pools (B. rochalimae, one pool). Rickettsia was confirmed in 11 % of P. irritans pools and 92 % of the Ct. felis pools. Characterization confirmed R. felis in all sequenced Rickettsia-positive pools. All Ct. canis pools were negative. A Ct. felis pool from a wild-found domestic ferret (Mustela putorius furo) also resulted positive for R. felis. Although opportunistic, this survey provides the first description of zoonotic pathogens naturally circulating in fleas parasitizing Chilean free-living carnivores.


Subject(s)
Bartonella , Carnivora , Ctenocephalides , Dog Diseases , Flea Infestations , Mustelidae , Rickettsia felis , Rickettsia , Siphonaptera , Dogs , Animals , Siphonaptera/microbiology , Bartonella/genetics , Rickettsia felis/genetics , Foxes , Chile/epidemiology , Ferrets/genetics , Dog Diseases/microbiology , Flea Infestations/epidemiology , Flea Infestations/veterinary , Rickettsia/genetics , Ctenocephalides/genetics , Real-Time Polymerase Chain Reaction/veterinary
17.
Acta Trop ; 243: 106923, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37080265

ABSTRACT

Fleas are important ectoparasites and vectors associated with a wide range of pathogenic diseases, posing threats to public health concerns, especially cat fleas that spread worldwide. Understanding the microbial components is essential due to cat fleas are capable of transmitting pathogens to humans, causing diseases like plague and murine typhus. In the present study, metagenomic next-generation sequencing was applied to obtain the complete microbiota and related functions in the gut of Ctenocephalides felis. A total of 1,870 species was taxonomically recognized including 1,407 bacteria, 365 eukaryotes, 69 viruses, and 29 archaea. Proteobacteria was the dominant phylum among the six samples. Pathogens Rickettsia felis, Acinetobacter baumannii, Coxiella burnetii, and Anaplasma phagocytophilum were taxonomically identified and had high abundances in all samples. The resistance gene MexD was predominant in microbial communities of all cat fleas. We also performed epidemiological surveys of pathogens R. felis, A. baumannii, C. burnetii, and A. phagocytophilum among 165 cat fleas collected from seven provinces in China, while only the DNAs of R. felis (38/165, 23.03%) and C. burnetii (2/165, 1.21%) were obtained. The data provide new insight and understanding of flea intestinal microbiota and support novel information for preventing and controlling fleas and their transmitted diseases.


Subject(s)
Cat Diseases , Ctenocephalides , Felis , Flea Infestations , Rickettsia felis , Siphonaptera , Animals , Humans , Mice , Cats , Ctenocephalides/genetics , Flea Infestations/veterinary , Flea Infestations/parasitology , Rickettsia felis/genetics , Bacteria/genetics
18.
PLoS Negl Trop Dis ; 17(4): e0011233, 2023 04.
Article in English | MEDLINE | ID: mdl-37053346

ABSTRACT

Cat fleas, small blood-feeding ectoparasites that feed on humans and animals, cause discomfort through their bites, and can transmit numerous diseases to animals and humans. Traditionally, fleas have been reared for research on live animals, but this process requires animal handling permits, inflicts discomfort on animals, and requires money and time to maintain the host animals. Although artificial membrane-based feeding systems have been implemented, these methods are not sustainable in the long term because they result in lower blood consumption and egg production than those with rearing on live hosts. To maximize these parameters, we tested blood from four hosts to determine the most suitable blood, on the basis of blood consumption and egg production. We also tested the effects of adding the phagostimulant adenosine-5´-triphosphate to the blood to maximize blood consumption. In 48 hours, fleas fed dog blood consumed the most blood, averaging 9.5 µL per flea, whereas fleas fed on cow, cat, or human blood consumed 8.3 µL, 5.7 µL, or 5.2 µL, respectively. Addition of 0.01 M and 0.1 M adenosine-5´-triphosphate to dog and cow blood did not enhance blood consumption. In a 1-week feeding period, the total egg production was also greatest in fleas fed dog blood, with females producing 129.5 eggs, whereas females on cat, human, and cow blood produced 97.2, 83.0, and 70.7 eggs, respectively. The observed results in dog blood indicate an improvement over previously reported results in cat fleas fed with an artificial feeding system. Improving the sustainability of rearing cat flea colonies without feeding on live animals will enable more humane and convenient production of this pest for scientific research.


Subject(s)
Cat Diseases , Ctenocephalides , Flea Infestations , Siphonaptera , Female , Cattle , Animals , Dogs , Humans , Cats , Flea Infestations/prevention & control , Flea Infestations/veterinary , Adenosine/pharmacology , Cat Diseases/parasitology
19.
Med Vet Entomol ; 37(2): 359-370, 2023 06.
Article in English | MEDLINE | ID: mdl-36621899

ABSTRACT

Fleas in the genus Ctenocephalides are the most clinically important parasitic arthropods of dogs and cats worldwide yet risk factors that might increase the risk of infestation in small animals remains unclear. Here we developed a supervised text mining approach analysing key aspects of flea epidemiology using electronic health records from domestic cats and dogs seen at a sentinel network of 191 voluntary veterinary practices across Great Britain between March 2014 and July 2020. Our methods identified fleas as likely to have been present during 22,276 of 1,902,016 cat consultations (1.17%) and 12,168 of 4,844,850 dog consultations (0.25%). Multivariable logistic regression modelling found that animals originating from areas of least deprivation were associated with 50% reductions in odds of veterinary-recorded flea infestation compared to the most deprived regions in England. Age of the animal was significantly associated with flea presentation in both cats and dogs, with cases peaking before animals reached 12 months. Cases were recorded through each study years, peaking between July and October, with fluctuations between each year. Our findings can be used towards healthcare messaging for veterinary practitioners and owners.


Subject(s)
Cat Diseases , Ctenocephalides , Dog Diseases , Flea Infestations , Siphonaptera , Animals , Cats , Dogs , Cat Diseases/epidemiology , Cat Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Flea Infestations/epidemiology , Flea Infestations/veterinary
20.
PLoS One ; 18(1): e0279070, 2023.
Article in English | MEDLINE | ID: mdl-36649293

ABSTRACT

The hematophagous behaviour emerged independently in several instances during arthropod evolution. Survey of salivary gland and saliva composition and its pharmacological activity led to the conclusion that blood-feeding arthropods evolved a distinct salivary mixture that can interfere with host defensive response, thus facilitating blood acquisition and pathogen transmission. The cat flea, Ctenocephalides felis, is the major vector of several pathogens, including Rickettsia typhi, Rickettsia felis and Bartonella spp. and therefore, represents an important insect species from the medical and veterinary perspectives. Previously, a Sanger-based sialome of adult C. felis female salivary glands was published and reported 1,840 expressing sequence tags (ESTs) which were assembled into 896 contigs. Here, we provide a deeper insight into C. felis salivary gland composition using an Illumina-based sequencing approach. In the current dataset, we report 8,892 coding sequences (CDS) classified into 27 functional classes, which were assembled from 42,754,615 reads. Moreover, we paired our RNAseq data with a mass spectrometry analysis using the translated transcripts as a reference, confirming the presence of several putative secreted protein families in the cat flea salivary gland homogenates. Both transcriptomic and proteomic approaches confirmed that FS-H-like proteins and acid phosphatases lacking their putative catalytic residues are the two most abundant salivary proteins families of C. felis and are potentially related to blood acquisition. We also report several novel sequences similar to apyrases, odorant binding proteins, antigen 5, cholinesterases, proteases, and proteases inhibitors, in addition to putative novel sequences that presented low or no sequence identity to previously deposited sequences. Together, the data represents an extended reference for the identification and characterization of the pharmacological activity present in C. felis salivary glands.


Subject(s)
Ctenocephalides , Flea Infestations , Rickettsia felis , Animals , Female , Ctenocephalides/genetics , Ctenocephalides/microbiology , Proteomics , Salivary Glands/metabolism , Saliva/chemistry , Rickettsia felis/physiology , Flea Infestations/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...