Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.627
Filter
1.
Parasitol Res ; 123(5): 218, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777889

ABSTRACT

The most widely used attractant to capture adult female mosquitoes is CO2. However, there are also baits available on the market that emit a scent resembling human skin. These baits were specifically designed to attract highly anthropophilic species such as Aedes albopictus and Aedes aegypti. In this study, we compare the effectiveness of CDC traps baited either with CO2 or with a commercial blend simulating skin odor, BG-Sweetscent, for trapping female mosquitoes during daylight hours in an urban reserve in the City of Buenos Aires. We employed a hurdle generalized linear mixed model to analyze trap capture probability and the number of mosquitoes captured per hour, considering the effects of attractant, mosquito species, and their interaction. Traps baited with CO2 captured ten mosquito species, while those baited with BG-Sweetscent captured six in overall significantly lower abundance. The odds of capturing mosquitoes were 292% higher for the CO2-baited traps than for those baited with BG-Sweetscent. No evidence of a combined effect of attractant type and species on female mosquito captures per hour was found. Results indicated that CDC traps baited with CO2 were more effective than those baited with BG-Sweetscent in capturing more mosquito species and a higher number of mosquitoes within each species, even if the species captured with CO2 exhibited a certain level of anthropophilia. This result has practical implications for mosquito surveillance and control in urban natural reserves.


Subject(s)
Culicidae , Mosquito Control , Animals , Female , Mosquito Control/methods , Culicidae/physiology , Culicidae/classification , Culicidae/drug effects , Pheromones/pharmacology , Carbon Dioxide , Cities , Odorants/analysis , Argentina , Humans
2.
J Am Mosq Control Assoc ; 40(2): 81-91, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38811013

ABSTRACT

Land use and land cover (LULC) gradients are associated with differences in mosquito species composition and the entomological risk of mosquito-borne disease. Here, we present results from a season-long study of mosquito species richness and abundance with samples collected at 9 locations from 2 plots with contrasting LULC, an urban farm and a forest preserve, in Bloomington, IN, a city in the midwestern USA. With a total sampling effort of 234 trap-nights, we collected 703 mosquitoes from 9 genera and 21 species. On the farm, we collected 15 species (285 mosquitoes). In the preserve, we collected 19 species (418 mosquitoes). Thirteen species were common in both study plots, 2 were exclusive to the farm, and 6 were exclusive to the forest preserve. In both plots, we collected Aedes albopictus and Ae. japonicus. In the farm, the most common mosquito species were Culex restuans/Cx. pipiens and Coquillettidia perturbans. In the preserve, Ae. japonicus and Ae. triseriatus were the 2 most common mosquito species. Time series analysis suggests that weather factors differentially affected mosquito species richness and mosquito abundance in the plots. Temperature, relative humidity (RH), and precipitation were positively associated with richness and abundance at the farm, while increases in the SD of RH decreased both richness and abundance at the preserve. Our results highlight the importance that LULC has for mosquito species diversity and abundance and confirm the presence of Ae. albopictus and Ae. japonicus in southwestern Indiana.


Subject(s)
Biodiversity , Culicidae , Population Density , Animals , Culicidae/physiology , Culicidae/classification , Indiana , Cities , Animal Distribution
3.
J Am Mosq Control Assoc ; 40(2): 112-116, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38697617

ABSTRACT

Among all living beings, mosquitoes account for the highest number of human fatalities. Our study aimed to determine mosquito egg abundance fluctuation from 2015 to 2020, in order to observe which years had the highest mosquito vector densities and whether they coincided with yellow fever virus outbreaks in both human and nonhuman primates. The study area included Atlantic Forest fragments in the state of Rio de Janeiro. Studies from the Diptera Laboratory at FIOCRUZ were selected and compared along a timeline period of the field collections. The highest peak in egg abundance from the analyzed studies was observed from 2016 to 2017 and from 2015 to 2016. The lowest egg abundance was during the collection periods from 2018 to 2019 and 2019 to 2020. The species with the highest abundance throughout all the periods of the studies analyzed was Haemagogus leucocelaenus, representing 87% of all epidemiological species identified. The species with the lowest abundance was Hg. Janthinomys, representing only 1%. Monitoring the population of mosquitoes is imperative for disease surveillance, as the rise in specimens of various vector species directly impacts the occurrence of yellow fever cases in both nonhuman primates and human populations.


Subject(s)
Culicidae , Disease Outbreaks , Forests , Mosquito Vectors , Yellow Fever , Animals , Brazil/epidemiology , Yellow Fever/epidemiology , Yellow Fever/transmission , Mosquito Vectors/physiology , Culicidae/physiology , Humans , Population Density , Population Dynamics , Yellow fever virus
4.
Parasit Vectors ; 17(1): 227, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755646

ABSTRACT

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.


Subject(s)
Culicidae , Psychodidae , Ticks , Volatile Organic Compounds , Animals , Volatile Organic Compounds/metabolism , Psychodidae/physiology , Psychodidae/parasitology , Ticks/physiology , Humans , Culicidae/physiology , Behavior, Animal , Vector Borne Diseases/transmission , Female , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Plasmodium falciparum/physiology
5.
PLoS One ; 19(5): e0303405, 2024.
Article in English | MEDLINE | ID: mdl-38718006

ABSTRACT

Entomological research is vital for shaping strategies to control mosquito vectors. Its significance also reaches into environmental management, aiming to prevent inconveniences caused by non-vector mosquitoes like the Mansonia Blanchard, 1901 mosquito. In this study, we carried out a five-year (2019-2023) monitoring of these mosquitoes at ten sites in Porto Velho, Rondônia, using SkeeterVac SV3100 automatic traps positioned between the two hydroelectric complexes on the Madeira River. Throughout this period, we sampled 153,125 mosquitoes, of which the Mansonia genus accounted for 54% of the total, indicating its prevalence in the region. ARIMA analysis revealed seasonal patterns of Mansonia spp., highlighting periods of peak density. Notably, a significant decreasing trend in local abundance was observed from July 2021 (25th epidemiological week) until the end of the study. Wind speed was observed to be the most relevant meteorological factor influencing the abundance of Mansonia spp. especially in the Joana D'Arc settlement, although additional investigation is needed to comprehensively analyze other local events and gain a deeper understanding of the ecological patterns of this genus in the Amazon region.


Subject(s)
Culicidae , Seasons , Animals , Culicidae/physiology , Mosquito Vectors/physiology , Brazil , Meteorological Concepts
6.
PLoS One ; 19(5): e0303330, 2024.
Article in English | MEDLINE | ID: mdl-38718075

ABSTRACT

INTRODUCTION: Workers in the construction industry frequently work in construction sites with numerous areas that can potentially accumulate water, such as tanks, wet cement surfaces, or water puddles. These water collection sites become ideal breeding grounds for mosquito infestation, which leads to a higher prevalence of mosquito-borne diseases, especially malaria and dengue among construction workers. Despite that numerous factors have been identified in controlling vector-borne diseases, the specific factors that influence mosquito control at construction sites have yet to be explored. AIMS: This systematic review aims to determine the factors associated with mosquito control among construction workers. METHODS: Primarily, articles related to factors associated with mosquito control among construction workers were collected from two different online databases (ScienceDirect and EBSCOhost). Two independent reviewers were assigned to screen the titles and abstracts of the collected data, stored in Microsoft Excel, against the inclusion and exclusion criteria. Afterwards, the quality of the included articles was critically assessed using the Mixed Method Appraisal Tool (MMAT). Of the 171 articles identified, 4 were included in the final review. RESULTS: Based on the thorough evaluation, mosquito-related knowledge, practical mosquito prevention measures, and Larval Source Management (LSM) were identified as vital factors associated with mosquito control among construction workers. The significant association between mosquito-related knowledge and control practices indicates higher knowledge linked to effective practices, particularly among female workers and those who were recently infected with malaria. Concurrently, there were notable challenges regarding sustainable preventive measures and larval control methods in construction settings. CONCLUSION: Implementing effective mosquito control, including knowledge and practice on mosquito control together with vector control, is highly required to suppress the expanding mosquito population. It is recommended that employers provide continuous mosquito control education and training to their employees and reward them with incentives, while employees should comply with the guidelines set by their employers to ensure successful mosquito control and reduce the spread of mosquito-borne diseases in the construction industry.


Subject(s)
Construction Industry , Mosquito Control , Mosquito Control/methods , Humans , Animals , Malaria/prevention & control , Malaria/epidemiology , Culicidae/physiology , Mosquito Vectors/physiology , Female , Health Knowledge, Attitudes, Practice
7.
PLoS Negl Trop Dis ; 18(5): e0012162, 2024 May.
Article in English | MEDLINE | ID: mdl-38709836

ABSTRACT

West Nile virus (WNV) is a vector-borne flavivirus that causes an increasing number of human and equine West Nile fever cases in Europe. While the virus has been present in the Mediterranean basin and the Balkans since the 1960s, recent years have witnessed its northward expansion, with the first human cases reported in Germany in 2018 and the Netherlands in 2020. WNV transmission and amplification within mosquitoes are temperature-dependent. This study applies a mathematical modelling approach to assess the conditions under which WNV circulation occurs based on the proportion of mosquito bites on WNV-competent birds (dilution), vector-host ratios, mosquito season length and the observed daily temperature data. We modelled five distinct European regions where previous WNV circulation has been observed within the Netherlands, Germany, Spain, Italy, and Greece. We observed that the number of days in which the basic reproduction number (R0) is above one, increased over the last 40 years in all five regions. In the Netherlands, the number of days in which the R0 is above one, is 70% lower than in Spain. The temperature in Greece, Spain and Italy allowed for circulation under low vector-host ratios, and at a high dilution. On the other hand in the Netherlands and Germany, given the observed daily temperature, the thresholds for circulation requires a lower dilution and higher vector-host ratios. For the Netherlands, a short window of introductions between late May and mid-June would result in detectable outbreaks. Our findings revealed that the temperate maritime climate of the Netherlands allows WNV circulation primarily during warmer summers, and only under high vector-host ratios. This research contributes valuable insights into the dynamic relationship between temperature, vector properties, and WNV transmission, offering guidance for proactive strategies in addressing this emerging health threat in Europe.


Subject(s)
Mosquito Vectors , Seasons , Temperature , West Nile Fever , West Nile virus , West Nile Fever/transmission , West Nile Fever/epidemiology , West Nile Fever/virology , Animals , West Nile virus/physiology , West Nile virus/isolation & purification , Europe/epidemiology , Humans , Mosquito Vectors/virology , Mosquito Vectors/physiology , Birds/virology , Netherlands/epidemiology , Models, Theoretical , Culicidae/virology , Culicidae/physiology
8.
Parasit Vectors ; 17(1): 201, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711091

ABSTRACT

PURPOSE: The rising burden of mosquito-borne diseases in Europe extends beyond urban areas, encompassing rural and semi-urban regions near managed and natural wetlands evidenced by recent outbreaks of Usutu and West Nile viruses. While wetland management policies focus on biodiversity and ecosystem services, few studies explore the impact on mosquito vectors. METHODS: Our research addresses this gap, examining juvenile mosquito and aquatic predator communities in 67 ditch sites within a South England coastal marsh subjected to different wetland management tiers. Using joint distribution models, we analyse how mosquito communities respond to abiotic and biotic factors influenced by wetland management. RESULTS: Of the 12 mosquito species identified, Culiseta annulata (Usutu virus vector) and Culex pipiens (Usutu and West Nile virus vector) constitute 47% of 6825 larval mosquitoes. Abundant predators include Coleoptera (water beetles) adults, Corixidae (water boatmen) and Zygoptera (Damselfy) larvae. Models reveal that tier 3 management sites (higher winter water levels, lower agricultural intensity) associated with shade and less floating vegetation are preferred by specific mosquito species. All mosquito species except Anopheles maculipennis s.l., are negatively impacted by potential predators. Culiseta annulata shows positive associations with shaded and turbid water, contrary to preferences of Corixidae predators. CONCLUSIONS: Tier 3 areas managed for biodiversity, characterised by higher seasonal water levels and reduced livestock grazing intensity, provide favourable habitats for key mosquito species that are known vectors of arboviruses, such as Usutu and West Nile. Our findings emphasise the impact of biodiversity-focused wetland management, altering mosquito breeding site vegetation to enhance vector suitability. Further exploration of these trade-offs is crucial for comprehending the broader implications of wetland management.


Subject(s)
Biodiversity , Culicidae , Mosquito Vectors , Wetlands , Animals , Mosquito Vectors/physiology , Mosquito Vectors/virology , Culicidae/classification , Culicidae/physiology , Culicidae/virology , Ecosystem , Larva/physiology , Seasons , United Kingdom , Culex/physiology , Culex/virology , Culex/classification , England
9.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738868

ABSTRACT

Mosquitoes, notorious as the deadliest animals to humans due to their capacity to transmit diseases, pose a persistent challenge to public health. The primary prevention strategy currently in use involves chemical repellents, which often prove ineffective as mosquitoes rapidly develop resistance. Consequently, the invention of new preventive methods is crucial. Such development hinges on a thorough understanding of mosquito biting behaviors, necessitating an experimental setup that accurately replicates actual biting scenarios with controllable testing parameters and quantitative measurements. To bridge this gap, a bio-hybrid atomic force microscopy (AFM) probe was engineered, featuring a biological stinger - specifically, a mosquito labrum - as its tip. This bio-hybrid probe, compatible with standard AFM systems, enables a near-authentic simulation of mosquito penetration behaviors. This method marks a step forward in the quantitative study of biting mechanisms, potentially leading to the creation of effective barriers against vector-borne diseases (VBDs) and opening new avenues in the fight against mosquito-transmitted illnesses.


Subject(s)
Culicidae , Microscopy, Atomic Force , Animals , Microscopy, Atomic Force/methods , Culicidae/physiology , Insect Bites and Stings/prevention & control
10.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Article in English | MEDLINE | ID: mdl-38709820

ABSTRACT

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Subject(s)
Mosquito Control , Animals , Mosquito Control/methods , Culicidae/genetics , Culicidae/physiology , Computational Biology/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Aedes/genetics , Insecticide Resistance/genetics , Female
11.
Article in English | MEDLINE | ID: mdl-38791823

ABSTRACT

In the Americas, wild yellow fever (WYF) is an infectious disease that is highly lethal for some non-human primate species and non-vaccinated people. Specifically, in the Brazilian Atlantic Forest, Haemagogus leucocelaenus and Haemagogus janthinomys mosquitoes act as the major vectors. Despite transmission risk being related to vector densities, little is known about how landscape structure affects vector abundance and movement. To fill these gaps, we used vector abundance data and a model-selection approach to assess how landscape structure affects vector abundance, aiming to identify connecting elements for virus dispersion in the state of São Paulo, Brazil. Our findings show that Hg. leucocelaenus and Hg. janthinomys abundances, in highly degraded and fragmented landscapes, are mainly affected by increases in forest cover at scales of 2.0 and 2.5 km, respectively. Fragmented landscapes provide ecological corridors for vector dispersion, which, along with high vector abundance, promotes the creation of risk areas for WYF virus spread, especially along the border with Minas Gerais state, the upper edges of the Serra do Mar, in the Serra da Cantareira, and in areas of the metropolitan regions of São Paulo and Campinas.


Subject(s)
Mosquito Vectors , Yellow Fever , Brazil , Animals , Yellow Fever/transmission , Mosquito Vectors/virology , Ecosystem , Tropical Climate , Yellow fever virus , Population Density , Culicidae/virology , Culicidae/physiology
12.
Curr Opin Insect Sci ; 63: 101199, 2024 06.
Article in English | MEDLINE | ID: mdl-38588943

ABSTRACT

Mosquitoes, males and females, rely on sugar-rich resources, including floral nectar as a primary source of sugar to meet their energy and nutritional needs. Despite advancements in understanding mosquito host-seeking and blood-feeding preferences, significant gaps in our knowledge of the chemical ecology mediating mosquito-nectar associations remain. The influence of such association with nectar on mosquito behavior and the resulting effects on their fitness are also not totally understood. It is significant that floral nectar frequently acts as a natural habitat for various microbes (e.g. bacteria and yeast), which substantially alter nectar characteristics, influencing the nutritional ecology of flower-visiting insects, such as mosquitoes. The role of nectar-inhabiting microbes in shaping the nectar-mosquito interactions remains, however, under-researched. This review explores recent advances in understanding the role of such multitrophic interactions on the fitness and life history traits of mosquitoes and outlines future directions for research toward their control as disease vectors.


Subject(s)
Culicidae , Plant Nectar , Plant Nectar/chemistry , Animals , Culicidae/physiology , Feeding Behavior
13.
Bull Entomol Res ; 114(2): 302-307, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557482

ABSTRACT

Mosquito-borne diseases have emerged in North Borneo in Malaysia due to rapid changes in the forest landscape, and mosquito surveillance is key to understanding disease transmission. However, surveillance programmes involving sampling and taxonomic identification require well-trained personnel, are time-consuming and labour-intensive. In this study, we aim to use a deep leaning model (DL) to develop an application capable of automatically detecting mosquito vectors collected from urban and suburban areas in North Borneo, Malaysia. Specifically, a DL model called MobileNetV2 was developed using a total of 4880 images of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus mosquitoes, which are widely distributed in Malaysia. More importantly, the model was deployed as an application that can be used in the field. The model was fine-tuned with hyperparameters of learning rate 0.0001, 0.0005, 0.001, 0.01 and the performance of the model was tested for accuracy, precision, recall and F1 score. Inference time was also considered during development to assess the feasibility of the model as an app in the real world. The model showed an accuracy of at least 97%, a precision of 96% and a recall of 97% on the test set. When used as an app in the field to detect mosquitoes with the elements of different background environments, the model was able to achieve an accuracy of 76% with an inference time of 47.33 ms. Our result demonstrates the practicality of computer vision and DL in the real world of vector and pest surveillance programmes. In the future, more image data and robust DL architecture can be explored to improve the prediction result.


Subject(s)
Aedes , Deep Learning , Mosquito Vectors , Animals , Malaysia , Mosquito Vectors/physiology , Mosquito Vectors/classification , Aedes/physiology , Aedes/classification , Culex/classification , Culex/physiology , Culicidae/classification , Culicidae/physiology
14.
Acta Trop ; 255: 107221, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642695

ABSTRACT

Mosquito surveillance for vector-borne disease management relies on traditional morphological and molecular techniques, which are tedious, time-consuming, and costly. The present study describes a simple and efficient recording device that analyzes mosquito sound to estimate species composition, male-female ratio, fed-unfed status, and harmonic convergence interaction using fundamental frequency (F0) bandwidth, harmonics, amplitude, and combinations of these parameters. The study examined a total of 19 mosquito species, including 3 species of Aedes, 7 species of Anopheles, 1 species of Armigeres, 5 species of Culex, 1 species of Hulecoetomyia, and 2 species of Mansonia. Among them, the F0 ranges between 269.09 ± 2.96 Hz (Anopheles culiciformis) to 567.51 ± 3.82 Hz (Aedes vittatus) and the harmonic band (hb) number ranges from 5 (An. culiciformis) to 12 (Ae. albopictus). In terms of species identification, the success rate was 95.32 % with F0, 84.79 % with F0-bandwidth, 84.79 % with harmonic band (hb) diversity, and 49.7 % with amplitude (dB). The species identification rate has gone up to 96.50 % and 97.66 % with the ratio and multiplication of F0 and hb, respectively. This is because of the matrices that combine multiple sound attributes. Comparatively, combinations of the amplitude of the F0 and the higher harmonic frequency band were non-significant for species identification (60.82 %). The fed females have shown a considerable increase in F0 in comparison to the unfed. The males of all the species possessed significantly higher frequencies with respect to the females. Interestingly, the presence of male-female of Ae. vittatus together showed harmonic convergence between the 2nd and 3rd harmonic bands. In conclusion, the sound-based technology is simple, precise, and cost-effective and provides better resolution for species, sex, and fed-unfed status detection in comparison to conventional methods. Real-time surveillance of mosquitoes could potentially utilize this technology.


Subject(s)
Culicidae , Sound , Animals , Female , Male , Culicidae/classification , Culicidae/physiology , Mosquito Vectors/physiology , Mosquito Vectors/classification
15.
Acta Trop ; 254: 107179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522629

ABSTRACT

Mosquitoes of vectorial importance represent a ubiquitous and constant threat of potentially devastating arboviral outbreaks. Our ability to predict such outcomes is still restricted. To answer this, we have used an extensive data collection of 23 vector and 233 non-vector mosquito species distributed throughout the Mexican territory and linked them to social and environmental factors. Our aim was to predict vector and non-vector mosquitoes' distribution and species richness based on socioeconomic and environmental data. We found that lack of health services, human population variation, ecological degradation, and urban-rural categorization contributed significantly to explain the distribution of vector mosquitoes. mosquitoes. This phenomenon is probably attributed to the degradation of natural ecosystems as it creates favorable conditions for the proliferation of vector mosquitoes. The richness of vector mosquitoes was similarly explained by most of these variables as well as altitude. As for non-vector mosquitoes, social marginalization, ecological degradation, anthropogenic impact, and altitude explain species richness and distribution. These findings illustrate the complex interaction of environmental and socioeconomic factors behind the distribution of mosquitoes, and the potential for arboviral disease outbreaks. Areas with human populations at highest risk for mosquito-borne diseases should be primary targets for vector control.


Subject(s)
Biodiversity , Culicidae , Mosquito Vectors , Socioeconomic Factors , Animals , Humans , Mexico , Culicidae/physiology , Culicidae/classification , Culicidae/virology , Mosquito Vectors/physiology , Mosquito Vectors/virology , Ecosystem
16.
J Travel Med ; 31(4)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38498330

ABSTRACT

BACKGROUND: The effect of clothing colour on the biting rates of different vector mosquito species is not well understood. Studies under tropical field conditions are lacking. This study aimed to determine the influence of clothing colours on mosquito biting rates in rural and suburban settings in West Africa. METHODS: We performed a simulated field study in a suburban and a rural site in Mali using Mosquito-Magnet traps utilizing CO2 and other attractants, which were covered with black, white, and black/white striped textile sheets covers. These targets operated continuously for 10 consecutive days with bright nights (around full moon) and 10 consecutive days with dark nights (around new moon). Trapped mosquitoes were collected and catch rates counted hourly. Mosquitoes were morphologically identified to the species complex level (Anopheles gambiae s.l. and Culex pipiens s.l.) or species level (Aedes aegypti). A subset of Anopheles specimens were further identified by molecular methods. RESULTS: Under bright-night conditions, An. gambiae s.l. was significantly more attracted to black targets than to white and striped targets; during dark nights, no target preference was noted. During bright nights, Cx. pipiens s.l. was significantly more attracted to black and striped targets than to white targets; a similar trend was noted during dark nights (not significant). For day-active Ae. aegypti, striped targets were more attractive than the other targets and black were more attractive than white targets. CONCLUSIONS: The study firstly demonstrated that under field conditions in Mali, West Africa, mosquito catch rates were influenced by different clothing colours, depending on mosquito species and light conditions. Overall, light colours were least attractive to host-seeking mosquitoes. Using white or other light-coloured clothing can potentially reduce bite exposure and risk of disease transmission in endemic tropical regions.


Subject(s)
Anopheles , Color , Mosquito Vectors , Animals , Mali , Mosquito Vectors/physiology , Humans , Anopheles/physiology , Culex/physiology , Clothing , Textiles , Insect Bites and Stings/prevention & control , Mosquito Control/methods , Feeding Behavior , Aedes/physiology , Culicidae/physiology
17.
Curr Opin Insect Sci ; 63: 101194, 2024 06.
Article in English | MEDLINE | ID: mdl-38522648

ABSTRACT

Mosquitoes are vectors for arboviruses, such as dengue, Zika, and Chikungunya. Symbiotic interactions can affect the intrinsic ability of mosquitoes to acquire and transmit arboviruses, referred to as vector competence. Insect-specific viruses (ISVs) are commonly found in symbiotic associations with mosquitoes in the wild and can affect many aspects of mosquito biology. Here, we review current knowledge on the effects of symbiotic ISV-mosquito interactions on vector competence. We discuss potential mechanisms underlying these interactions and their implications for shaping new biological control strategies. Finally, we highlight the need for field data analyzing the circulation of ISVs in mosquitoes associated with mechanistic studies in the laboratory.


Subject(s)
Arboviruses , Mosquito Vectors , Symbiosis , Animals , Mosquito Vectors/virology , Mosquito Vectors/physiology , Arboviruses/physiology , Insect Viruses/physiology , Culicidae/virology , Culicidae/physiology , Arbovirus Infections/transmission
18.
Curr Opin Insect Sci ; 63: 101195, 2024 06.
Article in English | MEDLINE | ID: mdl-38552792

ABSTRACT

Mosquitoes encounter diverse microbes during their lifetime, including symbiotic bacteria, shaping their midgut ecosystem. The organization of the midgut supports microbiota persistence while defending against potential pathogens. The influx of nutrients during blood feeding triggers bacterial proliferation, challenging host homeostasis. Immune responses, aimed at controlling bacterial overgrowth, impact blood-borne pathogens such as malaria parasites. However, parasites deploy evasion strategies against mosquito immunity. Leveraging these mechanisms could help engineer malaria-resistant mosquitoes, offering a transformative tool for malaria elimination.


Subject(s)
Culicidae , Gastrointestinal Microbiome , Animals , Culicidae/microbiology , Culicidae/physiology , Culicidae/immunology , Symbiosis , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/immunology
19.
Med Vet Entomol ; 38(2): 138-147, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469658

ABSTRACT

Microplastics (plastic particles <5 mm) permeate aquatic and terrestrial ecosystems and constitute a hazard to animal life. Although much research has been conducted on the effects of microplastics on marine and benthic organisms, less consideration has been given to insects, especially those adapted to urban environments. Here, we provide a perspective on the potential consequences of exposure to microplastics within typical larval habitat on mosquito biology. Mosquitoes represent an ideal organism in which to explore the biological effects of microplastics on terrestrial insects, not least because of their importance as an infectious disease vector. Drawing on evidence from other organisms and knowledge of the mosquito life cycle, we summarise some of the more plausible impacts of microplastics including physiological, ecotoxicological and immunological responses. We conclude that although there remains little experimental evidence demonstrating any adverse effect on mosquito biology or pathogen transmission, significant knowledge gaps remain, and there is now a need to quantify the effects that microplastic pollution could have on such an important disease vector.


Subject(s)
Culicidae , Microplastics , Animals , Microplastics/toxicity , Culicidae/drug effects , Culicidae/physiology , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Larva/growth & development , Larva/drug effects , Water Pollutants, Chemical/toxicity
20.
SELECTION OF CITATIONS
SEARCH DETAIL
...