Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
1.
J Nanobiotechnology ; 22(1): 268, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764056

ABSTRACT

The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.


Subject(s)
Cold Temperature , Cucumis sativus , Iron , Seedlings , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Cucumis sativus/drug effects , Seedlings/growth & development , Seedlings/metabolism , Seedlings/drug effects , Iron/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Germination/drug effects , Hydroxides/pharmacology , Hydroxides/metabolism , Fertilizers , Gene Expression Regulation, Plant/drug effects , Nanoparticles/chemistry , Stress, Physiological , Magnesium/metabolism
2.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696020

ABSTRACT

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Subject(s)
Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
3.
Plant Physiol Biochem ; 210: 108573, 2024 May.
Article in English | MEDLINE | ID: mdl-38569423

ABSTRACT

Riboflavins are secreted under iron deficiency as a part of the iron acquisition Strategy I, mainly when the external pH is acidic. In plants growing under Fe-deficiency and alkaline conditions, riboflavins have been reported to accumulate inside the roots, with very low or negligible secretion. However, the fact that riboflavins may undergo hydrolysis under alkaline conditions has been so far disregarded. In this paper, we report the presence of riboflavin derivatives and products of their alkaline hydrolysis (lumichrome, lumiflavin and carboxymethylflavin) in nutrient solutions of Cucumis sativus plants grown under different iron regimes (soluble Fe-EDDHA in the nutrient solution, total absence of iron in the nutrient solution, or two different doses of FeSO4 supplied as a foliar spray), either cultivated in slightly acidic (pH 6) or alkaline (pH 8.8, 10 mM bicarbonate) nutrient solutions. The results show that root synthesis and exudation of riboflavins is controlled by shoot iron status, and that exuded riboflavins undergo hydrolysis, especially at alkaline pH, with lumichrome being the main product of hydrolysis.


Subject(s)
Plant Roots , Plant Roots/metabolism , Plant Roots/drug effects , Hydrolysis , Cucumis sativus/metabolism , Cucumis sativus/drug effects , Iron Deficiencies , Riboflavin/metabolism , Hydrogen-Ion Concentration , Stress, Physiological/drug effects , Iron/metabolism , Plant Exudates/metabolism
4.
J Trace Elem Med Biol ; 84: 127463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657336

ABSTRACT

BACKGROUND: Environmental pollution by cadmium (Cd) is currently a common problem in many countries, especially in highly industrialised areas. Cd present in the soil can be absorbed by plants through the root system. AIM: The aim of the present study was to investigate the effects of cadmium on the metabolic activity of cucumber plants (Cucumis sativus L.) and the accumulation and distribution of Cd in the organs of the plants. METHODS: Cucumber seeds (3 g) were exposed to 0.76, 1.58 or 4.17 mg Cd/L (applied as CdCl2 solutions). The activity of selected antioxidant enzymes - glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation and the content of photosynthetic pigments were determined in 6-week-old cucumber plants. In addition, intake of Cd has been determined by flame atomic absorption spectrometry (F-AAS). RESULTS: The results show that the applied cadmium concentrations affected the activity of antioxidant enzymes. An increase in CAT activity and a decrease in SOD activity were observed in all cucumber organs analysed. GSH-Px activity increased in the roots and stems. Surprisingly, GSH-Px activity decreased in the leaves. The level of lipid peroxidation was usually unchanged (the only one statistically significant change was a decrease in the concentration of malondialdehyde in the leaves which was observed after exposure to the highest Cd concentration). The applied Cd concentrations had no effect on the content of photosynthetic pigments. The highest cadmium content was found in the roots of cucumber plants. Cd tends to accumulate in the roots and a small amount was translocated to the stems and leaves, which was confirmed with the translocation factor (TF). CONCLUSIONS: The results indicate that the range of cadmium concentrations used, corresponding to the level of environmental pollution recorded in Europe, effectively activates the antioxidant enzyme system, without intensifying lipid peroxidation or reducing the content of photosynthetic pigments.


Subject(s)
Cadmium , Cucumis sativus , Oxidative Stress , Photosynthesis , Cucumis sativus/drug effects , Cucumis sativus/metabolism , Oxidative Stress/drug effects , Cadmium/metabolism , Photosynthesis/drug effects , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects , Catalase/metabolism , Glutathione Peroxidase/metabolism , Chlorophyll/metabolism , Antioxidants/metabolism
5.
BMC Plant Biol ; 22(1): 30, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35027005

ABSTRACT

Strigolactone is a newly discovered type of plant hormone that has multiple roles in modulating plant responses to abiotic stress. Herein, we aimed to investigate the effects of exogenous GR24 (a synthetic analogue of strigolactone) on plant growth, photosynthetic characteristics, carbohydrate levels, endogenous strigolactone content and antioxidant metabolism in cucumber seedlings under low light stress. The results showed that the application of 10 µM GR24 can increase the photosynthetic efficiency and plant biomass of low light-stressed cucumber seedlings. GR24 increased the accumulation of carbohydrates and the synthesis of sucrose-related enzyme activities, enhanced antioxidant enzyme activities and antioxidant substance contents, and reduced the levels of H2O2 and MDA in cucumber seedlings under low light stress. These results indicate that exogenous GR24 might alleviate low light stress-induced growth inhibition by regulating the assimilation of carbon and antioxidants and endogenous strigolactone contents, thereby enhancing the tolerance of cucumber seedlings to low light stress.


Subject(s)
Adaptation, Ocular/drug effects , Cucumis sativus/drug effects , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism
6.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948028

ABSTRACT

As an important gas signaling molecule, hydrogen sulfide (H2S) plays a crucial role in regulating cold tolerance. H2S cooperates with phytohormones such as abscisic acid, ethylene, and salicylic acid to regulate the plant stress response. However, the synergistic regulation of H2S and auxin in the plant response to cold stress has not been reported. This study showed that sodium hydrosulfide (NaHS, an H2S donor) treatment enhanced the cold stress tolerance of cucumber seedlings and increased the level of auxin. CsARF5, a cucumber auxin response factor (ARF) gene, was isolated, and its role in regulating H2S-mediated cold stress tolerance was described. Transgenic cucumber leaves overexpressing CsARF5 were obtained. Physiological analysis indicated that overexpression of CsARF5 enhanced the cold stress tolerance of cucumber and the regulation of the cold stress response by CsARF5 depends on H2S. In addition, molecular assays showed that CsARF5 modulated cold stress response by directly activating the expression of the dehydration-responsive element-binding (DREB)/C-repeat binding factor (CBF) gene CsDREB3, which was identified as a positive regulator of cold stress. Taken together, the above results suggest that CsARF5 plays an important role in H2S-mediated cold stress in cucumber. These results shed light on the molecular mechanism by which H2S regulates cold stress response by mediating auxin signaling; this will provide insights for further studies on the molecular mechanism by which H2S regulates cold stress. The aim of this study was to explore the molecular mechanism of H2S regulating cold tolerance of cucumber seedlings and provide a theoretical basis for the further study of cucumber cultivation and environmental adaptability technology in winter.


Subject(s)
Cucumis sativus/growth & development , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Sulfides/pharmacology , Cold-Shock Response/drug effects , Cucumis sativus/drug effects , Cucumis sativus/genetics , Cucumis sativus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Hydrogen Sulfide/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism
7.
Sci Rep ; 11(1): 24504, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34969963

ABSTRACT

Cucumber is an important vegetable but highly sensitive to salt stress. The present study was designed to investigate the comparative performance of cucumber genotypes under salt stress (50 mmol L-1) and stress alleviation through an optimized level of triacontanol @ 0.8 mg L-1. Four cucumber genotypes were subjected to foliar application of triacontanol under stress. Different physiological, biochemical, water relations and ionic traits were observed to determine the role of triacontanol in salt stress alleviation. Triacontanol ameliorated the lethal impact of salt stress in all genotypes, but Green long and Marketmore were more responsive than Summer green and 20252 in almost all the attributes that define the genetic potential of genotypes. Triacontanol performs as a good scavenger of ROS by accelerating the activity of antioxidant enzymes (SOD, POD, CAT) and compatible solutes (proline, glycinebetaine, phenolic contents), which lead to improved gas exchange attributes and water relations and in that way enhance the calcium and potassium contents or decline the sodium and chloride contents in cucumber leaves. Furthermore, triacontanol feeding also shows the answer to yield traits of cucumber. It was concluded from the results that the salinity tolerance efficacy of triacontanol is valid in enhancing the productivity of cucumber plants under salt stress. Triacontanol was more pronounced in green long and marketer green than in summer green and 20252. Hence, the findings of this study pave the way towards the usage of triacontanol @ 0.8 mg L-1, and green long and marketer genotypes may be recommended for saline soil.


Subject(s)
Cucumis sativus/physiology , Fatty Alcohols/metabolism , Salt Stress , Cucumis sativus/drug effects , Cucumis sativus/genetics , Fatty Alcohols/administration & dosage , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Salt Stress/drug effects , Salt Tolerance/drug effects
8.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830208

ABSTRACT

Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'MAPK signaling', and 'plant hormone signal transduction' were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.


Subject(s)
Allyl Compounds/pharmacology , Cucumis sativus/drug effects , Cucumis sativus/microbiology , Disulfides/pharmacology , Fungicides, Industrial/pharmacology , Garlic/chemistry , Peronospora/drug effects , Peronospora/pathogenicity , Plant Diseases/prevention & control , Plant Extracts/pharmacology , Cucumis sativus/genetics , Cucumis sativus/metabolism , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Lignin/metabolism , MAP Kinase Signaling System/drug effects , Plant Diseases/genetics , Plant Diseases/microbiology , Salicylic Acid/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/microbiology , Transcriptome/drug effects
9.
BMC Plant Biol ; 21(1): 340, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34273968

ABSTRACT

BACKGROUND: TLPs (Tubby-like proteins) are widespread in eukaryotes and highly conserved in plants and animals. TLP is involved in many biological processes, such as growth, development, biotic and abiotic stress responses, while the underlying molecular mechanism remains largely unknown. In this paper we characterized the biological function of cucumber (Cucumis sativus L.) Tubby-like protein 8 (CsTLP8) in Arabidopsis. RESULTS: In cucumber, the expression of the tubby-like protein CsTLP8 was induced by NaCl treatment, but reduced by PEG (Polyethylene Glycol) and ABA (Abscisic Acid) treatment. Subcellular localization and transcriptional activation activity analysis revealed that CsTLP8 possessed two characteristics of classical transcription factors: nuclear localization and trans-activation activity. Yeast two-hybrid assay revealed interactions of CsTLP8 with CsSKP1a and CsSKP1c, suggesting that CsTLP8 might function as a subunit of E3 ubiquitin ligase. The growth activity of yeast with ectopically expressed CsTLP8 was lower than the control under NaCl and mannitol treatments. Under osmotic and salt stresses, overexpression of CsTLP8 inhibited seed germination and the growth of Arabidopsis seedlings, increased the content of MDA (Malondialdehyde), and decreased the activities of SOD (Superoxide Dismutase), POD (Peroxidase) and CAT (Catalase) in Arabidopsis seedlings. Overexpression of CsTLP8 also increased the sensitivity to ABA during seed germination and ABA-mediated stomatal closure. CONCLUSION: Under osmotic stress, CsTLP8 might inhibit seed germination and seedling growth by affecting antioxidant enzymes activities. CsTLP8 acts as a negative regulator in osmotic stress and its effects may be related to ABA.


Subject(s)
Abscisic Acid/metabolism , Cucumis sativus/metabolism , Germination , Osmotic Pressure , Plant Proteins/metabolism , Seeds , Signal Transduction , Antioxidants/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cucumis sativus/drug effects , Cucumis sativus/growth & development , Seedlings/metabolism , Seeds/embryology , Sodium Chloride , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Int J Biol Macromol ; 182: 1883-1892, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34062161

ABSTRACT

Biocontrol of soil-borne pathogens by recruiting soil microbiota brings forth benefits to soil quality and plant production while lowers environmental impact. Succinoglycan possesses various biological activities, but its role in soil amendment is still elusive. The succinoglycan Riclin was investigated in this study as a polysaccharide-type biocontrol agent for improving the soil suppressiveness on a typical fungal pathogen Fusarium oxysporum f. sp. cucumerinum (FOC). Results demonstrated that addition of Riclin increased the soil microbial carbon and lowered the species richness of soil fungal communities. After addition of 2.5 mg/g Riclin for 90 days, the relative abundance of Actinobacteria and Firmicutes were increased by 76.6% and 193.4%, compared with the control. Meanwhile, Proteobacteria and Ascomycota were decreased by 25.9% and 30.4%. The relative abundance of beneficial genera, namely Nocardioides, Kribbella, Streptomyces, Gaiella, Marmoricola, Bacillus, and Rhizobium, became 1.13, 5.17, 0.87, 0.45, 3.57, 4.53, and 6.30 folds higher than the control, respectively. Antagonism towards soil-borne pathogens was probably enhanced as both hydrolase activity and biosynthesis of bioactive secondary compounds were improved. Importantly, Riclin-treated soil significantly reduced the incidence of Fusarium wilt of cucumber seedlings by suppression of FOC. In conclusion, addition of Riclin was conducive to the improvement of soil suppressiveness.


Subject(s)
Cucumis sativus/microbiology , Fusarium/physiology , Microbiota/drug effects , Plant Diseases/microbiology , Polysaccharides, Bacterial/pharmacology , Probiotics/pharmacology , Seedlings/microbiology , Soil Microbiology , Biodiversity , Cucumis sativus/drug effects , Fusarium/drug effects , Microbiota/genetics , Phylogeny , Seedlings/drug effects , Soil/chemistry , Time Factors
11.
Carbohydr Polym ; 265: 118073, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33966837

ABSTRACT

Plant fungal diseases can lead to yield reduction and quality degradation in crops, which usually cause serious economic losses. Additionally, chemical fungicides used in the prevention and control of plant diseases are increasingly restricted due to resistance development and high toxicity. Therefore, biogenic fungicides such as chitosan with low toxicity and good biocompatibility are receiving increasing attention. This study found that the acid swelling chitosan pretreatment method can accelerate the rate of the specific oxidation of chitosan catalyzed by the TEMPO-NaBr-NaOCl system. This study proved that OCTS induces plant disease resistance, and the control efficiencies achieved in protection and treatment experiments against Botrytis cinerea were 80.6 % and 83.4 %, respectively, at 400 µg/mL OCTS. In addition, OCTS can promote plant growth and enhance plant defense enzyme activities. This research has realized a forward-looking exploration of the application of OCTS in the agricultural field.


Subject(s)
Botrytis/drug effects , Chitosan/pharmacology , Disease Resistance , Fungicides, Industrial/pharmacology , Chitosan/chemistry , Cucumis sativus/drug effects , Cyclic N-Oxides/chemistry , Fungicides, Industrial/chemistry , HaCaT Cells , Humans , Solanum lycopersicum/drug effects , Oxidation-Reduction , Plant Development/drug effects , Plant Diseases/microbiology , Spectroscopy, Fourier Transform Infrared/methods
12.
PLoS One ; 16(5): e0251396, 2021.
Article in English | MEDLINE | ID: mdl-33999962

ABSTRACT

The unique properties of carbon-based nanomaterials, including fullerenol, have attracted great interest in agricultural and environmental applications. Iron (Fe) is an essential micronutrient for major metabolic processes, for which a shortage causes chlorosis and reduces the yield of many crops cultivated worldwide. In the current study, the metabolic responses of Cucumis sativus (a Strategy I plant) to fullerenol treatments were investigated depending on the Fe status of plants. Cucumber plants were grown hydroponically, either with [+FeII (ferrous) and +FeIII (ferric)] or in Fe-free (-FeII and -FeIII) nutrient solution, with (+F) or without (-F) a fullerenol supply. Iron species-dependent effects were observed in either Fe-fed or Fe-starved plants, with alteration of metabolites involved in the metabolism of carbohydrates, amino acids, organic acids, lipophilic compounds. Metabolic perturbations triggered by fullerenol in the FeIII-treated plants were in the opposite kind from those in the FeII-treated plants. Whereas in the FeIII-fed plants, fullerenol activated the metabolisation of carbohydrates and amino acids, in the FeII-fed plants, fullerenol activated the metabolisation of lipophilic compounds and repressed the metabolisation of carbohydrates and amino acids. In FeIII-deficient plants, fullerenol stimulated the metabolism of C3 carboxylates and lipophilic compounds while repressing the metabolism of amino acids, hexoses and dicarboxylates, while in FeII-deficient plants, activations of the metabolism of amino acids and dicarboxylates and repression of sterol metabolism by fullerenol were observed. The results indicated that the valence state of Fe sources is of importance for re-programming metabolome responses in cucumber to fullerenol either in Fe-sufficient or Fe-deficient conditions. These investigations are significant for understanding fullerenol interactions and risk assessment in plants with different Fe statuses.


Subject(s)
Cucumis sativus/drug effects , Fullerenes/pharmacology , Iron/metabolism , Cucumis sativus/metabolism , Hydroponics/methods , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism
13.
Plant Signal Behav ; 16(7): 1917169, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33879022

ABSTRACT

Exogenous application of methyl jasmonate (MeJA) has been extensively used to study jasmonate-dependent signaling events triggered by biotic stresses. MeJA application leads to complex jasmonate-dependent physiological responses, including changes in stomatal openness and induction of emissions of a multitude of volatile compounds. Whether the alterations in stomatal conductance and emissions of MeJA-induced volatiles are quantitatively associated with MeJA dose, and whether the induced volatile emissions are regulated by modifications in stomatal conductance had been poorly known until recently. Our latest studies highlighted a biphasic kinetics of jasmonate-dependent volatile emissions induced by MeJA treatment in the model species cucumber (Cucumis sativus), indicating induction of an immediate stress response and subsequent gene-expression level response. Both the immediate and delayed responses were MeJA dose-dependent. The studies further demonstrated that stomata modulated the kinetics of emissions of water-soluble volatiles in a MeJA dose-dependent manner. These studies contribute to understanding of plant short- and long-term responses to different biotic stress severities as simulated by treatments with a range of MeJA doses corresponding to mild to acute stress.


Subject(s)
Acetates/pharmacology , Cucumis sativus/drug effects , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Photosynthesis/drug effects , Plant Stomata/physiology , Cucumis sativus/physiology , Dose-Response Relationship, Drug , Kinetics , Stress, Physiological , Volatile Organic Compounds/metabolism
14.
Ecotoxicol Environ Saf ; 208: 111654, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396168

ABSTRACT

Salicylic acid (SA) is an important signal molecule, regulating oxidative stress response in plants. In this study, we evaluated the influences of SA (1 mg L-1, 10 mg L-1 and 50 mg L-1) on the accumulation of clothianidin (CLO), dinotefuran (DFN) and difenoconazole (DFZ) (5 mg L-1) and pesticide-induced (CLO-10 mg L-1, DFN-20 mg L-1, and DFZ-10 mg L-1) oxidative stress in cucumber plants. Exogenous SA at 10 mg L-1 significantly reduced the half-lives of three pesticides in nutrient solution and prevented the accumulation of pesticides in roots and leaves. And the role of SA in reducing residues was related to the major accumulation sites of pesticides. By calculating the root concentration factor (RCF) and translocation factor (TF), we found that SA at 10 mg L-1 reduced the ability of roots to absorb pesticides and enhanced the translocation ability from roots to leaves. Roots exposed to high concentrations of three pesticides could reduce biomass, low chlorophyll content, increase the accumulation of reactive oxygen species (ROS) and proline, promote lipid peroxidation, and alter the activities of a range of antioxidant enzymes, respectively. Exogenous SA at low concentrations (1 mg L-1 and 10 mg L-1) significantly mitigated these negative effects. Hence, application of exogenous SA at 10 mg L-1 could effectively alleviate the accumulation of pesticides and induce stress tolerance in cucumber planting systems.


Subject(s)
Cucumis sativus/drug effects , Oxidative Stress/drug effects , Pesticides/metabolism , Salicylic Acid/pharmacology , Antioxidants/metabolism , Chlorophyll/metabolism , Cucumis sativus/metabolism , Lipid Peroxidation/drug effects , Pesticides/toxicity , Plant Leaves/drug effects , Plant Leaves/metabolism , Proline/metabolism , Reactive Oxygen Species/metabolism
15.
Food Chem ; 343: 128411, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33131952

ABSTRACT

The aim of this study was to evaluate the effect of acetic (AA) or propionic (PA) acid as a cosurfactant on the microemulsion (ME) characteristics of Thymus vulgaris essential oil (TVO). The results showed that addition of propylene glycol to TVO/AA or PA:T80/water MEs gave dilutable systems with particles ~59 nm in diameter. Plain TVO showed the highest antimicrobial activity against E. coli, S. aureus, and S. typhi in in vitro antimicrobial tests, followed closely by AA/PA-MEs. The antimicrobial activity of AA/PA-MEs used as a washing solution on cucumber and strawberry samples was remarkably greater than those of free TVO, TVO nanoemulsions, and chlorhexidine solutions against E. coli and S. aureus. The sensory properties of the samples were not changed by the use of AA/PA-MEs at 0.05 or 0.1% TVO. The results introduce dilutable TVO:AA/PA-MEs for incorporation of TVO in aqueous systems for use as a fruit/vegetable disinfecting agent.


Subject(s)
Disinfectants/chemistry , Disinfectants/pharmacology , Emulsions/chemistry , Oils, Volatile/pharmacology , Thymus Plant/chemistry , Acetic Acid/chemistry , Adolescent , Adult , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cucumis sativus/drug effects , Cucumis sativus/microbiology , Emulsions/pharmacology , Escherichia coli/drug effects , Female , Food Microbiology , Fragaria/drug effects , Fragaria/microbiology , Fruit/drug effects , Fruit/microbiology , Humans , Male , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Propionates/chemistry , Salmonella typhi/drug effects , Staphylococcus aureus/drug effects , Taste , Young Adult
16.
ACS Appl Mater Interfaces ; 13(1): 1333-1344, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33351598

ABSTRACT

Dimethyl disulfide (DMDS), a promising alternative fumigant, has been highly desirable for excellent management of soil pests and diseases. However, high volatility and moderate toxicity of this sulfide limit its application. To address these issues, a novel controlled release formulation of DMDS was proposed employing multiple emulsions and polyurea microcapsules (DMDS@MEs-MCs). The successful combination of the two technologies was revealed by confocal laser scanning microscopy, scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared. According to the multiple encapsulation structure, the encapsulation efficiency decreased by only 3.13% after thermal storage, compared with a 15.21% decrease of microcapsules made with only a monolayer film. DMDS@MEs-MCs could effectively control the release of active ingredient, which increased applicator and environmental safety during application. Moreover, it could be facilely used by spraying and drip irrigation instead of a special fumigation device. The innovative formulation exhibited better control efficacy on soil pathogens (Fusarium spp. and Phytophthora spp.) and root-knot nematodes (Meloidogyne spp.) than DMDS technical concentration (DMDS TC). In addition, it did not inhibit seed germination after 10 days when the plastic film was removed from the fumigated soil. This method appears to be of broad interest for the development of safe and handy fumigant application.


Subject(s)
Anti-Infective Agents/toxicity , Capsules/chemistry , Disulfides/toxicity , Drug Carriers/chemistry , Emulsions/chemistry , Polymers/chemistry , Animals , Capsules/toxicity , Cucumis sativus/drug effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/toxicity , Drug Carriers/toxicity , Drug Liberation , Emulsions/toxicity , Fusarium/drug effects , Phytophthora/drug effects , Polymers/toxicity , Soil Microbiology , Tylenchoidea/drug effects
17.
Bioorg Med Chem Lett ; 34: 127762, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33359605

ABSTRACT

In an effort to discover new agents with good fungicidal activities against CDM (cucumber downy mildew), a series of tetrazole derivatives containing phenyloxadiazole moieties were designed and synthesized. The EC50 values for fungicidal activities against CDM were determined. Bioassay results indicated that most synthesized compounds exhibited potential in vivo fungicidal activity against CDM. A CoMFA (comparative molecular field analysis) model based on the bioactivity was developed to identify some primary structural quality for the efficiency. The values of q2 and r2 for the established model were 0.791 and 0.982 respectively, which reliability and predict abilities were verified. Three analogues (q3, q4, q5) were designed and synthesized based on the model. All these compounds exhibited significant fungicidal activity on CDM with the EC50 of 1.43, 1.52, 1.77 mg·L-1. This work could provide a useful instruction for the further structure optimization.


Subject(s)
Fungicides, Industrial/pharmacology , Oomycetes/drug effects , Oxadiazoles/pharmacology , Quantitative Structure-Activity Relationship , Tetrazoles/pharmacology , Cucumis sativus/drug effects , Cucumis sativus/microbiology , Dose-Response Relationship, Drug , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oxadiazoles/chemistry , Plant Diseases/microbiology , Tetrazoles/chemical synthesis , Tetrazoles/chemistry
18.
Genes (Basel) ; 11(11)2020 11 20.
Article in English | MEDLINE | ID: mdl-33233827

ABSTRACT

TCP proteins are plant-specific transcription factors widely implicated in leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, the relationship between the transcription pattern of TCPs and organ development in cucumber has not been systematically studied. In this study, we performed a genome-wide identification of putative TCP genes and analyzed their chromosomal location, gene structure, conserved motif, and transcript expression. A total of 27 putative TCP genes were identified and characterized in cucumber. All 27 putative CsTCP genes were classified into class I and class II. Class I comprised 12 CsTCPs and Class II contained 15 CsTCPs. The 27 putative CsTCP genes were randomly distributed in five of seven chromosomes in cucumber. Four putative CsTCP genes were found to contain putative miR319 target sites. Quantitative RT-PCR revealed that 27 putative CsTCP genes exhibited different expression patterns in cucumber tissues and floral organ development. Transcript expression and phenotype analysis showed that the putative CsTCP genes responded to temperature and photoperiod and were induced by gibberellin (GA)and ethylene treatment, which suggested that CsTCP genes may regulate the lateral branching by involving in multiple signal pathways. These results lay the foundation for studying the function of cucumber TCP genes in the future.


Subject(s)
Cucumis sativus/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Chromosome Mapping , Cucumis sativus/drug effects , Cucurbitaceae/genetics , Ethylenes/pharmacology , Flowers/genetics , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Genome-Wide Association Study , Gibberellins/pharmacology , Multigene Family , Phylogeny , Plant Growth Regulators/pharmacology , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid
19.
Int J Nanomedicine ; 15: 8097-8108, 2020.
Article in English | MEDLINE | ID: mdl-33116520

ABSTRACT

BACKGROUND: Metallic nanoparticles (NPs) are highly exploited in manufacturing and medical processes in a broad spectrum of industrial applications and in the academic sectors. Several studies have suggested that many metallic nanomaterials including those derived by silver (Ag) are entering the ecosystem to cause significant toxic consequences in cell culture and animal models. However, ecotoxicity studies are still receiving limited attention when designing functionalized and non.-functionalized AgNPs. OBJECTIVE: This study aimed to investigate different ecotoxicological profiles of AgNPs, which were analyzed in two different states: in pristine form uncoated AgNPs and coated AgNPs with the antimicrobial peptide indolicidin. These two types of AgNPs are exploited for a set of different tests using Daphnia magna and Raphidocelis subcapitata, which are representatives of two different levels of the aquatic trophic chain, and seeds of Lepidium sativum, Cucumis sativus and Lactuca sativa. RESULTS: Ecotoxicological studies showed that the most sensitive organism to AgNPs was crustacean D. magna, followed by R. subcapitata and plant seeds, while AgNPs coated with indolicidin (IndAgNPs) showed a dose-dependent decreased toxicity for all three. CONCLUSION: The obtained results demonstrate that high ecotoxicity induced by AgNPs is strongly dependent on the surface chemistry, thus the presence of the antimicrobial peptide. This finding opens new avenues to design and fabricate the next generation of metallic nanoparticles to ensure the biosafety and risk of using engineered nanoparticles in consumer products.


Subject(s)
Antimicrobial Cationic Peptides/toxicity , Aquatic Organisms/drug effects , Ecosystem , Ecotoxicology , Metal Nanoparticles/toxicity , Silver/toxicity , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Crustacea/drug effects , Cucumis sativus/drug effects , Cucumis sativus/growth & development , Daphnia/cytology , Daphnia/drug effects , Germination/drug effects , Lepidium/drug effects , Lepidium/growth & development , Lactuca/drug effects , Lactuca/growth & development , Metal Nanoparticles/ultrastructure , Seeds/drug effects , Seeds/growth & development , Toxicity Tests
20.
Plant Physiol Biochem ; 157: 138-147, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113485

ABSTRACT

Due to the deliberate use of cupric fungicides in the last century for crop-defence programs, copper (Cu) has considerably accumulated in the soil. The concentrations of Cu often exceed the safety limits of risk assessment for Cu in soil and this may cause toxicity in plants. Copper toxicity induces nutritional imbalances in plants and constraints to plants growth. These aspects might be of paramount importance in the case of phosphorus (P), which is an essential plant macronutrient. In this work, hydroponically grown cucumber plants were used to investigate the influence of the exposure to different Cu concentrations (0.2, 5, 25 and 50 µM) on i) the phenotypic traits of plants, particularly at root level, ii) the nutrient content in both roots and shoots, and iii) the P uptake mechanisms, considering both the biochemical and molecular aspects. At high Cu concentrations (i.e. above 25 µM), the shoot and root growth resulted stunted and the P influx rate diminished. Furthermore, two P transporter genes (i.e. CsPT1.4 and CsPT1.9) were upregulated at the highest Cu concentration, albeit with different induction kinetics. Overall, these results confirm that high Cu concentrations can limit the root acquisition of P, most likely via a direct action on the uptake mechanisms (e.g. transporters). However, the alteration of root plasma membrane permeability induced by Cu toxicity might also play a pivotal role in the observed phenomenon.


Subject(s)
Copper/toxicity , Cucumis sativus/metabolism , Phosphorus/metabolism , Soil Pollutants/toxicity , Cucumis sativus/drug effects , Gene Expression Regulation, Plant , Phenotype , Plant Roots/metabolism , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...